用户名: 密码: 验证码:
二乙基亚硝胺诱发大鼠原发性肝癌过程中肝脏胶原的动态观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肝细胞癌(hepatocellular carcinoma, HCC,以下简称肝癌)是全球最常见的恶性肿瘤之一,世界上每年新诊断的病例约60万例,肝癌引起的死亡位居所有癌症相关死亡的第三位。乙肝病毒慢性感染是肝癌形成的重要因素之一,由于我国有超过1亿的乙肝感染者,所以原发性肝癌更是高发的重大疾病。据卫生部统计,2007年我国城市居民肝癌死亡率占恶性肿瘤死因的第2位(25.47/10万)。在农村居民中,肝癌死亡率甚至达到了28.72/10万。虽然肝癌切除技术日益完善,但许多肝癌患者就诊时病情已进展,导致肝癌可切除率不高、术后复发率居高不下,患者的预后严重受严重影响。因此,肝癌的预防和早期诊断至关重要。目前,临床诊断手段缺乏,早期诊断率低,许多肝癌一经发现己至进展期。尽早发现肝癌的癌前病变是早期诊断和改善预后的关键,但在临床上尚缺乏诊断肝癌前期病变的可靠指标。尽快阐明肝癌癌前病变,从而建立针对这些高危人群的癌症预防战略,是医学工作者的一项迫切任务。肝硬化作为肝癌的癌前期病变,其组织内最大的病理特征改变是胶原纤维的沉积,本实验通过二乙基亚硝胺(DEN)诱癌,模拟动态观察肝硬化肝癌发生过程中肝组织胶原的变化特点,初步探索其中规律,以期为寻找肝癌癌前期特异性病理变化提供参考。
     目的
     1.建立改良型伴发肝硬化肝癌大鼠模型,为研究肝癌发病特点和药物干预提供较理想动物模型。
     2.动态观察大鼠自肝炎、肝硬化发展为肝癌过程中胶原纤维的变化特点,探讨肝癌前期病变的病理特征,为肝癌预防和肝癌预后提供参考。
     材料和方法
     1.动物分组和模型制备:50只Wistar大鼠(100-120g)随机分为模型组30只、对照组20只。模型组以二乙基亚硝胺(DEN)腹腔注射,50mg/Kg体重,每周2次,连续4周后改为每周一次腹腔注射DEN,50mg/Kg体重,至14周停止;对照组以生理盐水腹腔注射,0.1ml/次,每周2次,连续4周后改为每周一次腹腔注射生理盐水,0.1ml/1次,至14周停止。于诱癌开始后第2、4、8、12、14、18周,分批处死大鼠,每次处死模型组大鼠3只,对照组大鼠3只。持续乙醚吸入麻醉,心脏取血5ml,制备血清,置-20℃储存。出现癌灶者取肉眼癌灶及距癌灶边缘1cm癌旁组织,大小约0.5cmx0.5cm,用10%中性福尔马林固定,未出现癌灶者,随机取部分肝组织,大小约0.5cm×0.5cm,用10%中性福尔马林固定,用于病理石蜡切片制备。其余组织-80℃冰箱冷冻保存。
     2.血清生化指标测定:使用Aeroset全自动生化分析仪进行血清谷丙转氨酶、总胆红素、γ-谷氨酰转肽酶检测。
     3. Western-blot蛋白印迹技术:进行肝组织内基质金属蛋白酶MMP-2、MMP-9的测定。
     4.PCR技术:进行肝组织内Ⅰ、Ⅲ型胶原mRNA的检测。
     5.常规病理检测和特殊染色:对不同时期肝组织切片进行HE、Masson三色、网状染色等。并采用Knodell分级、Ishak分期及Metavir分期对标本进行分级分期。
     6.荧光免疫染色:检测肝组织内CD31的表达量。
     7.数据处理:利用SPSS13.0统计软件对各数据进行统计分析。
     结果
     1.诱癌14周以后成功诱导出肝硬化伴发的原发性肝癌,14周时成癌情况为3/5,18周时成癌情况为3/3,成癌率为75%,总体死亡率33%(10/30);
     2.模型组大鼠体重在诱癌2周以后与对照组相比减轻,且具有统计学意义,p<0.05;
     3.模型组大鼠血清丙氨酸氨基转移酶(ALT)第2周开始升高,第14周达高峰,第18周时下降。第2周以后模型组与对照组间均有统计学差异(p<0.05);
     4.模型组大鼠血清总胆红素(TBIL)第4周开始升高,第14周达高峰,第18周时下降。第4周以后(除12周外)模型组与对照组间均有显著性统计学差异(p<0.01);
     5.模型组大鼠血清γ-谷氨酰转肽酶随时间逐渐升高,12周以后变化不明显。诱癌第12周以后模型组GGT含量与对照组比较有统计学差异(p<0.05);
     6.DEN诱导的伴发肝硬化的大鼠肝癌模型中,肝硬化时,肝组织内胶原沉积明显,窦周胶原沉积增加;肝癌组织胶原纤维明显减少;
     7.CD31在大鼠肝癌组织内表达强于在肝硬化肝组织内表达;
     8.Ⅰ、Ⅲ型胶原分布、沉积特点与总体胶原变化一致;
     9.TPEF、SHG技术分析肝脏胶原结果与传统病理技术分析较一致;
     结论
     1.改良型二乙基亚硝胺诱导的伴发肝硬化肝癌模型是较理想的疾病研究模型。
     2.DEN诱导的大鼠肝脏癌变过程中,胶原纤维在硬化肝组织中沉积明显增加,而在肝癌组织中明显被降解减少,且随着肝癌的进展,癌组织内胶原进一步减少,提示胶原纤维过度沉积发生在肝脏癌变前,而癌变的肝组织内胶原纤维含量则跟癌灶的进展呈负相关;
     3.CD31在大鼠肝硬化后期、肝癌组织内均有表达,且肝癌组织中的表达要高于肝硬化肝组织,提示肝硬化肝组织内CD31的表达可能跟肝硬化后期的肝窦毛细血管化有关,而在肝癌组织中的进一步高表达则可能肝癌的新生血管有关;
     4.随着肝硬化的进展,肝组织内Ⅰ、Ⅲ型胶原与总体胶原沉积均明显增加,在肝癌形成后均明显减少,与基质金属蛋白酶变化呈负相关,提示Ⅰ、Ⅲ型胶原在该疾病模型中能代表肝脏胶原变化趋势,可能与肝癌的预后有关;
     5.经初步探索,TPEF联合SHG技术跟传统病理技术相比,在判定不同肝纤维化分期上与其较一致,且更省时、省力,减少了人为影响因素,是一种值得推广的肝脏胶原分析手段。
     应用价值
     1.改良型二乙基亚硝胺诱导的伴发肝硬化肝癌模型较传统诱导模型,具有重复性好、能精确控制药物摄入量、成癌时间短、成癌率高、死亡率低、与人类疾病模型相似等特点,是一种理想的用于人类疾病研究的动物模型。
     2.进一步阐明了大鼠肝脏癌变前后组织中胶原纤维的沉积特点,为临床诊断肝癌癌前病变及判定肝癌患者预后提供了参考。
     初步展示了一种新技术-SHG联合TPEF技术在肝组织内胶原纤
     维观察中的应用价值,可望促进肝组织胶原分析技术的发展。
