用户名: 密码: 验证码:
EGCG致人肺腺癌“血管正常化”及窗口期联合顺铂疗效评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:人肺腺癌作为一种实体肿瘤,肿瘤微血管与微环境对其增殖、侵袭、转移和进展起到了重要作用,同时也可被多种抗血管生成药物所影响。研究证明,合理运用抗血管生成治疗可使原来扭曲异常的肿瘤血管趋于正常,从而引起肿瘤血管和肿瘤微环境正常化,进而更有效地输送氧和药物到达肿瘤细胞,以提高化疗和放疗的疗效。正常化的过程是短暂而可逆的,因此会形成特定的正常化“时间窗"。它与使用的药物及肿瘤类型、部位相关,在该时间窗内联合放化疗可以起到协同作用。目前大量临床前和临床研究都证实,多种直接或间接的抗血管生成治疗能使肿瘤血管发生正常化。表没食子儿茶素没食子酸酯(Epigollatecatech in gallate, EGCG)是从绿茶中提取的主要天然成分,已被证明可以作用于多种血管生成因子,包括血管内皮生长因子(VEGF),血小板源性生长因子(PDGF)和血管生成素(Angs)。因此,我们假设EGCG能够引起人肺腺癌肿瘤微血管结构与功能的改变并诱发“血管正常化”现象,并推测在EGCG引起的肿瘤“血管正常化”窗口期联合化疗可以起到抗肿瘤的协同作用。为证明该假设,我们建立了A549人肺腺癌细胞株裸鼠移植瘤模型,检测经EGCG处理后模型肿瘤组织在不同时间点其微血管结构、功能以及微环境效应指标的变化,以及不同时间点联合化疗抗肿瘤疗效,以证明该假设。
     方法与结果:建立A549人肺腺癌细胞株移植瘤模型,随机分成三组分别予以生理盐水、EGCG、贝伐单抗(阳性对照)处理,分别检测第0、2、4、6、9、12天6个时间点的以下指标。(1)血管结构改变指标:量子点双标免疫荧光标记CD31-a-SMA观察微血管结构,并计数CD31-MVD(微血管密度)、a-SMA-MVD,和计算周细胞覆盖率(MPI);量子点双标免疫荧光标记CD31-CollagenIV观察血管基底膜;透射电镜评价内皮细胞、周细胞的形态与连接、基底膜的完整性以及肿瘤细胞与血管的关系;(2)血管功能改变指标:量子点双标免疫荧光标记CD31-lectin评价血管灌注功能;Evans blue灌注法评价血管渗透性;(3)肿瘤微环境效应改变指标:组织间液压(IFP)、组织氧分压(P02)测定;免疫组化法标记Pimonidazole检测肿瘤组织乏氧水平。以上结果显示EGCG及贝伐单抗处理A549荷瘤裸鼠后均可引起肿瘤组织CD31-MVD的持续下降,MPI逐渐上升,血管灌注功能及渗透性一过性升高,肿瘤组织IFP一过性下降、PO2一过性升高,但EGCG处理组微血管基底膜出现变薄且规律分布,而贝伐单抗组血管基底膜标记Collagen IV表达量仅出现下降趋势,无统计学意义(P>0.05)。根据以上改变可以明确观察到EGCG引起了人肺腺癌移植瘤肿瘤血管正常化,并且以上相应血管指标一过性改变的窗口约位于第4-9天,而贝伐单抗的窗口期约位于第2-6天。我们进一步检测予以不同EGCG联合顺铂给药方式时肿瘤组织内顺铂的浓度,分别分为d0(窗口期前)天予以全量顺铂(4mg/kg)单次腹腔注射给药(A组),d5(窗口期)予以半量顺铂(2mg/kg)单次腹腔注射给药(B组),d5(窗口期)予以全量顺铂(4mg/kg)单次腹腔注射给药(C组),以(石墨炉)原子吸收光谱法检测肿瘤组织中顺铂浓度。结果显示C组移植瘤组织内浓度明显高于另三组(1.8μg/gm组织,P<0.01),差异有统计学意义。B组所达顺铂组织浓度与A组近似(分别为1.0μg/gm组织,0.8μg/gm组织),差异无统计学意义(P>0.05)。为明确在以上窗口期联合化疗是否可以影响人肺腺癌肿瘤对化疗的敏感性并且产生协同抗肿瘤作用,我们将A549荷瘤裸鼠分别予以生理盐水(A组)、顺铂(B组)、EGCG溶液(C组)、EGCG+第0天联合顺铂(D1组)和EGCG+第5天(窗口期内)联合顺铂处理(D2组),通过记录各组瘤体长至1250mm3所需平均天数得出肿瘤生长延迟天数,并通过计算抑瘤率观察肿瘤生长速度。结果显示:(1).各组的肿瘤生长延迟天数分别为:6.3±1.51天,7.5±1.57天,83±1.79天,12.1±1.35天和15.4±1.99天,将A、B、C、D2四组肿瘤生长延迟天数进行统计学分析提示EGCG与顺铂抗肿瘤治疗有协同效应(P<0.01);(2)联合治疗组(D1、D2)移植瘤生长速度较另三组明显较慢(抑瘤率分别为5.53%、12.82%、40.18%、56.88%,p<0.001),差异有统计学意义,且在窗口期联合化疗的D2组肿瘤生长速度明显缓于在窗口期前联合化疗的D1组(P<0.01)。
     结论:EGCG可以引起人肺腺癌移植瘤肿瘤血管正常化,其正常化窗口期约位于第4-9天,在该窗口期内联合化疗可以使肿瘤组织局部化疗浓度升高,并与化疗抗肿瘤治疗产生协同效应,为EGCG作为辅助化疗药物提供了新的应用策略。
Background:Microvasculature and microenvironment play important roles of proliferation, invasion, metastasis and prognosis in human lung adenocarcinoma, and can be affected by various anti-angiogenic drugs. It has been demonstrated that appropriate anti-angiogenesis treatment tends to normalize previously torturous and malformed vessels, thus normalizing microvasculature and microenvir-onment, which, then translates to delivering oxygen and drugs to tumor cells in a more effective way, and consequently improving the treatment efficacy of both chemotherapy and radiotherapy. The priod of normalization is transient and reversible, so a specific normalization time window can be formed according to the applied drugs, as well as the types and location of the tumor. In this time window, combined chemotherapy can reach a synergistic effect.Currently a large scale of pre-clinical or clinical researches synergistic effect. Epigallocatechin-3-gallate (EGCG), a nature anti-angiogenesis agent refined from green tea, is defined to have multiple effects on angiogenesis factors, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and angiopoietins(ANGs). So, we suppose that ECGC can alter human lung adenocarcinoma tumor microvasculature and microenvironment and cause "vessel normalization"phenomenon, and in addition combined chemotherapy exert a synergistic effect in the tumor vessel normalization window caused by EGCG treatment.To demonstrate this assumption, we built a nude mice xenograft tumor model in the cell line of A549human lung adenocarcinoma, examine the structure and function of microvasculature, microenvironment index changes, as well as the efficacy of combined chemotherapy at different time points after treating the model with EGCG.
