用户名: 密码: 验证码:
妊娠相关蛋白A对急性冠脉综合征预后的评价:系统综述和Meta分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     冠心病(Coronary heart disease, CHD)是多数发达国家45岁以上人群常见的心血管疾病,在发展中国家发病率也越来越高。世界卫生组织(world health organization, WHO)预测,在世界范围内的传染性疾病病死率得到有效控制之后,到2020年CHD将成为世界第一死因。急性冠脉综合征(acute coronary syndrome, ACS)是CHD中最严重临床表现,包括ST段抬高型心肌梗死(ST-segment elevation myocardial infarction、非ST段抬高型心肌梗死(non-ST-segment elevation myocardial infarction, NSTEMI)和不稳定型心绞痛(unstable angina pectoris, UAP)以及心源性猝死。CHD患者一旦发生ACS,危害极大,未来发生心血管死亡、非致死性心肌梗死、因心绞痛再次入院、再次接受血管重建、心功能恶化、脑卒中等不良心血管终点事件的机率也明显上升。
     传统的危险因素及心肌损伤的标志物如肌钙蛋白(cardiac troponin, cTn)尚不能准确的评估ACS预后,而无传统危险因素或cTn阴性的ACS患者未来心血管不良事件发生的风险常被低估。cTn阴性患者在6个月发生死亡的风险为5.9%,复发心肌梗死的风险约为5.9%。大量研究致力于寻找新的可准确评估ACS患者预后的标志物。
     妊娠相关蛋白A (pregnancy-associated plasma protein-A, PAPP-A)是新发现的冠状动脉粥样斑块不稳定性的生物标志物之一。动物及人体解剖结果显示PAPP-A在破裂的斑块局部高表达,ACS患者血浆PAPP-A水平与稳定型冠心病(stable angina pectoris, SAP)及健康人群相比显著升高。然而,对于PAPP-A能否预测ACS患者未来不良心血管终点事件的发生仍存在争议,有的研究认为PAPP-A可预测ACS患者远期不良预后,而有的研究则得出相反的结论,认为PAPP-A不能预测ACS患者远期预后。本项研究通过Meta分析方法对PAPP-A应用于ACS患者预后评估的文献进行汇总,为全面了解ACS患者外周血PAPP-A水平升高与不良心血管终点事件的危险性之间的关系。
     材料与方法
     本文主要遵循观察性流行病学研究Meta分析的相关指南进行资料收集及分析,并遵守系统综述和Meta分析报告规范。
     我们对Pubmed, EMBASE, OVID, Web of Knowledge, the Cochrane library和相关综述的参考文献进行了全面检索,时间截止到2012年9月30日。文献入选标准为:(1)队列研究或者随机对照试验(Randomized controlled trail, RCT)的事后分析,RCT的事后分析是评价研究人群基线资料中干预措施以外的某一个暴露因素(PAPP-A的高低)与预后的关联的研究;(2)随访时间不少于1个月;(3)研究对象为确诊ACS患者及以急性胸痛入院可疑ACS患者;(4)结局指标为:死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死;(5)文献中提供了PAPP-A对ACS患者预后关联的风险效应指标(HR. RR或OR值)及其95%CIs;(6) PAPP-A检测样本采取时间在胸痛症状出现后72小时内。
     采用观察性研究Newcastle-Ottawa Scale (NOS)质量评分标准对纳入文献进行质量评价。采用随机效应模型,RR值为效应指标合并PAPP-A在ACS预后的相关研究。采用I2指数进行异质性检验,并进行敏感性分析观察单个临床试验研究对总体分析结果的影响。按照研究变量(研究设计类型、来源国家、随访时间长短、患者平均年龄、PAPP-A检测是否受到肝素影响、风险效应指标的选择、是否对多因素进行调整)分组进行亚组分析以探索可能的异质性来源。采用漏斗图及Egger提出的线性回归法进行发表偏倚的识别和评估。采用Revman5.1及Stata10.0软件进行数据处理与分析。所有统计学指标均为双侧,P<0.05认为差异有统计学意义。
     结果
     本研究共纳入14篇文献,涉及到9413例ACS患者,总的Meta分析结果显示早期PAPP-A升高的人群未来发生死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死的相对风险是低水平PAPP-A人群的1.97倍(RR1.97,95%CI:1.49-2.60, P<0.00001)。PAPP-A升高与ACS患者未来不良心血管终点事件发生相关,PAPP-A可能是ACS患者预后的预测因子。
     1.不同研究设计类型亚组分析的结果
     纳入的14篇文献中研究设计类型为RCT的事后分析有3篇,11篇为队列研究。在RCT的事后分析研究涉及的5962例ACS患者中,亚组分析结果显示早期PAPP-A升高的人群未来发生死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死的相对风险是低水平PAPP-A人群的1.30倍(RR1.30,95%CI:1.08-1.57, P=0.006)。在队列研究涉及3451例ACS患者中,亚组分析结果显示早期PAPP-A升高的人群未来发生不良心血管终点事件的相对风险是低水平PAPP-A人群的2.32倍(RR2.32,95%CI:1.66-3.26, P<0.00001)。在队列研究中,PAPP-A升高与未来不良心血管终点事件发生之间的关联强度显著高于其在RCT的事后分析研究中与未来不良心血管终点事件发生的关联强度(RR2.32vs1.30,P=0.003)。
     2.不同来源国家亚组分析的结果
     纳入的14篇文献中在欧洲国家进行研究有8篇涉及3562例ACS患者,在非欧洲国家进行的研究有6篇涉及5851例ACS患者。在欧洲国家中,早期PAPP-A升高的人群未来发生死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死的相对风险是低水平PAPP-A人群的1.79倍(RR1.79,95%CI:1.18-2.71, P=0.006)。在非欧洲国家中,早期PAPP-A升高的人群未来发生不良心血管终点事件的相对风险是低水平PAPP-A人群的2.26倍(RR2.26,95%CI:1.48-3.44,P=0.0001)。在欧洲国际及非欧洲国家中,PAPP-A升高与未来不良心血管终点事件发生之间的关联强度无显著差异(RR1.79vs2.26,P=0.44),PAPP-A具有类似的预测作用。
     3.不同随访时间亚组分析的结果
     纳入的14篇文献中随访时间不足1年的研究有5篇涉及1367例ACS患者,随访时间超过1年的研究有9篇涉及8046例ACS患者。早期PAPP-A升高的人群1年内发生死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死的相对风险是低水平PAPP-A人群的3.33倍(RR3.33,95%CI:2.51-4.42,P<0.00001)。而早期PAPP-A升高的人群1年以后发生不良心血管终点事件的相对风险是低水平PAPP-A人群的1.42倍(RR1.42,95%CI:1.13-1.79,P=0.003)。PAPP-A升高与ACS患者短期预后(<1年)的关联强度显著高于其与ACS患者长远预后(≥1年)的关联强度(RR3.33vs1.42, P<0.00001)。