Hepatocellular carcinoma (HCC) is of the most common malignancies throughout the world, and there are about600,000new cases every year. The mortality caused by HCC is in the third of that caused by all carcinoma. HBV infection is one of the important risk factors. There are more than100,000,000carriers of HBV in China. So HCC is a multiple critical illness in our country. According to Chinese Ministry of Health statistics, in2007mortality caused by HCC in China urban residents is in the second of that caused by all malignancies(25.47/100000), and the mortality in rural residents is28.72/100000. Although the technology of hepatectomy is progressing, but many patients have poor prognosis because of delay in diagnosis and recurrence after operation. So prevention and early diagnosis of HCC is essential. Currently, because of lack of clinical diagnostic indicators, the rate of early diagnosis is low, many patients are diagnosed at an advanced stage. Early detection of precancerous lesions of HCC is key to early diagnosis and prognosis, currently the clinical diagnosis of precancerous lesions of HCC is still in lack of reliable indicators. As soon as possible to clarify the precancerous lesions of HCC and establish prevention strategies for hige-risk groups, improve prognosis, is an urgent task for the medical workers. Cirrhosis as a precancerous lesions of HCC, one of the pathological features in its organization change is the deposition of collagen fibers. We dynamic observed the characteristic changes of collagen fibers in rat HCC induced by DEN, in order to find the precancerous lesions of HCC and provide a pathological reference for clinical diagnosis and treatment.
     Objective
     1.Establish improved concurrency model of cirrhosis of HCC in rats, provide an ideal animal model for the research of characteristics of HCC and drug intervention.
     2. To observe the characteristic changes of collagen fibers in rat HCC induced by DEN dynamically, explore the pathological features of HCC precursor lesions, provide a reference for prevention and prognosis of HCC.
     Materials and methods
     1.Experimental protocol:50male Wistar rats of about100-120g were randomly divided into normal group(20rats) and model group(30rats). The model group was administered a dose of50mg DEN per kilogram intraperitoneal injection, twice a week, for4weeks, then once a week, for another10weeks. The normal group was given saline instead of DEN. Three rats of model and normal group were killd at2,4,8,12,14, weeks,respectively. Operation is under continuous ether inhalation anesthesia,5ml blood were taken for all animals before killed, blood serum stored at-20℃. Take foci of tumor and adjacent organization, which is lcm far from the foci edge, and every organization block size is of about0.5×0.5cm. Cut part of liver tissue of rats in normal group and in model group without tumor, randomly. Tissue were fixed in10%neutral formalin, then for pathological paraffin sections. The remaining liver stored at-80℃.