     Methods and results:Build a nude mice xenograft tumor model in the cell line of A549human lung adenocarcinoma. Randomly divide the mice into three groups and treat each one with saline, EGCG, bevacizumab, and respectively test the following indexes at the time points of0,2,4,6,9,12day.(1)Vessel structure change index:quantum dots double-lable immunofluorescence assessment of CD31-a-SMA to observe microvasculature, counting CD31-MVD, a-SMA-MVD, and MPI; quantum dots double-lable immunofluorescence assessment of CD31-Collagen IV to observe vessel GBM; Transmission electron microscope to assess endothelial cells, the form and connection of pericytes, the integrity of GBM and the association between tumor cells and vessels.(2)Vessel functional change indexes:quantum dots double-lable immunofluorescence assessment of CD31-lectin to assess vessel perfusion function. Evans blue perfusion to assess vessel permeability.(3)Microenvironment effect change indexes:IFP, PO2. Immunohistochmical label of Pimonidazole to test hypoxia level in the tumor tissue. EGCG treatment of A549cells in mice bearing xenografts in vivo led to a persisting decrease of CD31-MVD, and a gradual decrease of MPI, a transient alevation of vessel perfusion function and permeability and PO2, transient decrease of IFP in tumor tissue. Yet EGCG treated group had a thinner microvasculature GBM which was regularly distributed, but bevacizumab group had simply a tendency of decreased Collage IV expression without significancy (P>0.05). Accordingly, it can be concluded that EGCG caused the vessel normalization of NSCLC xenografts tumor. Additionally, vessel indexes mentioned above had a transient change window in day4to9, yet bevacizumab's time window was in day2to6. We test cisplatin concentration in tumor tissues when administrated with different combined chemotherapy of EGCG and cisplatin. Full-dose cisplatin (4mg/kg) at dO (pre-window period) in single intraperitoneal administration (Group A), half-dose cisplatin (2mg/kg) at d5(window period) in single intraperitoneal administration (Group B), full-dose cisplatin (4mg/kg) at d5in single intraperitoneal administration(Group C), and use graphite furnace atomic absorption spectrometry to test cisplatin concentration in tumor tissue. Results showed that Group C had a concentration significantly higher than other three groups (1.8μg/gm tissue, p<0.001), and Group B had the assembling concentration as Group A (respectively1.0μg/gm tissue and0.8μg/gm tissue) without significancy (p>0.05). To specify whether combined therapy can affect human lung adenocarcinoma tumor's sensitivity to chemotherapy and have synergistic effect in the window periods mentioned above, we treated xenograft tumor nude mice with saline (Group A), cisplatin (Group B), EGCG (Group C), EGCG+combining cisplatin on dO (Group D1) and EGCG+combining cisplatin on d5(Group D2). Recorded the time for each tumor to reach the approximately volume of1250mm3then calculate number of tumor growth delay, and calculate tumor suppressing rate to observe tumor growth rate. Results showed that each