     4.不同平均年龄亚组分析的结果
     依据ACS患者人群平均年龄进行分组,平均年龄不足65岁的研究有9篇涉及4738例ACS患者,平均年龄大于65岁的研究有3篇涉及818例ACS患者。在平均年龄不足65岁亚组人群中,早期PAPP-A升高的人群未来发生死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死的相对风险是低水平PAPP-A人群的1.89倍(RR1.89,95%CI:1.26-2.84,P=0.002)。而在平均年龄大于65岁亚组人群中,早期PAPP-A升高的人群未来发生不良心血管终点事件的相对风险是低水平PAPP-A人群的2.26倍(RR2.26,95%CI:1.42-3.61,P=0.0006)。在平均年龄大于65岁人群及不足65岁人群中,PAPP-A升高与未来不良心血管终点事件发生之间的关联强度无显著差异(RR2.26vs1.89,P=0.57),PAPP-A具有类似的预测作用。
     5.是否受肝素影响亚组分析的结果
     纳入的14篇文献中PAPP-A的检测可能受到肝素干扰的研究有8篇涉及7023例ACS患者,PAPP-A的检测未受到肝素干扰的研究有6篇涉及2390例ACS患者。在使用肝素后采血检测的PAPP-A水平的升高可预测ACS患者预后,升高者未来发生死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死的相对风险是低水平PAPP-A人群的2.18倍(RR2.18,95%CI:1.50-3.16, P<0.0001)。采血前未使用肝素所检测的PAPP-A水平的升高同样可预测ACS患者预后,PAPP-A升高者未来发生不良心血管终点事件的风险是低水平人群的1.71倍(RR1.71,95%CI:1.06-2.75, P=0.03)。不论是否使用肝素,PAPP-A升高与未来心血管终点事件发生之间的关联强度无显著差异(RR2.18vs1.71,P=0.43)。
     6.不同风险效应指标亚组分析的结果
     14篇研究中以HR、RR为风险效应指标的研究各有6篇分别涉及7095例、1137例ACS患者, OR为风险效应指标的研究有2篇涉及1181例ACS患者。亚组分析结果显示PAPP-A在以OR为效应指标的研究中不能预测ACS患者预后,尽管PAPP-A升高患者未来发生心血管终点事件的相对风险是低水平PAPP-A人群的1.88倍(RR1.88,95%CI:0.69-5.16, P=0.22),但差异不具有统计学意义。而在以HR、RR为效应指标的研究中PAPP-A均可预测ACS患者预后,且在以RR为效应指标的研究中PAPP-A升高与未来心血管终点事件发生之间的关联强度更强(RR1.37vs3.15, P=0.0002),差异具有统计学意义。在以HR为效应指标的研究中PAPP-A升高患者未来发生不良心血管终点事件的相对风险是低水平PAPP-A人群的1.37倍(RR1.37,95%CI:1.06-1.77,P=0.02)。在以RR为效应指标的研究中PAPP-A升高患者未来发生不良心血管终点事件的相对风险是低水平PAPP-A人群的3.15倍(RR3.15,95%CI:2.33-4.26, P<0.00001)。
     7.是否对多因素调整亚组分析的结果
     14篇文献中有7篇研究对未调整的效应值及经多因素调整后的效应值均进行了报道,共涉及7442例ACS患者。对未调整的效应值进行Meta合并后显示PAPP-A升高患者未来发生不良心血管终点事件的相对风险是低水平PAPP-A人群的1.86倍(RR1.86,95%CI:1.43-2.43, P<0.00001)。在对年龄、性别、吸烟、高血压、高血脂、糖尿病等危险因素进行调整后的效应值进行Meta合并显示,在排除上述传统危险因素的干扰后,PAPP-A升高患者未来发生不良心血管终点事件的相对风险是低水平PAPP-A人群的1.66倍(RR1.66,95%CI:1.14-2.41, P=0.008)。PAPP-A对ACS患者预后的预测作用不受传统的危险因素等影响,多因素调整后合并RR值与调整前的合并RR值相比并无显著降低(RR1.86vs1.66, P=0.61), PAPP-A可能是ACS预后的独立预测因子。
     结论
     1.对纳入14篇文献总的Meta分析结果显示在9413名ACS患者中,PAPP-A升高患者未来1个月至未来47个月内发生死亡、心血管死亡、因心绞痛再次入院、再次进行血管重建及非致死性心肌梗死的相对风险是低水平PAPP-A人群的1.97倍(RR1.97,95%CI:1.49-2.60, P<0.00001)。PAPP-A升高与ACS患者未来不良心血管终点事件发生相关,提示PAPP-A可能是ACS患者预后的预测因子。
     2. PAPP-A升高除了在选用OR为风险效应指标的亚组研究中与ACS预后无显著相关,而在其他不同的亚组研究中PAPP-A升高与ACS患者未来不良心血管终点事件的发生均显著相关,PAPP-A升高的患者发生不良预后的风险可能增加。
     3. PAPP-A在欧洲及非欧洲国家、平均年龄大于65岁及不足65岁ACS人群中具有类似的预测作用,且其预测作用与PAPP-A测量是否受肝素影响、是否对传统危险因素进行调整无关,PAPP-A可能是ACS患者预后独立的预测因子。但随着随访时间的延长,PAPP-A升高与预后的关联强度减弱,且其关联强度在RCT的事后分析和队列研究中、在选用HR和RR研究中具有显著差异。随访时间的长短、研究设计类型、风险效应指标值的不同是不同研究之间异质性的主要来源。
Background and Objection:
     Coronary heart disease (CHD) is one of the most common cardiovascular disease in people over45years in most developed and developing cpumrries.World health organization forecast that CHD will become the first cause of death all.over world by the year2020, after effective controls of severe infectious doseases Acute coronary syndrome (ACS) including ST-segment elevation myocamdial infarciton (STEMI), non-ST-segment elevation myocardial infarction (NSTEMI),unstable angina pectoris (UAP) and sudden cardiac death is the most serious clinical manifestations of CHD. After the onset of ACS, the future risk of adverse cardiovascular outcomes such as cardiovascular death, non-fatal myocardial infarction, rehospitalisation and revascularization owing to angina, heart failure, stroke obviously increase.