     2.Serum biochemistry:the serum gamma-glutamy transpeptidase, total bilirubin, alanine aminotransferase were tested by automatic-biochemical analyser.
     3. Western-blot was performed to evaluate the content of matrix metalloproteinase-2and matrix metalloproteinase-9in liver.
     4.PCR was performed to evaluate the content of collagen type Ⅰ and Ⅲ in liver.
     5. Histopathological analysis:paraffin sections w ere cut to stained by H.E., Masson's Trichrome, argyrophilic fiber.The degree of necrosis, fibrosis, cirrhosis were analyzed by Knodell, Ishak, Metavir.
     6.Fluorescent immunostaining is performed observe the change of CD31in liver.
     7.Statistical analysis:use spss13.0to analyse results.
     Results
     1.The rat model both with cirrhosis and HCC was established successfully after14weeks inducing. At14th week, there were3rats checked with cirrhosis and HCC in5rats, and3rats in3at18th week. The carcinogenesis rate was75%, and overall mortality was33%.
     2.Body weight of Model rats were lighter than the control group after2weeks of medicine inducing, and the result had a statistical significance.
     3.In model group, ALT in serum began to increase at2th week after inducing, reached a peak at14th week, and decreased from18th week. After2weeks of inducing, comparision between the two groups was statistically significant, P<0.05.
     4. In model group, TBIL in serum began to increase at4th week after inducing, reached a peak at14th week, and decreased from18th week. After4weeks of inducing, comparision between the two groups was statistically significant, except of12th week, P<0.01.
     5. In model group, y-GGT in serum began to increase at2th week after inducing, reached a peak at12th week, then at a steady level. Comparision between the two groups was statistically significant after12weeks of inducing, P<0.01.
     6.In the model group, when rats were cirrhosis, collagen deposition in liver tissue was significantly increased, in the time, perisinusoidal collagen deposition together. When rats geted HCC, collagen deposition was reduced in the foci.
     7. CD31expression in rat hepatoma tissue is stronger than in the cirrhotic liver tissue.
     8. Changes of typeⅠ and type Ⅲ collagen deposition in tissue was consistent with overall collagen.
     9.The result was similar in analysis of liver collagen, either using SHG and TPEF or traditional pathological techniques.
     conclusion
     1.The improved model is better for HCC research than traditional methods.
     2.In the progress of HCC in this improved model, collagen fiber deposition in cirrhotic liver tissue was significantly increased, and decreased in HCC tissue.The result indicates that excessive collagen fiber deposition may occurrence before HCC formation, collagen fiber of HCC is negatively correlated with the progress of the foci.
     3.There was expression of CD31both in cirrhosis and HCC, and expression of CD31in HCC is higher than in cirrhotic liver tissue. This result indicates that CD31expression in cirrhosis may be related with hepatic sinusoidal capillarization, and related with neovascularization in HCC.
     4.In the progress of cirrhosis, type Ⅰ, type Ⅲ, and all collagen increased significantly, then decreased in HCC. It was negative related with MMP. This result indicates thatchanges of type Ⅰ, type Ⅲ are consistent with overall collagen in HCC formation, and may be related with prognosis.
     5. With preliminary exploration, we think the technology of TPEF united SHG is consistent with traditional pathology, and may be more effective, and reduce the human impact factors. It may be a better tool for liver collagen analysis.
     Application value
     1.Improved HCC model is an ideal tool for human desease research, because it is better reproducible,precise control of medicine intake, short time to carcinogenesis,lower mortality and similar to human HCC.
     2.This experiment confirm the characteristics of collagen deposition, provide a reference for clinical diagnosis and prognosis.
     3.Demonstrate a new technology of SHG united TPEF which can be used in the liver collagen fiber analysis. Hope to promote the development of analytical techniques in liver tissue collagen.
引文
[1]Tang, ZY, Ye, SL, Liu, YK, et al.A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol,2004,130:187-96.
    [2]Parkin DM. Global cancer statistics in the year 2000. Lancet oncol,2001, 2:533-43.
    [3]EL-Scrag, HB. Hepatocellular carcinoma:an epidemiologie view. J Clin Gastroenterol,2002,35:572-8.
    [4]Tang, ZY. Hepatocellular carcinoma surgery-review of the past and prospects for the 21st century. J Surg Oncol,2005,91:95-6.
    [5]Zhou, XD, Tang, ZY, Yu, YQ, et al. Recurrence after reseetion of alpha-fetoprotein-positive hepatocellular carcinoma. J Cancer Res Clin oncol, 1994,120:369-73.
    [6]王要军,孙自勤等.人肝细胞癌及癌旁肝组织Ⅰ、Ⅲ型胶原的定量研究.医学伦理与实践.1996,2(9):52,59.
    [7]Liotta L, et al. Role of collagenases in tumor cell invasion. Cancer Metas Reo. 1982,1:277.
    [8]王要军,戴益民.人原发性肝癌组织Ⅰ、Ⅲ型胶原的免疫组化研究.实用癌症杂志.1993,2(8):65-68.