group had a tumor growth delay of6.3±1.51days,7.5±1.57days,8.3+1.79days,12.1±1.35days and15.4±1.99days. Analysis of tumor growth delay of Group A, B, C, D2suggested that EGCG and cisplatin had synergistic effect as a combined anti-tumor chemotherapy (P<0.01). In addition, this result also revealed that combined treatment groups (D1, D2) had significantly lower xenograft tumor growth rates than other three groups (tumor inhibition rate were respectively5.53%、12.82%、40.18%、 56.88%, p<0.001), and tumor growth rate in D2was significantly lower than D1(P<0.01).
     Conclusion:EGCG causes vessel normalization in NSCLC xenograft tumor, the window period of with is between Day4to Day9. Combined therapy in this window period can escalate drug concentration in local tumor tissue, and leads to anti-tumor synergistic effect, providing a new strategy for EGCG applying as a complementary chemotherapy drug.
引文
[1]Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy:a new paradigm for combination therapy. Nat Med.2001.7(9):987-9.
    [2]Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res.2007.74(2-3):72-84.
    [3]Batchelor TT, Sorensen AG, di TE, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell.2007.11(1):83-95.
    [4]Hormigo A, Gutin PH, Rafii S. Tracking normalization of brain tumor vasculature by magnetic imaging and proangiogenic biomarkers. Cancer Cell.2007. 11(1):6-8.
    [5]Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res.2004.64(11):3731-6.
    [6]Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase Ⅲ clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol.2006.3(1):24-40.
    [7]Izumi Y, Xu L, di TE, Fukumura D, Jain RK. Tumour biology:herceptin acts as an anti-angiogenic cocktail. Nature.2002.416(6878):279-80.
    [8]Ansiaux R, Baudelet C, Jordan BF, et al. Mechanism of reoxygenation after antiangiogenic therapy using SU5416 and its importance for guiding combined antitumor therapy. Cancer Res.2006.66(19):9698-704.
    [9]Ansiaux R, Baudelet C, Jordan BF, et al. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res.2005.11(2 Pt 1):743-50.
    [10]Dings RP, Loren M, Heun H, et al. Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res.2007.13(11):3395-402.
    [11]Dickson PV, Hamner JB, Sims TL, et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res. 2007.13(13):3942-50.
    [12]Ebos JM, Lee CR, Kerbel RS. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res.2009.15(16):5020-5.
    [13]Mancuso MR, Davis R, Norberg SM, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest.2006.116(10):2610-21.
    [14]English BC, Price DK, Figg WD. VEGF inhibition and metastasis: possible implications for antiangiogenic therapy. Cancer Biol Ther.2009.8(13): 1214-25.
    [15]Kondo T, Ohta T, Igura K, Hara Y, Kaji K. Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett.2002.180(2): 139-44.
    [16]Oak MH, El BJ, Schini-Kerth VB. Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem.2005.16(1):1-8.
    [17]Jung YD, Kim MS, Shin BA, et al. EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer.2001.84(6):844-50.
    [18]Sartippour MR, Heber D, Zhang L, et al. Inhibition of fibroblast growth factors by green tea. Int J Oncol.2002.21(3):487-91.
    [19]Trompezinski S, Denis A, Schmitt D, Viac J. Comparative effects of polyphenols from green tea (EGCG) and soybean (genistein) on VEGF and IL-8 release from normal human keratinocytes stimulated with the proinflammatory cytokine TNFalpha. Arch Dermatol Res.2003.295(3):112-6.