     Traditional cardiovascular risk factors and biomarkers have been used to predict the occurrence of adverse outcomes after ACS. However, there are still patients whose risk of adverse cardiovascular outcomes is underestimated. The mortality rate of cardiac troponin (cTn) negative patients in6month after ACS was5.9%and the risk rate of recurrent myocardial infarction was alomst5.9%. A lot of studies are dedicating in finding new biomarkers which could accurately predict the prognosis of patients with ACS.
     New markers of plaque instability have been identified in recent years, among which, pregnancy-associated plasma protein-A (PAPP-A) appears to offer an interesting profile. Data from animal and human histological study suggest that PAPP-A is markedly enriched in ruptured and eroded unstable plaques of coronary arteries. Circulating levels of PAPP-A have been shown to be elevated in patients with ACS compared with patients with chronic stable angina (SAP) or healthy subjects. A large number of studies have examined the prognostic value of PAPP-A in patients with ACS but the results were conflicting. Some studies found that PAPP-A was a valuable predictor of adverse cardiovascular outcomes in patients with ACS, while others found no prognostic value of PAPP-A. There is an increasing need to synthesise all the evidence. Herein, we present this meta-analysis to assess the association between higher PAPP-A levels and risk of long-term adverse cardiovascular outcomes after ACS occurs.
     Methods and materials
     This study was conducted following the meta-analysis of observational studies in epidemiology guidelines, simultaneously conforming to most of the preferred reporting items for systematic reviews and meta-analyses guidelines.
     We performed an electronic search of PubMed, EMBASE, OVID, Web of Knowledge and the Cochrane library from inception of each database to September,2012. We included studies if they met all the following criteria:(1) cohort studies or post hoc analyses of randomized controlled trial(RCT);(2) studies with a follow-up duration of at least1month;(3) subjects were patients with angiographically vaidated actue coronary syndrome and patients with acute chest pain in a heterogeneous emergency room;(4) outcomes were death, cardiovascular death, rehospitalisation and revascularization owing to angina and non-fatal myocardial infarction;(5) risk estimates with95%confidence intervals(CIs) were reported or could be calculated.(6) blood samples for PAPP-A assays were obtained within72h from the onset of symptoms or on admission to hospital.
     The quality of included studies were assessed based on the Newcastle-Ottawa Scale for quality of observational studies in meta-analyses. Random effects meta-analysis and relative risk (RR) were used to estimate the association between PAPP-A levels and adverse cardiovascular outcomes after ACS. Heterogeneity was assessed using the Higgins I-squared statistic (I2). Sensitivity analyses were carried out to characterize possible sources of statistical heterogeneity, by excluding studies one-by-one.
     Subgroup analyses based on study design, study location, duration of follow-up, mean age, heparin use, measurement of association chosen and confounder factors adjustments were conducted to identify the risk-subgroup interactions that could explain the inter-study differences.
     Publication bias was assessed using funnel spot and the Egger regression asymmetry test. Software Review Manager (RevMan5.1, Copenhagen) and Stata (Statal0.0, Texas) were used for the statistical analyses. All the P values were two tailed, and P values<0.05were considered statistically significant.
     Results:
     Fourteen studies were included in our meta-analysis involving9413patients. The overall meta-analysis showed that patients with higher PAPP-A values had1.97times the risk of death, cardiovascular death, rehospitalisation and revascularization owing to angina and non-fatal myocardial infarction for patients with lower PAPP-A levels (RR1.97,95%CI:1.49-2.60, P<0.00001). Higher PAPP-A values were associated with increased adverse cardiovascular outcomes, suggesting that PAPP-A could be a valuable predictor of adverse cardiovascular outcomes in patients with ACS.
     1. Subgroup analysis based on study design
     There are3post hoc analyses of RCT involving5962patients and11cohort studies involving3451patients. In post hoc analyses of RCT, patients with higher PAPP-A values had1.30times the risk of adverse cardiovascular outcomes for patients with lower PAPP-A levels (RR1.30,95%CI:1.08-1.57, P=0.006). In cohort studies, patients with higher PAPP-A values had2.32times the risk of adverse cardiovascular outcomes for patients with lower PAPP-A levels (RR2.32,95%CI:1.66-3.26, P<0.00001). The association between higher PAPP-A values and increased adverse cardiovascular outcomes in post hoc analyses of RCT was statistically bigger than that in cohort studies (RR2.32vs1.30, P=0.003).
     2. Subgroup analysis based on study location
     Eight studies were from Europe countries involving3562patients and6studies were from non-Europe countries involving5851patients. In studies from Europe countries, patients with higher PAPP-A values had1.79times the risk of adverse cardiovascular outcomes for patients with lower PAPP-A levels (RR1.79,95%CI:1.18-2.71, P=0.006). In studies from non-Europe countries, patients with higher PAPP-A values had2.26times the risk of adverse cardiovascular outcomes for patients with lower PAPP-A levels (RR2.26,95%CI:1.48-3.44, P=0.0001). The associations between higher PAPP-A values and increased adverse cardiovascular outcomes in European studies was not significantly different from that in non-European studies (RR1.79vs2.26, P=0.44), suggesting that PAPP-A had similar prognostic values in both European and non-European studies.
     3. Subgroup analysis based on duration of follow-up
     There are5studies with a duration of follow-up less than1year involving1367patients and9studies with a duration of follow-up more than1year involving8046patients. The future risk of adverse cardiovascular outcomes within1year in patients with higher PAPP-A values is3.33times as compared with patients with lower PAPP-A levels (RR3.33,95%CI:2.51-4.42, P<0.00001). The future risk of adverse cardiovascular outcomes more than1year in patients with higher PAPP-A values is1.42times as compared with patients with lower PAPP-A levels (RR1.42,95%CI:1.13-1.79, P=0.003). The association between higher PAPP-A values and increased short-term(<1year) outcomes was statistically bigger than the association between higher PAPP-A values and increased long-term(≥1year) outcomes (RR3.33vs1.42, P<0.00001).