    [9]Park HS; Kim KR; Lee HJ,et al. Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase. ONCOLOGY REPORTS.2007,18(6): 1435-1441.
    [10]Zhansheng Zhu;Yuting Jiang;Shougong Chen,et al. An insertion/deletion polymorphism in the 3'untranslated region of type Ⅰ collagen a2 (COL1A2) is associated with susceptibility for hepatocellular carcinoma in a Chinese population. Cancer Genetics.2011,20(5):265-269.
    [11]Fu BH;Wu ZZ;Qin J. Effects of integrin α6β1 on migration of hepatocellular carcinoma cells. Mol Biol Rep,2011,38(5):3271-3276.
    [12]Junfang Ji;Lei Zhao;Anuradha Budhu, et al. Let-7g targets collagen type I α2 and inhibits cell migration in hepatocellular carcinoma. Journal of Hepatology.2010, 52(5):690-697.
    [13]Abdel-Hamid NM. Premalignant variations in extracellular matrix composition in chemically induced hepatocellular carcinoma in rats. J MembrBiol.2009,230(3):155-162.
    [14]Yamamoto, M, et al. Distribution of collagen types I,III and V in fibrotic and neoplastic human liver. Acta Pathol Jpn.1984,34(1):77-86
    [15]王要军.人肝细胞癌及癌旁肝组织Ⅰ、Ⅲ型胶原的定量研究.医学理论与实践.1996,9(2):53,59.
    [16]屈军乐等,二次谐波成像及其在生物医学中的应用.深圳大学学报,2006(1):第1-9页.
    [17]Tang, ZY. Hepatocellular carcinoma surgery-review of the Past and Prospects for the 21st century. J Surg Oncol,2005,91:95-6.
    [18]Zhou, XD, Tang, ZY, Yu, YQ, et al.Recurrence after resection of alpha-fetoprotein-positive hepatocellular carcinoma. J Cancer Res Clin Oncol,1994,120:369-73.)
    [19]Simonetti RS, Camma C, Fiorello F, et al. Hepatocellular carcinoma. A worldwide problem and the major risk factors. Dig Dis Sci 1991;36:962-972.
    [20]GIOVANNA FATTOVICH, TOMMASO STROFFOLINI, IRENE ZAGNI, et al. Hepatocellular Carcinoma in Cirrhosis:Incidence and Risk Factors. GASTROENTEROLOGY 2004;127:S35-S50.
    [21]Philippa Newell, Augusto Villanueval, ScottL.Friedman, et al.Experimental models of hepatocellular carcinoma. Journal of Hepatology 48 (2008) 858-879.
    [22]Okubo H, Moriyama M, Tanaka N, et al. Detection of serum and intrahepatic hepatocyte growth factor during DEN-induced carcinogenesis in the rat [J] Hepatol Res,2002,24 (4):385-394.
    [23]Craddock VM. Induction of liver tumours in rats by a single treatment with nitroso compounds given after partal hepatectomy. Nature 1973; 245:386-388.
    [24]Goldfarb S, Pugh TD, Koen H, He YZ. Preneoplastic and neoplastic progression during hepatocarcinogenesis in mice injected with diethylnitrosamine in infancy. Environ Health Perspect 1983;50:149-161.
    [25]Koen H, Pugh TD, Goldfarb S. Centrilobular distribution of diethylnitrosamine-induced hepatocellular foci in the mouse. Lab Invest 1983;49:78-81.
    [26]Dyroff MC, Richardson FC, Popp JA, Bedell MA, Swenberg JA.Correlationo f0 4-ethyldeoxythymidinea ccumulation,he paticin itiationa nd hepatocellular carcinoma induction in rats continuously administered diethylnitrosamine. Carcinogenesis 1986; 7:241-246.
    [27]Deal FH, Richardson FC Swenberg JA. Dose response of hepatocyte replication in rats following continuous exposure to diethyhutrosamine. CancerR esl 989;49:69 85-6988.
    [28]Ju-Seog Leel, In-Sun Chul, Arsen Mikaelyanl, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. NATURE GENETICS,2004(36); 12:1306-1311
    [29]蒋泽生,方石岗,张云生,等.二乙基亚硝胺诱发大鼠肝细胞癌发生过程中的基质金属蛋白酶动态变化[J].中华肝胆外科杂志,2003,9(1):32—35.
    [30]Dhanasekaran M, Baskar A A, Ignacimuthu S, et al. Chemopreventive potential of Epoxy clerodane diterpene from Tinospora cordifolia against diethylnitrosamine—induced hepatocellular carcinoma. Invest [J]. New Drugs,2009,27(4):347-355.
    [31]Verna L, Whysner J, Williams G M. N- nitrosodiethylamine mechanistic data and risk assessment:bioactivation, DNA—adduct formation, mutagenicity, and tumor initiation [J]. Pharmacol Ther,1996,71(1-2)157-81.
    [32]Bralet MP, Pichard V, Ferry N. Demonstration of direct lineage between hepatocytes and hepatocellular carcinoma in diethylnitrosamine-treated rats.Hepatology2 002;36:62 3-630.