    [20]Lai HC, Chao WT, Chen YT, Yang VC. Effect of EGCG, a major component of green tea, on the expression of Ets-1, c-Fos, and c-Jun during angiogenesis in vitro. Cancer Lett.2004.213(2):181-8.
    [21]Yamakawa S, Asai T, Uchida T, Matsukawa M, Akizawa T, Oku N. (-)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Lett.2004.210(1):47-55.
    [22]Rodriguez SK, Guo W, Liu L, Band MA, Paulson EK, Meydani M. Green tea catechin, epigallocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int J Cancer.2006.118(7):1635-44.
    [23]Tang FY, Chiang EP, Shih CJ. Green tea catechin inhibits ephrin-A1-mediated cell migration and angiogenesis of human umbilical vein endothelial cells. J Nutr Biochem.2007.18(6):391-9.
    [24]Park JS, Kim MH, Chang HJ, et al. Epigallocatechin-3-gallate inhibits the PDGF-induced VEGF expression in human vascular smooth muscle cells via blocking PDGF receptor and Erk-1/2. Int J Oncol.2006.29(5):1247-52.
    [25]Savai R, Wolf JC, Greschus S, et al. Analysis of tumor vessel supply in Lewis lung carcinoma in mice by fluorescent microsphere distribution and imaging with micro-and flat-panel computed tomography. Am J Pathol.2005.167(4):937-46.
    [26]Greschus S, Savai R, Wolf JC, et al. Non-invasive screening of lung nodules in mice comparing a novel volumetric computed tomography with a clinical multislice CT. Oncol Rep.2007.17(4):707-12.
    [27]Amano M, Suzuki M, Andoh S, et al. Antiangiogenesis therapy using a novel angiogenesis inhibitor, anginex, following radiation causes tumor growth delay. Int J Clin Oncol.2007.12(1):42-7.
    [28]Vlahovic G, Rabbani ZN,2nd HJE, Dewhirst MW, Vujaskovic Z. Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR-beta and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation. Br J Cancer.2006.95(8):1013-9.
    [29]Myers AL, Williams RF, Ng CY, Hartwich JE, Davidoff AM. Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation. J Pediatr Surg.2010.45(6): 1080-5.
    [30]Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res.2000.60(5):1388-93.
    [31]Debbage PL, Griebel J, Ried M, Gneiting T, DeVries A, Hutzler P. Lectin intravital perfusion studies in tumor-bearing mice:micrometer-resolution, wide-area mapping of microvascular labeling, distinguishing efficiently and inefficiently perfused microregions in the tumor. J Histochem Cytochem.1998.46(5): 627-39.
    [32]Rolny C, Mazzone M, Tugues S, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of P1GF. Cancer Cell.2011.19(1):31-44.
    [33]Franco M, Man S, Chen L, et al. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res.2006.66(7):3639-48.
    [34]Wild R, Ramakrishnan S, Sedgewick J, Griffioen AW. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis:effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc Res.2000.59(3):368-76.
    [35]Jain RK. Molecular regulation of vessel maturation. Nat Med.2003.9(6): 685-93.
    [36]Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature.2011.473(7347):298-307.
    [37]Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science.2005.307(5706):58-62.
    [38]Kerbel RS, Viloria-Petit A, Klement G, Rak J.'Accidental' anti-angiogenic drugs, anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer.2000.36(10): 1248-57.
    [39]Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res.2000.60(7):1878-86.
    [40]Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer.2004.4(6):423-36.
    [41]Maloney SL, Sullivan DC, Suchting S, et al. Induction of thrombospondin-1 partially mediates the anti-angiogenic activity of dexrazoxane. Br J Cancer.2009.101(6):957-66.
    [42]Bhattacharya A, Toth K, Sen A, et al. Inhibition of colon cancer growth by methylselenocysteine-induced angiogenic chemomodulation is influenced by histologic characteristics of the tumor. Clin Colorectal Cancer.2009.8(3):155-62.
    [43]Bhattacharya A, Seshadri M, Oven SD, Toth K, Vaughan MM, Rustum YM. Tumor vascular maturation and improved drug delivery induced by methylselenocysteine leads to therapeutic synergy with anticancer drugs. Clin Cancer Res.2008.14(12):3926-32.
    [44]Segers J, Di FV, Ansiaux R, et al. Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide:importance of optimal scheduling to exploit the 'normalization' window of the tumor vasculature. Cancer Lett.2006.244(1):129-35.