     4. Subgroup analysis based on mean age
     There were9studies in which mean age of patients involved were younger than65years and3studies in which mean age of patients involved were older than65years. In subgroup analysis of4738patients younger than65years, those with higher PAPP-A values had1.89times the risk of adverse cardiovascular outcomes for those with lower PAPP-A levels (RR1.89,95%CI:1.26-2.84, P=0.002). In subgroup analysis of818patients older than65years, those with higher PAPP-A values had2.26times the risk of adverse cardiovascular outcomes for those with lower PAPP-A levels (RR2.26,95%CI:1.42-3.61, P=0.0006). The associations between higher PAPP-A values and increased adverse cardiovascular outcomes in patients older than65years was not significantly different from that in patients younger than65years(RR2.26vs1.89, P=0.57), suggesting that PAPP-A had similar prognostic values in both subgroups.
     5. Subgroup analysis based on heparin use
     There were8studies involving7023patients in which boold samples of PAPP-A were obtained after heparin use and6studies involving2390patients in which boold samples of PAPP-A were obtained without heparin use. In studies in which blood levels of PAPP-A were affected by heparin use, patients with higher PAPP-A values had2.18times the risk of adverse cardiovascular outcomes for patients with lower PAPP-A levels (RR2.18,95%CI:1.50-3.16, P<0.0001). In studies in which blood levels of PAPP-A were not affected by heparin use, patients with higher PAPP-A values had1.71times the risk of adverse cardiovascular outcomes for those with lower PAPP-A levels (RR1.71,95%CI:1.06-2.75,P=0.03). No significant differences were found in the risk estimates between the two subgroups with and without heparin us (RR2.18vs1.71, P=0.43).
     6. Subgroup analysis based on measurement of association chosen
     There were respectively6studies used HR and RR as the measurement of rsik estimates and the other2studies chose OR as the measurement of rsik estimates. In studies involving1181patients in which OR was estimated, subgroup analysis suggested that PAPP-A could not predict adverse cardiovascular outcomes(RR1.88, 95%CI:0.69-5.16, P=0.22). PAPP-A had lower prognostic value in subgroup analysis of studies in which HR was estimated as compared with that in subgroup analysis of studies in which RR was used(RR1.37vs3.15, P=0.0002). In studies in which HR was estimated, patients with higher PAPP-A levels were associated with1.37-fold higher risks of adverse cardiovascular outcomes as compared with those with lower PAPP-A levels(RR1.37,95%CI:1.06-1.77, P=0.02). In studies in which RR was estimated, patients with higher PAPP-A levels were associated with3.15-fold higher risks of adverse cardiovascular outcomes as compared with those with lower PAPP-A levels(RR3.15,95%CI:2.33-4.26, P<0.00001).
     7. Subgroup analysis based on confounder factors adjustment
     Seven studies reported both unadjusted and adjusted risk estimates involving7442patients. The pooled RR and its95%CI of unadjusted risk estimates was1.86(RR1.86,95%CI:1.43-2.43, P<0.00001). The pooled RR and its95%CI of adjusted risk estimates was1.66(RR1.66,95%CI:1.14-2.41, P=0.008). The prognostic value of PAPP-A was not significantly reduced after adjustment for confounder factors such as age, sex, smoke, hypertension, hyperlipidemia and diabetes mellitus (RR1.86vs1.66, P=0.61). The prognostic role of PAPP-A was independent of traditional risk factors and other markers.
     Conclusion
     1. This meta-analysis of14studies support an association between higher PAPP-A levels and increased risk of adverse cardiovascular outcomes in9413patients with ACS. In the follow-up duration that ranged from1to47months after ACS occurred, patients with higher PAPP-A values had1.97times in the risk of death, cardiovascular death, rehospitalisation and revascularization owing to angina and non-fatal myocardial infarction of patients with lower PAPP-A levels (RR1.97,95%CI:1.49-2.60, P<0.00001). PAPP-A could be a valuable predictor of adverse cardiovascular outcomes in patients with ACS.
     2. Higher PAPP-A values were statistically associated with increased adverse cardiovascular outcomes in all subgroup studies except the one using OR as the measurement of association chosen.
     3. The prognostic value of PAPP-A were similar in European and non-European countries as well as in patients older and younger than65years, and its prognostic value was not affected by heparin use and confounder factors. However, its predicting value decreased as time went by. Significant subgroup differences were observed in subgroups stratified by follow-up duration, study design and the measurement of association chosen, suggesting that those are the main sources of heterogeneities.
引文
[1]Sanderson JE, Mayosi B, Yusuf S, et al. Global burden of cardiovascular disease[J]. Heart 2007,93(10):1175.
    [2]Morrow DA, Cannon CP, Jesse RL, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines:clinical characteristics and utilization of biochemical markers in acute coronary syndromes[J]. Circulation 2007, 115(13):e356-e375.
    [3]Simoons ML, Serruys PW, van den Brand M, et al. Early thrombolysis in acute myocardial infarction:limitation of infarct size and improved survival[J]. Journal of the American College of Cardiology 1986,7(4):717-728.
    [4]Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes[J]. JAMA:The Journal of the American Medical Association 2001,285(13):1711-1718.
    [5]Virmani R, Burke AP, Farb A, et al. Pathology of the vulnerable plaque[J]. Journal of the American College of Cardiology 2006,47(8s1):C13-C18.
    [6]Fath-Ordoubadi F, Barac Y, Abergel E, et al. Gender Impact on Prognosis of Acute Coronary Syndrome Patients Treated With Drug-Eluting Stents[J]. The American journal of cardiology 2012,110(5):636-642.
    [7]Bassand J-P, Hamm CW, Ardissino D, et al. Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes The Task Force for the Diagnosis and Treatment of Non-ST-Segment Elevation Acute Coronary Syndromes of the European Society of Cardiology[J]. European Heart Journal 2007, 28(13):1598-1660.
    [8]Lindahl B, Diderholm E, Lagerqvist B, et al. Mechanisms behind the prognostic value of troponin T in unstable coronary artery disease:a FRISC Ⅱ substudy[J]. Journal of the American College of Cardiology 2001,38(4):979-986.
    [9]Terkelsen CJ, Lassen JF, Norgaard BL, et al. Mortality rates in patients with ST-elevation vs. non-ST-elevation acute myocardial infarction:observations from an unselected cohort[J]. European Heart Journal 2005,26(1):18-26.
    [10]Heidenreich PA, Alloggiamento T, McDonald KM, et al. The prognostic value of troponin in patients with non-ST elevation acute coronary syndromes:a meta-analysis[J]. Journal of the American College of Cardiology 2001,38(2): 478-485.