    [33]Guo DM, Qiu TS, Bian J, et al. Detection and characterization of hepatocellular carcinoma in rats with liver cirrhosis:diagnostic value of combined use of MR positive and negative contrast agents [J]. Hepatobiliary Pancreat Dis Int, 2009,8(1)165-70.
    [34]Jagan S, Ramakrishnan G, Anandakumar P, et al. Antiproliferative potential of gallic acid against diethylnitrosamine—induced rat hepatocellular carcinoma [J]. Mol Cell Biochem,2008,319(1-2):51-59.
    [35]Janani P, Sivakumari K, Geetha A, et al. Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN—induced hepatocellular carcinoma [J]. Cell Biochem Funct,2010,28(2):164-169.);
    [36]程延安,袁利超,党双锁,等. 间断小剂量DEN诱发大鼠癌模型研究[J].肿瘤防治杂志,2005,12(11):806—808.
    [37]Lin YZ, Brunt EM, Bowling W, Hafenrichter DG, Kennedy SC, Flye MW,Ponder KP. Ras-transduced diethylnitrosamine-treated hepatocytes develop into cancers of miced phenotype in vivo. Cancer Res 1995;55:5242-5250.
    [38]Chodon D, Banu S M, Padmavathi R, et al. Inhibition of cell proliferation and induction of apoptosis by genistein in experimental hepatocellular carcinoma [J]. Mol Cell Biochem,2007,297 (1-2):73-80.
    [39]Park D H, Shin J W, Park S K, et al. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1 /S— phase regulatory proteins in rat [J]. Toxicol Lett,2009,191(2-3):321-326.
    [40]Eduardo Schiffer,Chantal Housset, Wulfran Cacheux, et al. Gefitinib, an EGFR Inhibitor, Prevents Hepatocellular Carcinoma Development in the Rat Liver With Cirrhosis. HEPATOLOGY,2005(41),2:307-314.
    [41]GEORGE N. IOANNOU, MEAGHAN F. SPLAN, NOEL S. WEISS, et al. Incidence and Predictors of Hepatocellular Carcinoma in Patients With Cirrhosis. CLINICAL GASTROENTEROLOGY AND HEPATOLOGY 2007;5:938-945
    [42]Panneerselvam Janani,Kanakarajan Sivakumari, Arumugam Geetha,et al. Chemopreventive effect of bacoside A on N-nitrosodiethylamineinduced hepatocarcinogenesis in rats. J Cancer Res Clin Oncol (2010) 136:759-770.
    [43]Anupam Bishayee, Neetika Dhir. Resveratrol-mediated chemoprevention of diethylnitrosamine initiated hepato-carcinogenesis:Inhibition of cell proliferation and induction of apoptosis.Chemico-Biological Interactions,2009 (179):131-144.
    [44]Elsharkawy AM, Mann DA. Nuclear factor-kappa B and the hepatic inflammation—fibrosis-canceraxis. Hepatology,2007,46:590-597.
    [45]Naugler WE, Sakurai T'Kim S, et al. Gender dispaIity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science,2007,317:121-124.
    [46]Machida K, Tsukamoto H, Mkrtchyan H, et al. Activation of TLR4-TRAF6-TAK1 pathway induces hepatocellular carcinomas by synergistic interactions between alcohol and hepatitis c Virus NS5A. Hepatology,2007, 46(4 suppl):861A-862A.
    [47]Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology, 2008.134:1655.1669.
    [48]蔡卫民.肝脏炎症一纤维化一癌轴线分子生物学研究的某些进展.中华肝脏病杂志.2009,10(17):799-800.
    [49]Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics,2002[J]1 CA Cancer J Clin,2005,55(2):74-108
    [50]卫生部统计信息中心.居民病伤死亡原因.《2008中国卫生统计年鉴》:232,269
    [51]LlovetJM, Burroughs BruixJ. Hepatocellular carcinoma. Lancet,2003, 362:1907-1917.
    [52]Simonetti RS, Camma C, Florello F, et al. Hepatocellular carcinoma. A worldwide problem and the major risk factors. Dig Dis Sci 1991;36:962-972.
    [53]GIOVANNA FATTOVICH, TOMMASO STROFFOLINI, IRENE ZAGNI, FRANCESCO DONATO. Hepatocellular Carcinoma in Cirrhosis:Incidence and Risk Factors. GASTROENTEROLOGY.2004; 127:S35-S50.
    [54]杨拥军.肝细胞性肝癌癌前病变形态学特点及分子生物学研究进展.中国肿瘤.2008,17(1):41-44.
    [55]Kojiro M. Diagnostic discrepancy of early hepatocellular carcinoma between Japan and West. Hepatology Res 2007;37:S249-S252.
    [56]Hornick JL, Fletcher CDM. The invaluable role of morphology in the molecular era. In:Hall PA, Wright NA, eds. Understanding Disease. A Centenary Celebration of the Pathological Society of Great Britain and Ireland. Chicester: John Wiley & Sons Ltd,2006:207-216.