    [45]Jain RK. Molecular regulation of vessel maturation. Nat Med.2003.9(6): 685-93.
    [46]Latker CH, Kuwabara T. Regression of the tunica vasculosa lentis in the postnatal rat. Invest Ophthalmol Vis Sci.1981.21(5):689-99.
    [47]Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol.1974.77(2):314-46.
    [48]Nakamuta M, Higashi N, Kohjima M, et al. Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells. Int J Mol Med.2005.16(4):677-81.
    [49]Tipoe GL, Leung TM, Liong EC, Lau TY, Fung ML, Nanji AA. Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CC14)-induced liver injury in mice. Toxicology.2010. 273(1-3):45-52.
    [50]Less JR, Posner MC, Skalak TC, Wolmark N, Jain RK. Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation.1997.4(1):25-33.
    [51]Less JR, Skalak TC, Sevick EM, Jain RK. Microvascular architecture in a mammary carcinoma:branching patterns and vessel dimensions. Cancer Res.1991. 51(1):265-73.
    [52]Jain RK. Determinants of tumor blood flow:a review. Cancer Res.1988. 48(10):2641-58.
    [53]Baish JW, Stylianopoulos T, Lanning RM, et al. Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc Natl Acad Sci U S A.2011. 108(5):1799-803.
    [54]Ohta M, Kawabata T, Yamamoto M, et al. TSU68, an antiangiogenic receptor tyrosine kinase inhibitor, induces tumor vascular normalization in a human cancer xenograft nude mouse model. Surg Today.2009.39(12):1046-53.
    [55]Leunig M, Yuan F, Menger MD, et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res.1992.52(23): 6553-60.
    [56]Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial.hypertension, peritumor edema, and lymphatic metastasis:insights from a mathematical model. Cancer Res.2007.67(6):2729-35.
    [57]Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors:implications for vascular collapse. Cancer Res.1992.52(18); 5110-4.
    [58]YOUNG JS, LUMSDEN CE, STALKER AL. The significance of the tissue pressure of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J Pathol Bacteriol.1950.62(3):313-33.
    [59]Rofstad EK, Tunheim SH, Mathiesen B, et al. Pulmonary and lymph node metastasis is associated with primary tumor interstitial fluid pressure in human melanoma xenografts. Cancer Res.2002.62(3):661-4.
    [60]Airley RE, Phillips RM, Evans AE, et al. Hypoxia-regulated glucose transporter Glut-1 may influence chemosensitivity to some alkylating agents:results of EORTC (First Translational Award) study of the relevance of tumour hypoxia to the outcome of chemotherapy in human tumour-derived xenografts. Int J Oncol.2005. 26(6):1477-84.
    [61]Greijer AE, de Jong MC, Scheffer GL, Shvarts A, van DPJ, der Wall E v. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells. Cell Oncol.2005.27(1):43-9.
    [62]Mancuso MR, Davis R, Norberg SM, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest.2006.116(10):2610-21.
    [63]Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol.2001.18(4):243-59.
    [64]Evans SM, Koch CJ. Prognostic significance of tumor oxygenation in humans. Cancer Lett.2003.195(1):1-16.
    [65]Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol.2003.66(7):1207-18.
    [66]Teicher BA, Dupuis NP, Robinson MF, Emi Y, Goff DA. Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncol Res.1995.7(5):237-43.
    [67]Segers J, Di FV, Ansiaux R, et al. Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide:importance of optimal scheduling to exploit the 'normalization' window of the tumor vasculature. Cancer Lett.2006.244(1):129-35.
    [68]Teicher BA. A systems approach to cancer therapy. (Antioncogenics+ standard cytotoxics→mechanism(s) of interaction). Cancer Metastasis Rev.1996. 15(2):247-72.
    [69]Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004.350(23):2335-42.
    [70]Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med.2007.357(26):2666-76.
    [71]Reck M, von PJ, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer:AVAil. J Clin Oncol.2009.27(8):1227-34.
    [72]Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer:a randomized phase Ⅲ study. J Clin Oncol.2008.26(12):2013-9.
    [73]Huang X, Wong MK, Yi H, et al. Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res.2002.62(20):5727-35.
    [74]Li B, Lalani AS, Harding TC, et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res.2006.12(22):6808-16.
    [75]Manning EA, Ullman JG, Leatherman JM, et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res.2007.13(13):3951-9.
    [76]Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res.2010. 70(15):6171-80.
    [1]Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature.2011.473(7347):298-307.
    [2]Jain RK. Molecular regulation of vessel maturation. Nat Med.2003.9(6): 685-93.