    [11]Hellings WE, Peeters W, Moll FL, et al. From vulnerable plaque to vulnerable patient:the search for biomarkers of plaque destabilization[J]. Trends in cardiovascular medicine 2007,17(5):162-171.
    [12]Oxvig C, Sand O, Kristensen T, et al. Circulating human pregnancy-associated plasma protein-A is disulfide-bridged to the proform of eosinophil major basic protein[J]. Journal of Biological Chemistry 1993,268(17):12243-12246.
    [13]Bonno M, Oxvig C, Kephart GM, et al. Localization of pregnancy-associated plasma protein-A and colocalization of pregnancy-associated plasma protein-A messenger ribonucleic acid and eosinophil granule major basic protein messenger ribonucleic acid in placenta[J]. Laboratory investigation 1994,71(4):560-566.
    [14]Lawrence JB, Oxvig C, Overgaard MT, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A[J]. Proceedings of the National Academy of Sciences 1999,96(6):3149-3153.
    [15]Conover CA, Oxvig C, Overgaard MT, et al. Evidence that the insulin-like growth factor binding protein-4 protease in human ovarian follicular fluid is pregnancy associated plasma protein-A[J]. Journal of Clinical Endocrinology & Metabolism 1999,84(12):4742-4745.
    [16]Bayes-Genis A, Schwartz RS, Lewis DA, et al. Insulin-like growth factor binding protein-4 protease produced by smooth muscle cells increases in the coronary artery after angioplasty[J]. Arteriosclerosis, Thrombosis, and Vascular Biology 2001, 21(3):335-341.
    [17]Qin QP, Kokkala S, Lund J, et al. Molecular distinction of circulating pregnancy-associated plasma protein A in myocardial infarction and pregnancy[J]. Clin Chem 2005,51(1):75-83.
    [18]Overgaard MT, Haaning J, Boldt HB, et al. Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor[J]. Journal of Biological Chemistry 2000,275(40):31128-31133.
    [19]Boldt HB, Overgaard MT, Laursen LS, et al. Mutational analysis of the proteolytic domain of pregnancy-associated plasma protein-A (PAPP-A). classification as a metzincin[J]. Biochemical Journal 2001,358(Pt 2):359-367.
    [20]Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes[J]. N Engl J Med 2001,345(14): 1022-1029.
    [21]Iversen KK, Teisner AS, Teisner B, et al. Pregnancy associated plasma protein A, a novel, quick, and sensitive marker in ST-elevation myocardial infarction[J]. Am J Cardiol 2008,101(10):1389-1394.
    [22]Khan DA, Sharif MS, Khan FA. Diagnostic performance of high-sensitivity troponin T, myeloperoxidase, and pregnancy-associated plasma protein A assays for triage of patients with acute myocardial infarction[J]. Korean J Lab Med 2011,31(3): 172-178.
    [23]Gururajan P, Gurumurthy P, Nayar P, et al. Pregnancy associated plasma protein-A (PAPP-A) as an early marker for the diagnosis of acute coronary syndrome[J]. Indian Heart J 2012,64(2):141-145.
    [24]Beaudeux JL, Burc L, Imbert-Bismut F, et al. Serum plasma pregnancy-associated protein A:a potential marker of echogenic carotid atherosclerotic plaques in asymptomatic hyperlipidemic subjects at high cardiovascular risk[J]. Arterioscler Thromb Vase Biol 2003,23(1):e7-10.
    [25]Bonaca MP, Scirica BM, Sabatine MS, et al. Prospective evaluation of pregnancy-associated plasma protein-a and outcomes in patients with acute coronary syndromes[J]. J Am Coll Cardiol 2012,60(4):332-338.
    [26]Heeschen C, Dimmeler S, Hamm CW, et al. Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes:comparison with markers of systemic inflammation, platelet activation, and myocardial necrosis[J]. J Am Coll Cardiol 2005,45(2):229-237.
    [27]Iversen KK, Teisner AS, Schoos M, et al. Pregnancy-associated plasma protein-A, a marker for outcome in patients suspected for acute coronary syndrome[J]. Clin Biochem 2010,43(10-11):851-857.
    [28]Laterza OF, Cameron SJ, Chappell D, et al. Evaluation of pregnancy-associated plasma protein A as a prognostic indicator in acute coronary syndrome patients[J]. Clin Chim Acta 2004,348(1-2):163-169.
    [29]Li XP, Zhou SH, Tang JJ, et al. Association between plasma pregnancy-associated plasma protein a and restenosis after percutaneous coronary angioplasty[J]. Circ J 2008,72(5):729-733.
    [30]Lund J, Qin QP, Ilva T, et al. Circulating pregnancy-associated plasma protein a predicts outcome in patients with acute coronary syndrome but no troponin Ⅰ elevation[J]. Circulation 2003,108(16):1924-1926.
    [31]Mei WY, Du ZM, Zhao Q, et al. Pregnancy-associated plasma protein predicts outcomes of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome[J]. Heart Lung 2011,40(3):e78-83.
    [32]Postadzhiyan AS, Velinov H, Velchev V, et al. Clinical value of pregnancy-associated plasma protein-A in patients with acute coronary syndromes[J]. EUR HEART J SUPP12010,12(suppl):F61.
    [33]Dosh K, Berger PB, Marso S, et al. Relationship between baseline inflammatory markers, antiplatelet therapy, and adverse cardiac events after percutaneous coronary intervention:an analysis from the clopidogrel for the reduction of events during observation trial[J]. Circ Cardiovasc Interv 2009,2(6):503-512.
    [34]Kavsak PA, Wang X, Henderson M, et al. PAPP-A as a marker of increased long-term risk in patients with chest pain[J]. Clin Biochem 2009,42(10-11): 1012-1018.
    [35]Lund J, Wittfooth S, Qin QP, et al. Free vs total pregnancy-associated plasma protein A (PAPP-A) as a predictor of 1-year outcome in patients presenting with non-ST-elevation acute coronary syndrome[J]. Clin Chem 2010,56(7):1158-1165.
    [36]McCann CJ, Glover BM, Menown IB, et al. Prognostic value of a multimarkera approach for patients presenting to hospital with acute chest pain[J]. Am J Cardiol 2009,103(1):22-28.
    [37]Oemrawsingh RM, Lenderink T, Akkerhuis KM, et al. Multimarker risk model containing troponin-T, interleukin 10, myeloperoxidase and placental growth factor predicts long-term cardiovascular risk after non-ST-segment elevation acute coronary syndrome[J]. Heart 2011,97(13):1061-1066.