    [57]Junqueira LC, Cossermelli W, Brentani R. Diferebtial staining of collagen type Ⅰ,Ⅱ and Ⅲ by sirus red and polarization microscopy. Arch Histol Jpn 1978; 41:267-274
    [58]Nicoletti, A, Heudes D, Hinglais N, Appay MD,|Philippe M, Sassy-Prigen C, Bariety J, Michel JB. Left ventricular fibrosis in renovascular hypertension rats. Hypertension,1995,26:101-111.
    [59]Marcellin P, Ziol M, Bedossa P, et al. Noninvasive assessment of liver fihrosis by stiffness measurement in patients with chronic hepatitis B[J]. Liver Int,2009, 29(2):242-247.
    [60]Obara N, Ueno Y, Fukushima K, et al. Transient elastography for measurement of liver stiffness measurement can detect early significant hepatic fibrosis in Japanese patients with viral and nonviral liver diseases[J]. J Gastroenterol, 2008.43(9):720-728.
    [61]Dean C. S. Tai, Nancy Tan, Shuoyu Xu, et al. Fibro-C-Index:comprehensive, morphology-based quantification of liver fibrosis using second harmonic generation and two-photon microscopy. Journal of Biomedical Optics,2009, 14(4),:044013.
    [62]Knodell RG, Ishak KG, Black WC, et al. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis [J]. Hepatology,2003,1(5):431-5.
    [63]Ishak K, Baptista A, Bianchi L, et al. Histological grading and staging of chronic hepatitis [J]. J Hepatol,1995,22(6):696-9.
    [64]Bedossa P, Poynard T and the French METAVIR Cooperative Study Group. An algorithm for grading activity in chronic hepatitis C. Hepatology 1996;24:289-293.
    [65]Emmanuel E, Zervos MD, Alexis E, Shafii BS, Alexander S, Rosemurgy MD. Matrix metalloproteinase inhibition selectively decreases type 2 MMP activity in a murine model of pancreatic cancer. J Sur Res.1999:81:65-68.
    [66]Kleiner DE, Stetler-Stevenson WG. Quantitative zymography:detection of pictogram quantities of gelatinases. Anal Biochem,1994:218:325-326.
    [67]查锡良,胶原,陈惠黎.生物大分子的结构和功能.上海:上海医科大学出版社,1999:113-123。
    [68]Friedman SL. Molecular regulation of hepatic fibrosis,an integrated cellular response to tissue injury. J Biol Chem,2000; 275:2247-2250.
    [69]Aycock RS, Seyer JM. Collagens of normal and cirrhotic humanliver. Conn Tis R,1989; 23:19-31.
    [70]Elsharkawy AM, Mann DA. Nuclear factor-kappa B and the hepatic inflammation-fibrosis-cancer axis. Hepatology,2007,46;590-597.
    [71]Terayama N;Terada T;Nakanuma Y An immunohistochemical study of tumour vessels in metastatic liver cancers and the surrounding liver tissue. Histopathology,1996,29:37-43.
    [72]Marcato PS;Bettini G;Della Salda L Pretelangiectasis and telangiectasis of the bovine liver:a morphological, immunohistochemical and ultrastructural study. J Comp Pathol.1998,119:95-110.
    [73]Horak ER, Leek R, Klenk N. Angiogenesis assessed by platelet/endothelial cell adhesion molecule antibodies as indicator of node metastases and survival in breast cancer.The lancet.1992,340:1120-1124.
    [74]Nakamura S;Muro H Immunohistochemical studies on endothelial cell phenotype in hepatocellular carcinoma. Hepatology.1997,26:407-415.
    [75]Tamaki S;Ueno T;Torimura T Evaluation of hyaluronic acid binding ability of hepatic sinusoidal endothelial cells in rats with liver cirrhosis. Gastroenterology. 1996,111:1049-1057.
    [76]Yamamoto T;Kaneda K;Hirohashi K Sinusoidal capillarization and arterial blood supply continuously proceed with the advance of the stages of hepatocarcinogenesis in the rat.Jpn J Cancer Res.1996,87:442-450.
    [77]Terayama N;Terada T;Nakanuma Y A morphometric and immunohistochemical study on angiogenesis of human metastatic carcinomas of the liver.Hepatology. 1996,24:816-819.
    [78]王要军,等.人原发性肝癌组织的免疫组化研究.临床肝胆病杂志,1994:10:78.
    [79]王要军,等.肝细胞癌组织Ⅲ型胶原的来源.新消化病学杂志,1994;2:21.
    [80]Bramhall SR. Stromal degradation by the malignant epithelium in pancreatic cancer and the therapeutic potential of proteolytic inhibition. Journal of Hepato Biliary Pancreatic Surgery,1998,5(4):392-401.
    [81]Del Bigio MR, Seyoum G. Effect of Matrix Metalloproteinase Inhibitors on Rat Embryo Development in vitro. Cells Tissues Organs 1999;165:67-73.