    [3]Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science.2005.307(5706):58-62.
    [4]Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer.2002.2(10):795-803.
    [5]Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med. 1971.285(21):1182-6.
    [6]Gullino PM. Angiogenesis and oncogenesis. J Natl Cancer Inst.1978.61(3): 639-43.
    [7]Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature:insights from physiological angiogenesis. Nat Rev Cancer.2010.10(7):505-14.
    [8]Dvorak HF. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med.1986.315(26):1650-9.
    [9]Patan S, Munn LL, Jain RK. Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft:a novel mechanism of tumor angiogenesis. Microvasc Res.1996.51(2):260-72.
    [10]Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000.407(6801):249-57.
    [11]Baum O, Suter F, Gerber B, et al. VEGF-A promotes intussusceptive angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation. 2010.17(6):447-57.
    [12]Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature.1996. 380(6573):435-9.
    [13]Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature.1996.380(6573): 439-42.
    [15]Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature.1993. 362(6423):841-4.
    [16]Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest.1995.95(4):1789-97.
    [17]Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase Ⅲ clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol.2006.3(1): 24-40.
    [18]Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer:results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol.2007.25(12):1539-44.
    [19]Cobleigh MA, Langmuir VK, Sledge GW, et al. A phase Ⅰ/Ⅱ dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol.2003.30(5 Suppl 16):117-24.
    [20]Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004.350(23):2335-42.
    [21]Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer:a randomized phase III study. J Clin Oncol.2008.26(12):2013-9.
    [22]Tebbutt NC, Wilson K, Gebski VJ, et al. Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer:results of the Australasian Gastrointestinal Trials Group Randomized Phase Ⅲ MAX Study. J Clin Oncol.2010.28(19):3191-8.
    [23]Reck M, von PJ, Zatloukal P, et al. Phase Ⅲ trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer:AVAil. J Clin Oncol.2009.27(8):1227-34.
    [24]Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell.2003.3(4):347-61.
    [25]Miles D, Harbeck N, Escudier B, et al. Disease course patterns after discontinuation of bevacizumab:pooled analysis of randomized phase Ⅲ trials. J Clin Oncol.2011.29(1):83-8.
    [26]Padera TP, Kuo AH, Hoshida T, et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol Cancer Ther.2008.7(8):2272-9.
    [27]Welch S, Spithoff K, Rumble RB, Maroun J. Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer:a systematic review. Ann Oncol.2010.21(6):1152-62.
    [28]Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy:a new paradigm for combination therapy. Nat Med.2001.7(9):987-9.
    [29]Relf M, LeJeune S, Scott PA, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res.1997.57(5):963-9.
    [30]Chae SS, Kamoun WS, Farrar CT, et al. Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res.2010.16(14):3618-27.
    [31]Hamzah J, Jugold M, Kiessling F, et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature.2008.453(7193): 410-4.
    [32]Mazzone M, Dettori D, de Oliveira R L, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell.2009.136(5):839-51.
    [33]Schnell CR, Stauffer F, Allegrini PR, et al. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature:implications for clinical imaging. Cancer Res.2008.68(16): 6598-607.
    [34]Izumi Y, Xu L, di TE, Fukumura D, Jain RK. Tumour biology:herceptin acts as an anti-angiogenic cocktail. Nature.2002.416(6878):279-80.
    [35]Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res.2004.64(11):3731-6.
    [36]Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A.1996.93(25):14765-70.
    [37]Wildiers H, Guetens G, De Boeck G, et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer.2003.88(12):1979-86.
    [38]Lee CG, Heijn M, di TE, et al. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res.2000.60(19):5565-70.
    [39]Dickson PV, Hagedorn NL, Hamner JB, et al. Interferon beta-mediated vessel stabilization improves delivery and efficacy of systemically administered topotecan in a murine neuroblastoma model. J Pediatr Surg.2007.42(1):160-5; discussion 165.
    [40]Turetschek K, Preda A, Novikov V, et al. Tumor microvascular changes in antiangiogenic treatment:assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imaging.2004.20(1):138-44.
    [41]Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res.1999.59(14):3374-8.
    [42]Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res.2010. 70(15):6171-80.
    [43]Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vase Biol.2009.29(6):789-91.
    [44]Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A.1998.95(16):9349-54.
    [45]Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF:drug targets for anti-angiogenic therapy. Nat Rev Cancer.2008. 8(12):942-56.
    [46]Pan Q, Chanthery Y, Liang WC, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell.2007. 11(1):53-67.