    [38]Schaub N, Reichlin T, Meune C, et al. Markers of plaque instability in the early diagnosis and risk stratification of acute myocardial infarction[J]. Clin Chem 2012, 58(1):246-256.
    [39]Fleiss JL, Gross AJ. Meta-analysis in epidemiology, with special reference to studies of the association between exposure to environmental tobacco smoke and lung cancer:a critique[J]. Journal of clinical epidemiology 1991,44(2):127-139.
    [40]Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology [J]. JAMA:The Journal of the American Medical Association 2000, 283(15):2008-2012.
    [41]Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses:the PRISMA statement[J]. Annals of internal medicine 2009,151(4):264-269.
    [42]Wells G. Shea B, O'connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. In 3rd Symposium on Systematic Reviews:Beyond the Basics, Edition 2000.
    [43]Bardou M, Barkun A, Martel M. Effect of statin therapy on colorectal cancer[J]. Gut 2010,59(11):1572-1585.
    [44]Midgette AS, Wong JB, Beshansky JR, et al. Cost-Effectiveness of Streptokinase for Acute Myocardial Infarction A Combined Meta-analysis and Decision Analysis of the Effects of Infarct Location and of Likelihood of Infarction[J]. Med Decis Making 1994,14(2):108-117.
    [45]Higgins J, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses[J]. Bmj 2003,327(7414):557-560.
    [46]Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test[J]. Bmj 1997,315(7109):629-634.
    [47]Fowlkes JL. Insulinlike growth factor-binding protein proteolysis:an emerging paradigm in insulinlike growth factor physiology[J]. Trends in Endocrinology & Metabolism 1997,8(8):299-306.
    [48]Bayes-Genis A, Conover CA, Schwartz RS. The Insulin-Like Growth Factor Axis[J]. Circ Res 2000,86(2):125-130.
    [49]Terkelsen CJ, Oxvig C, Norgaard BL, et al. Temporal course of pregnancy-associated plasma protein-A in angioplasty-treated ST-elevation myocardial infarction patients and potential significance of concomitant heparin administration[J]. Am J Cardiol 2009,103(1):29-35.
    [50]Hajek P, Macek M, Sr., Lashkevich A, et al. Influence of concomitant heparin administration on pregnancy-associated plasma protein-A levels in acute coronary syndrome with ST segment elevation[J]. Arch Med Sci 2011,7(6):977-983.
    [51]Weyer K, Overgaard MT, Laursen LS, et al. Cell surface adhesion of pregnancy-associated plasma protein-A is mediated by four clusters of basic residues located in its third and fourth CCP module[J]. Eur J Biochem 2004,271(8):1525-1535.
    [52]He LP, Tang XY, Ling WH, et al. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes:a meta-analysis of longitudinal studies[J]. Heart 2010,96(5):339-346.
    [53]Garza CA, Montori VM, McConnell JP, et al. Association Between Lipoprotein-Associated Phospholipase A 2 and Cardiovascular Disease:A Systematic Review[J]. Mayo Clinic Proceedings 2007,82(2):159-165.
    [54]Chen Y, Zhang F, Dong L, et al. Long-term prognostic value of myeloperoxidase on acute coronary syndrome:a meta-analysis[J]. Archives of medical research 2011, 42(5):368-374.
    [55]Cochrane Handbook for Systematic Reviews of Interventions 4.2.6 Updated September 2006. The Cochrane Collaboration,2006.
    [1]Sanderson JE, Mayosi B, Yusuf S, et al. Global burden of cardiovascular disease[J]. Heart 2007,93(10):1175.
    [2]Morrow DA, Cannon CP, Jesse RL, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines:clinical characteristics and utilization of biochemical markers in acute coronary syndromes[J]. Circulation 2007, 115(13):e356-e375.
    [3]Simoons ML, Serruys PW, van den Brand M, et al. Early thrombolysis in acute myocardial infarction:limitation of infarct size and improved survival[J]. Journal of the American College of Cardiology 1986,7(4):717-728.
    [4]Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes[J]. JAMA:The Journal of the American Medical Association 2001,285(13):1711-1718.
    [5]Virmani R, Burke AP, Farb A, et al. Pathology of the vulnerable plaque[J]. Journal of the American College of Cardiology 2006,47(8s1):C13-C18.
    [6]Fath-Ordoubadi F, Barac Y, Abergel E, et al. Gender Impact on Prognosis of Acute Coronary Syndrome Patients Treated With Drug-Eluting Stents[J]. The American journal of cardiology 2012,110(5):636-642.
    [7]Bassand J-P, Hamm CW, Ardissino D, et al. Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes The Task Force for the Diagnosis and Treatment of Non-ST-Segment Elevation Acute Coronary Syndromes of the European Society of Cardiology[J]. European Heart Journal 2007, 28(13):1598-1660.
    [8]Lindahl B, Diderholm E, Lagerqvist B, et al. Mechanisms behind the prognostic value of troponin T in unstable coronary artery disease:a FRISC Ⅱ substudy[J]. Journal of the American College of Cardiology 2001,38(4):979-986.
    [9]Terkelsen CJ, Lassen JF, N(?)rgaard BL, et al. Mortality rates in patients with ST-elevation vs. non-ST-elevation acute myocardial infarction:observations from an unselected cohort[J]. European Heart Journal 2005,26(1):18-26.
    [10]Menzin J, Wygant G, Hauch O, et al. One-year costs of ischemic heart disease among patients with acute coronary syndromes:findings from a multi-employer claims database[J]. Current Medical Research and Opinion 2008,24(2):461-468.
    [11]中华医学会心血管病学分会,中华心血管病杂志编辑委员会.急性ST段抬高型心肌梗死诊断和治疗指南[J].中华心血管病杂志2010,38(8):675-690.
    [12]中华医学会心血管病学分会,中华心血管病杂志编辑委员会.非ST段抬高急性冠状动脉综合征诊断和治疗指南[J].中华心血管病杂志2012,40(5): 353-367.
    [13]Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints:Preferred definitions and conceptual framework[J]. Clinical Pharmacology & Therapeutics 2001,69(3):89-95.
    [14]Sheikh A, Yahya S, Sheikh N, et al. C-reactive protein as a predictor of adverse outcome in patients with acute coronary syndrome[J]. Heart views:the official journal of the Gulf Heart Association 2012,13(1):7-12.