    [82]Makela M, Larjava H, Pirila E, et al. Matrix Metalloproteinase2(Gelatinase A) is related to migration of kerationcytes. Exp Cell Res,1999;251:67-68.
    [83]Legrand C, Gilles C, Zahm JM, et al.Airway epithelial cell migration dynamics.MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol, 1999;146:517-529.
    [84]Zeng ZS, Cohen AM, Guillem JG. Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases2 and 9(MMP-2 and MMP-9) during human colorectal tumorigenesis. Caecinogenesis,1999; 20: 749-755.
    [85]Strupler, M., et al., Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express,2007.15(7):p.4054-65.
    [86]Racusen, L.C., K. Solez and R. Colvin, Fibrosis and atrophy in the renal allograft: interim report and new directions. Am J Transplant,2002.2(3):p.203-6.
    [87]Freund, I., M. Deutsch and A. Sprecher, Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J,1986.50(4):p.693-712.
    [88]Freund, I. and M. Deutsch, Macroscopic polarity of connective tissue is due to discrete polar structures. Biopolymers,1986.25(4):p.601-6.
    [89]Freund, I. and M. Deutsch, Second-harmonic microscopy of biological tissue. Opt Lett,1986.11(2):p.94.
    [90]Han, M., et al., Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation. J Biomed Opt,2004.9(4):p.760-6.
    [91]林幸笋等,生物活组织的背向二次谐波成像.生物化学与生物物理进展,2004(1):第83-88
    [92]Han, X., et al., Second harmonic properties of tumor collagen:determining the structural relationship between reactive stroma and healthy stroma. Opt Express, 2008.16(3):p.1846-59.
    [93]Cox, G., et al.,3-dimensional imaging of collagen using second harmonic generation. J Struct Biol,2003.141(1):p.53-62.
    [94]Campagnola, P.J., et al., Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J,2002.82(1 Pt 1):p.493-508.
    [95]Theodossiou, T., et al., Thermally induced irreversible conformational changes in collagen probed by optical second harmonic generation and laser-induced fluorescence. Lasers Med Sci,2002.17(1):p.34-41.
    [96]Denk, W., J.H. Strickler and W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science,1990.248(4951):p.73-6.
    [1]Curtin JC, Lorenzi MV. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget.2010;1:563-577.
    [2]Kannangai R, Sahin F, Torbenson MS. EGFR is phosphorylated at Ty845 in hepatocellular carcinoma. Mod Pathol.2006; 19:1456-1461
    [3]Ito Y, Takeda T, Sakon M,et al. Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer.2001; 84:1377-1383.
    [4]Foster J, Black J, LeVea C, et al.COX-2 expression in hepatocellular carcinoma is an initiation event; while EGF receptor expression with downstream pathway activation is a prognostic predictor of survival. Ann Surg Oncol.2007; 14: 752-758.
    [5]Abu Dayyeh BK, Yang M, Fuchs BC, et al. HALT-C Trial Group. A Functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology.2011; 141:141-149.
    [6]Tanabe KK, Lemoine A, Finkelstein DM, et al.Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis. JAMA.2008; 299:53-60.
    [7]Ramanathan RK, Belani CP, Singh DA, et al.A phase Ⅱ study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol.2009; 64:777-783.
    [8]Abu Dayyeh BK, Yang M, Fuchs BC, et al. HALT-C Trial Group. A Functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology.2011; 141:141-149.
    [9]Marais R, Light Y, Paterson HFet al.Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J.1995; 14:3136-3145.
    [10]Xu S, Robbins D, Frost J, et al.MEKKl phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA.1995; 92:6808-6812.
    [11]Xing J, Ginty DD, Greenberg ME. Coupling of the RASMAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science.1996; 273: 959-963.
    [12]Calvisi DF, Ladu S, Gorden A, et al.Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology.2006; 130:1117-1128.
    [13]Fong CW, Chua MS, McKie AB, et al.Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res.2006; 66:2048-2058.
    [14]Saxena NK, Sharma D, Ding X, et al.Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res.2007; 67: 2497-2507.
    [15]Giambartolomei S, Covone F, Levrero M, et al. Sustained activation of the Raf/MEK/Erk pathway in response to EGF in stable cell lines expressing the hepatitis C virus (HCV) core protein. Oncogene.2001; 20:2606-2010.
    [16]Llovet JM, Ricci S, Mazzaferro V, et al.; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.2008; 359: 378-390.
    [17]Huynh H, Nguyen TT, Chow KH, et al. Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma:its role in tumor progression and apoptosis. BMC Gastroenterol.2003; 3:19.
    [18]Wentz SC, Wu H, Yip-Schneider MT, et al.Targeting MEK is effective chemoprevention of hepatocellular carcinoma in TGF-alpha-transgenic mice. J Gastrointest Surg.2008; 12:30-37.
    [19]O'Neil BH, Goff LW, Kauh JS, et al.Phase Ⅱ study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J Clin Oncol.2011; 29:2350-2356.