    [47]Juan TY, Roffler SR, Hou HS, et al. Antiangiogenesis targeting tumor microenvironment synergizes glucuronide prodrug antitumor activity. Clin Cancer Res.2009.15(14):4600-11.
    [48]Hansen-Algenstaedt N, Stoll BR, Padera TP, et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res.2000.60(16):4556-60.
    [49]Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res.2001. 61(1):39-44.
    [50]Herbst RS, Sun Y, Eberhardt WE, et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC):a double-blind, randomised, phase 3 trial. Lancet Oncol.2010. 11(7):619-26.
    [51]Inai T, Mancuso M, Hashizume H, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol.2004.165(1):35-52.
    [52]Nakahara T, Norberg SM, Shalinsky DR, Hu-Lowe DD, McDonald DM. Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res.2006.66(3):1434-45.
    [53]Zhou Q, Gallo JM. Differential effect of sunitinib on the distribution of temozolomide in an orthotopic glioma model. Neuro Oncol.2009.11(3):301-10.
    [54]Zhou Q, Guo P, Gallo JM. Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin Cancer Res.2008.14(5):1540-9.
    [55]Taguchi E, Nakamura K, Miura T, Shibuya M, Isoe T. Anti-tumor activity and tumor vessel normalization by the vascular endothelial growth factor receptor tyrosine kinase inhibitor KRN951 in a rat peritoneal disseminated tumor model. Cancer Sci.2008.99(3):623-30.
    [56]Ohta M, Kawabata T, Yamamoto M, et al. TSU68, an antiangiogenic receptor tyrosine kinase inhibitor, induces tumor vascular normalization in a human cancer xenograft nude mouse model. Surg Today.2009.39(12):1046-53.
    [57]Rolny C, Mazzone M, Tugues S, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell.2011.19(1):31-44.
    [58]Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med.2001.7(5):575-83.
    [59]Fischer C, Jonckx B, Mazzone M, et al. Anti-PIGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell.2007. 131(3):463-75.
    [60]Van de Veire S, Stalmans Ⅰ, Heindryckx F, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell.2010.141(1):178-90.
    [61]Bais C, Wu X, Yao J, et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell.2010.141(1):166-77.
    [62]Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell.1996.87(7):1171-80.
    [63]Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer.2010.10(8):575-85.
    [64]Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol.2009.10(3):165-77.
    [65]Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med.2000.6(4):460-3.
    [66]Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science.1999.286(5449):2511-4.
    [67]Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG. Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res.1997.81(4):567-74.
    [68]Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science.1997.277(5322): 55-60.
    [69]Daly C, Pasnikowski E, Burova E, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci U S A. 2006.103(42):15491-6.
    [70]Falcon BL, Hashizume H, Koumoutsakos P, et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol.2009.175(5):2159-70.
    [71]Huang H, Lai JY, Do J, et al. Specifically targeting angiopoietin-2 inhibits angiogenesis, Tie2-expressing monocyte infiltration, and tumor growth. Clin Cancer Res.2011.17(5):1001-11.
    [72]Brown JL, Cao ZA, Pinzon-Ortiz M, et al. A human monoclonal anti-ANG2 antibody leads to broad antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical models. Mol Cancer Ther.2010. 9(1):145-56.
    [73]Tabruyn SP, Colton K, Morisada T, et al. Angiopoietin-2-driven vascular remodeling in airway inflammation. Am J Pathol.2010.177(6):3233-43.
    [74]Koh YJ, Kim HZ, Hwang SI, et al. Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell.2010.18(2):171-84.
    [75]Desgrosellier JS, Cheresh DA. Integrins in cancer:biological implications and therapeutic opportunities. Nat Rev Cancer.2010.10(1):9-22.
    [76]Primo L, Seano G, Roca C, et al. Increased expression of alpha6 integrin in endothelial cells unveils a proangiogenic role for basement membrane. Cancer Res. 2010.70(14):5759-69.
    [77]Kerbel RS, Viloria-Petit A, Klement G, Rak J.'Accidental' anti-angiogenic drugs. anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer.2000.36(10): 1248-57.
    [78]Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med.2004.10(8):789-99.
    [79]Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell.2011.144(5):646-74.
    [80]Allgayer H, Babic R, Gruetzner KU, Tarabichi A, Schildberg FW, Heiss MM. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol. 2000.18(11):2201-9.
    [81]Nicolini G, Miloso M, Moroni MC, Beguinot L, Scotto L. Post-transcriptional control regulates transforming growth factor alpha in the human carcinoma KB cell line. J Biol Chem.1996.271(47):30290-6.