    [15]Shi JZ, Wang LY, Zhu Y, et al. OX40 Ligand Levels and High-sensitivity C-reactive Protein Levels in Blood from Local Coronary Plaque and the Femoral Artery in Patients with Acute Coronary Syndrome or Stable Angina[J]. The Journal of International Medical Research 2011,39(4):1275-1283.
    [16]Matsuura Y, Hatakeyama K, Imamura T, et al. Different Distribution of Pentraxin 3 and C-Reactive Protein in Coronary Atherosclerotic Plaques[J]. Journal of atherosclerosis and thrombosis 2012,19(9):837-845.
    [17]van Loon JE, de Maat MP, Deckers JW, et al. Prognostic markers in young patients with premature coronary heart disease[J]. Atherosclerosis 2012,224(1): 213-217.
    [18]He LP, Tang XY, Ling WH, et al. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes:a meta-analysis of longitudinal studies[J]. Heart 2010,96(5):339-346.
    [19]Rosenson RS, Vracar-Grabar M, Helenowski I. Lipoprotein associated phospholipase A2 inhibition reduces generation of oxidized fatty acids[J]. Cardiovascular Drugs and Therapy 2008,22(1):55-58.
    [20]Kolodgie FD, Burke AP, Skorija KS, et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis[J]. Arteriosclerosis, Thrombosis, and Vascular Biology 2006,26(11):2523-2529.
    [21]Li N, Li S, Yu C, et al. Plasma Lp-PLA2 in Acute Coronary Syndrome[J]. Postgraduate medicine 2010,122(4):200-205.
    [22]Schmidt EB, Koenig W, Khuseyinova N, et al. Lipoprotein-associated phospholipase A 2 concentrations in plasma are associated with the extent of coronary artery disease and correlate to adipose tissue levels of marine n-3 fatty acids[J]. Atherosclerosis 2008,196(1):420-424.
    [23]Anderson JL. Lipoprotein-associated phospholipase A2:an independent predictor of coronary artery disease events in primary and secondary prevention[J]. The American journal of cardiology 2008,101(12):S23-S33.
    [24]Garza CA, Montori VM, McConnell JP, et al. Association Between Lipoprotein-Associated Phospholipase A 2 and Cardiovascular Disease:A Systematic Review[J]. Mayo Clinic Proceedings 2007,82(2):159-165.
    [25]Pawlus J, Rusak M, Chociej-Stypulkowska J, et al. Parameters of platelets activation and myeloperoxidase concentration as markers of coronary disease.[J]. Polski merkuriusz lekarski:organ Polskiego Towarzystwa Lekarskiego 2010,29(172): 259.
    [26]Rudolph V, Goldmann BU, Bos C, et al. Diagnostic value of MPO plasma levels in patients admitted for suspected myocardial infarction[J]. International Journal of Cardiology 2011,153(3):267-271.
    [27]Ferrante G, Nakano M, Prati F, et al. High Levels of Systemic Myeloperoxidase Are Associated With Coronary Plaque Erosion in Patients With Acute Coronary SyndromesClinical Perspective A Clinicopathological Study[J]. Circulation 2010, 122(24):2505-2513.
    [28]Ndrepepa G, Braun S, Mehilli J, et al. Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes[J]. European journal of clinical investigation 2008,38(2):90-96.
    [29]Meuwese MC, Stroes ES, Hazen SL, et al. Serum Myeloperoxidase Levels Are Associated With the Future Risk of Coronary Artery Disease in Apparently Healthy IndividualsThe EPIC-Norfolk Prospective Population Study[J]. Journal of the American College of Cardiology 2007,50(2):159-165.
    [30]Wong ND, Gransar H, Narula J, et al. Myeloperoxidase, subclinical atherosclerosis, and cardiovascular disease events[J]. JACC:Cardiovascular Imaging 2009,2(9):1093-1099.
    [31]Roman RM, Camargo PV, Borges FK, et al. Prognostic value of myeloperoxidase in coronary artery disease:comparison of unstable and stable angina patients[J]. Coronary Artery Disease 2010,21(3):.129-136.
    [32]Chen Y. Zhang F, Dong L, et al. Long-term prognostic value of myeloperoxidase on acute coronary syndrome:a meta-analysis[J]. Archives of medical research 2011, 42(5):368-374.
    [33]Sabatine MS, Morrow DA, de Lemos JA, et al. Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia[J]. Journal of the American College of Cardiology 2004,44(10):1988-1995.
    [34]Bassan R, Potsch A, Maisel A, et al. B-type natriuretic peptide:a novel early blood marker of acute myocardial infarction in patients with chest pain and no ST-segment elevation[J]. European Heart Journal 2005,26(3):234-240.
    [35]Suzuki S, Yoshimura M, Nakayama M, et al. Plasma Level of B-Type Natriuretic Peptide as a Prognostic Marker After Acute Myocardial Infarction A Long-Term Follow-Up Analysis[J]. Circulation 2004,110(11):1387-1391.
    [36]James SK, Lindahl B, Siegbahn A, et al. N-Terminal Pro-Brain Natriuretic Peptide and Other Risk Markers for the Separate Prediction of Mortality and Subsequent Myocardial Infarction in Patients With Unstable Coronary Artery Disease A Global Utilization of Strategies To Open occluded arteries (GUSTO)-IV Substudy[J]. Circulation 2003,108(3):275-281.
    [37]Lindahl B, Lindback J, Jernberg T, et al. Serial analyses of N-terminal pro-B-type natriuretic peptide in patients with non-ST-segment elevation acute coronary syndromes:A Fragmin and fast Revascularisation during InStability in coronary artery disease (FRISC)-Ⅱ substudy[J]. Journal of the American College of Cardiology 2005,45(4):533-541.
    [38]Petrina M, Goodman SG, Eagle KA. The 12-lead electrocardiogram as a predictive tool of mortality after acute myocardial infarction:current status in an era of revascularization and reperfusion[J]. The American heart journal 2006,152(1): 11-18.
    [39]Berton GS, Cordiano R, Palmieri R, et al. Heart rate during myocardial infarction:relationship with one-year global mortality in men and women[J]. Canadian journal of cardiology 2002,18(5):495-502.
    [40]Sabatine MS, Morrow DA, Cannon CP, et al. Relationship between baseline white blood cell count and degree of coronary artery disease and mortality in patients with acute coronary syndromes A TACTICS-TIMI 18 substudy[J]. Journal of the American College of Cardiology 2002,40(10):1761-1768.
    [41]Cohen M, Stinnett SS, Weatherley BD, et al. Predictors of recurrent ischemic events and death in unstable coronary artery disease after treatment with combination antithrombotic therapy[J]. The American heart journal 2000,139(6):962-970.