    [20]Kannangai R, Sahin F, Torbenson MS. EGFR is phosphorylated at Ty845 in hepatocellular carcinoma. Mod Pathol.2006; 19:1456-1461.
    [21]Kane LP, Shapiro VS, Stokoe D, et al.Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol.1999; 9:601-604.
    [22]Nakanishi K, Sakamoto M, Yamasaki S, et al.Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer.2005; 103:307-312.
    [23]Yeh KT, Chang JG, Chen YJ, et al.Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in hepatocellular carcinoma. Cancer Invest. 2000; 18:123-129.
    [24]Hu TH, Wang CC, Huang CC, et al.Down-regulation of tumor suppressor gene PTEN, overexpression of p53, plus high proliferating cell nuclear antigen index predict poor patient outcome of hepatocellular carcinoma after resection. Oncol Rep.2007; 18:1417-1426.
    [25]Chen KF, Chen HL, Tai WT, et al.Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther.2011; 337:155-161.
    [26]Sieghart W, Fuereder T, Schmid K, et al.Mammalian target of rapamycin pathway activity in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation.2007; 83:425-432.
    [27]Yao DF, Wu XH, Zhu Y, et al.Quantitative analysis of vascular endothelial growth factor, microvascular density and their clinicopathologic features in human hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int.2005; 4:220-226.
    [28]Deli G, Jin CH, Mu R,et al.Immunohistochemical assessment of angiogenesis in hepatocellular carcinoma and surrounding cirrhotic liver tissues. World J Gastroenterol.2005; 11:960-963.
    [29]Siegel AB, Cohen EI, Ocean A,et al.Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol.2008; 26:2992-2998.
    [30]Park JW, Finn RS, Kim JS, et al.Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res.2011; 17:1973-1983.
    [31]Toh H, Chen P, Carr BI, et al.Linifanib phase II trial in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol.2010; 28:15s (Abstract 4038).
    [32]Hsu C, Yang TS, Huo TL, et al.Evaluation of vandetanib in patients with inoperable hepatocellular carcinoma (HCC):a randomized, double-blind, parallel group, multicentre, phase Ⅱ study. Joint ECCO 15-34th ESMO Multidisciplinary Congress 2009; (Abstract PD-6518).
    [33]Nussbaum T, Samarin J, Ehemann Ⅴ, et al.Autocrine insulin-like growth factor-Ⅱ stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis. Hepatology.2008; 48:146-156.
    [34]Breuhahn K, Schirmacher P. Reactivation of the insulin-like growth factor-Ⅱ signaling pathway in human hepatocellular carcinoma. World J Gastroenterol. 2008; 14:1690-1698.
    [35]Breuhahn K, Vreden S, Haddad R, et al.Molecular profiling of human hepatocellular carcinoma defines mutually exclusive interferon regulation and insulin-like growth factor Ⅱ overexpression. Cancer Res.2004; 64:6058-6064.
    [36]Tovar V, Alsinet C, Villanueva A,et al.IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol.2010; 52:550-559.
    [37]Abou-Alfa GK, Gansukh B, Chou JF, et al.Phase Ⅱ study of cixutumumab (IMC-A12, NSC742460; C) in hepatocellular carcinoma (HCC). J Clin Oncol. 2011; 29.
    [38]Faivre S, Fartoux L, Bumsel F,et al.Phase Ⅰ safety, and pharmacokinetic study of AVE1642, a human monoclonal antibody inhibiting the insulin-like growth factor-1 receptor (IGF-1R/CD221), administered as single agent and in combination with sorafenib as first line therapy in patients with advanced hepatocellular carcinoma (HCC). Hepatology.2010; 52:466.
    [39]Bruix J, Llovet JM. Major achievements in hepatocellular carcinoma. Lancet. 2009; 373:614-616.
    [40]Zucman-Rossi J, Benhamouche S, Godard C, et al.Differential effects of inactivated Axinl and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene.2007; 26:774-780.
    [41]Cha MY, Kim CM, Park YM, et al. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology.2004; 39:1683-1693.
    [42]Huang SM, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature.2009; 461:614-620.
    [43]Kim M, Lee HC, Tsedensodnom O, et al.Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol.2008; 48:780-791.
    [44]He G, Karin M. NF-κB and STAT3 key players in liver inflammation and cancer. Cell Res.2011; 21:159-168.
    [45]Naugler WE, Karin M. The wolf in sheep's clothing:the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med.2008; 14:109-119.
    [46]Giannitrapani L, Soresi M, Giacalone A, et al.IL-6-174G/C polymorphism and IL-6 serum levels in patients with liver cirrhosis and hepatocellular carcinoma. OMICS.2011; 15:183-186.
    [47]Wang XH, Liu BR, Qu B,et al.Silencing STAT3 may inhibit cell growth through regulating signaling pathway, telomerase, cell cycle, apoptosis and angiogenesis in hepatocellular carcinoma:potential uses for gene therapy. Neoplasma.2011; 58:158-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700