    [82]Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell.2003.3(3):219-31.
    [83]Winkler F, Kozin S V, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation:role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell.2004.6(6):553-63.
    [84]Yuan TL, Choi HS, Matsui A, et al. Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci U S A.2008. 105(28):9739-44.
    [85]Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor lalpha expression and function by the mammalian target of rapamycin. Mol Cell Biol.2002.22(20):7004-14.
    [86]Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev.2004.18(23):2893-904.
    [87]Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG Jr. TSC2 regulates VEGF through mTOR-dependent and-independent pathways. Cancer Cell. 2003.4(2):147-58.
    [88]Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A.2001.98(5): 2604-9.
    [89]Pore N, Gupta AK, Cerniglia GJ, et al. Nelfinavir down-regulates hypoxia-inducible factor lalpha and VEGF expression and increases tumor oxygenation:implications for radiotherapy. Cancer Res.2006.66(18):9252-9.
    [90]Xue Q, Hopkins B, Perruzzi C, Udayakumar D, Sherris D, Benjamin LE. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Res.2008. 68(22):9551-7.
    [91]Qayum N, Muschel RJ, Im JH, et al. Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer Res.2009.69(15):6347-54.
    [92]Delmas C, End D, Rochaix P, Favre G, Toulas C, Cohen-Jonathan E. The farnesyltransferase inhibitor R115777 reduces hypoxia and matrix metalloproteinase 2 expression in human glioma xenograft. Clin Cancer Res.2003. 9(16 Pt1):6062-8.
    [93]Cohen-Jonathan E, Evans SM, Koch CJ, et al. The farnesyltransferase inhibitor L744,832 reduces hypoxia in tumors expressing activated H-ras. Cancer Res. 2001.61(5):2289-93.
    [94]Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res.2006.66(6): 3197-204.
    [95]Cerniglia GJ, Pore N, Tsai JH, et al. Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. PLOS ONE.2009.4(8):e6539.
    [96]Richard C, Kim G, Koikawa Y, et al. Androgens modulate the balance between VEGF and angiopoietin expression in prostate epithelial and smooth muscle cells. Prostate.2002.50(2):83-91.
    [97]Jain RK, Safabakhsh N, Sckell A, et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor:role of vascular endothelial growth factor. Proc Natl Acad Sci U S A.1998. 95(18):10820-5.
    [98]Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer.2004.4(6):423-36.
    [99]Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res.2000.60(7):1878-86.
    [100]Cham KK, Baker JH, Takhar KS, et al. Metronomic gemcitabine suppresses tumour growth, improves perfusion, and reduces hypoxia in human pancreatic ductal adenocarcinoma. Br J Cancer.2010.103(1):52-60.
    [101]Teicher BA. A systems approach to cancer therapy. (Antioncogenics+ standard cytotoxics→mechanism(s) of interaction). Cancer Metastasis Rev.1996. 15(2):247-72.
    [102]Teicher BA, Dupuis NP, Robinson MF, Emi Y, Goff DA. Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncol Res.1995.7(5):237-43.
    [103]Teicher BA, Holden SA, Dupuis NP, et al. Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res Treat.1995.36(2):227-36.
    [104]Bernsen HJ, Rijken PF, Peters JP, et al. Suramin treatment of human glioma xenografts; effects on tumor vasculature and oxygenation status. J Neurooncol. 1999.44(2):129-36.
    [105]Maloney SL, Sullivan DC, Suchting S, et al. Induction of thrombospondin-1 partially mediates the anti-angiogenic activity of dexrazoxane. Br J Cancer.2009.101(6):957-66.
    [106]Bhattacharya A, Seshadri M, Oven SD, Toth K, Vaughan MM, Rustum YM. Tumor vascular maturation and improved drug delivery induced by methylselenocysteine leads to therapeutic synergy with anticancer drugs. Clin Cancer Res.2008.14(12):3926-32.
    [107]Bhattacharya A, Toth K, Sen A, et al. Inhibition of colon cancer growth by methylselenocysteine-induced angiogenic chemomodulation is influenced by histologic characteristics of the tumor. Clin Colorectal Cancer.2009.8(3):155-62.
    [108]Ansiaux R, Baudelet C, Jordan BF, et al. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res.2005. 11(2Pt1):743-50.
    [109]Segers J, Di FV, Ansiaux R, et al. Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide:importance of optimal scheduling to exploit the 'normalization' window of the tumor vasculature. Cancer Lett.2006.244(1):129-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700