    [42]Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI[J]. JAMA:The Journal of the American Medical Association 2000,284(7):835-842.
    [43]Morrow D, Antman E, Snapinn S, et al. An integrated clinical approach to predicting the benefit of tirofiban in non-ST elevation acute coronary syndromes. Application of the TIMI Risk Score for UA/NSTEMI in PRISM-PLUS[J]. European Heart Journal 2002,23(3):223-229.
    [44]Garcia Almagro FJ, Gimeno JR, Villegas M, et al. Use of a Coronary Risk Score (the TIM I Risk Score) in a Non-Selected Patient Population Assessed for Chest Pain at an Emergency Department[J]. Revista Espanola de Cardiologia (English Edition) 2005,58(7):775-781.
    [45]Gibson CM, Dumaine RL, Gelfand EV, et al. Association of glomerular filtration rate on presentation with subsequent mortality in non-ST-segment elevation acute coronary syndrome; observations in 13307 patients in five TIMI trials[J]. European Heart Journal 2004,25(22):1998-2005.
    [46]Soiza R, Leslie S, Williamson P, et al. Risk stratification in acute coronary syndromes-does the TIMI risk score work in unselected cases?[J]. QJM 2006,99(2): 81-87.
    [47]Boersma E, Pieper KS, Steyerberg EW, et al. Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation:results from an international trial of 9461 patients[J]. Circulation 2000,101(22):2557-2567.
    [48]Granger CB, Goldberg RJ, Dabbous O, et al. Predictors of hospital mortality in the global registry of acute coronary events[J]. Archives of Internal Medicine 2003, 163(19):2345-2353.
    [49]Eagle KA, Lim MJ, Dabbous OH, et al. A validated prediction model for all forms of acute coronary syndrome[J]. JAMA:The Journal of the American Medical Association 2004,291(22):2727-2733.
    [50]Tang EW, Wong C-K, Herbison P. Global Registry of Acute Coronary Events (GRACE) hospital discharge risk score accurately predicts long-term mortality post acute coronary syndrome[J]. The American heart journal 2007,153(1):29-35.
    [51]Morrow DA, Antman EM, Charlesworth A, et al. TIMI risk score for ST-elevation myocardial infarction:a convenient, bedside, clinical score for risk assessment at presentation an intravenous nPA for treatment of infarcting myocardium early Ⅱ trial substudy[J]. Circulation 2000,102(17):2031-2037.
    [52]Rathore SS, Weinfurt KP, Foody JM, et al. Performance of the Thrombolysis in Myocardial Infarction (TIMI) ST-elevation myocardial infarction risk score in a national cohort of elderly patients[J]. American Heart Journal 2005,150(3):402-410.
    [53]de Araujo Goncalves P, Ferreira J, Aguiar C, et al. TIMI, PURSUIT, and GRACE risk scores:sustained prognostic value and interaction with revascularization in NSTE-ACS[J]. European Heart Journal 2005,26(9):865-872.
    [54]Oxvig C, Sand O, Kristensen T, et al. Circulating human pregnancy-associated plasma protein-A is disulfide-bridged to the proform of eosinophil major basic protein[J]. Journal of Biological Chemistry 1993,268(17):12243-12246.
    [55]Bonno M, Oxvig C, Kephart GM, et al. Localization of pregnancy-associated plasma protein-A and colocalization of pregnancy-associated plasma protein-A messenger ribonucleic acid and eosinophil granule major basic protein messenger ribonucleic acid in placenta[J]. Laboratory investigation 1994,71(4):560-566.
    [56]Lawrence JB, Oxvig C, Overgaard MT, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A[J]. Proceedings of the National Academy of Sciences 1999,96(6):3149-3153.
    [57]Conover CA, Oxvig C, Overgaard MT, et al. Evidence that the insulin-like growth factor binding protein-4 protease in human ovarian follicular fluid is pregnancy associated plasma protein-A[J]. Journal of Clinical Endocrinology & Metabolism 1999,84(12):4742-4745.
    [58]Bayes-Genis A, Schwartz RS, Lewis DA, et al. Insulin-like growth factor binding protein-4 protease produced by smooth muscle cells increases in the coronary artery after angioplasty[J]. Arteriosclerosis, Thrombosis, and Vascular Biology 2001, 21(3):335-341.
    [59]Qin QP, Kokkala S, Lund J, et al. Molecular distinction of circulating pregnancy-associated plasma protein A in myocardial infarction and pregnancy[J]. Clin Chem 2005,51(1):75-83.
    [60]Boldt HB, Glerup S, Overgaard MT, et al. Definition, expression, and characterization of a protein domain in the N-terminus of pregnancy-associated plasma protein-A distantly related to the family of laminin G-like modules[J]. Protein expression and purification 2006,48(2):261-273.
    [61]Deutzmann R, Hubep J, Schmetz KA, et al. Structural study of long arm fragments of laminin[J]. European Journal of Biochemistry 1988,177(1):35-45.
    [62]Stocker W, Grams F, Reinemer P, et al. The metzincins—Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a super family of zinc-peptidases[J]. Protein Science 1995, 4(5):823-840.
    [63]Butler GS, Tam EM, Overall CM. The Canonical Methionine 392 of Matrix Metalloproteinase 2 (Gelatinase A) Is Not Required for Catalytic Efficiency or Structural Integrity PROBING THE ROLE OF THE METHIONINE-TURN IN THE METZINCIN METALLOPROTEASE SUPERFAMILY[J]. Journal of Biological Chemistry 2004,279(15):15615-15620.
    [64]Overgaard MT, Haaning J, Boldt HB, et al. Expression of recombinant human pregnancy-associated plasma protein-A and identification of the proform of eosinophil major basic protein as its physiological inhibitor[J]. Journal of Biological Chemistry 2000,275(40):31128-31133.
    [65]Fowlkes JL. Insulinlike growth factor-binding protein proteolysis:an emerging paradigm in insulinlike growth factor physiology[J]. Trends in Endocrinology & Metabolism 1997,8(8):299-306.
    [66]Resch ZT, Simari RD, Conover CA. Targeted disruption of the pregnancy-associated plasma protein-A gene is associated with diminished smooth muscle cell response to insulin-like growth factor-I and resistance to neointimal hyperplasia after vascular injury[J]. Endocrinology 2006,147(12):5634-5640.
    [67]Bayes-Genis A, Conover CA, Schwartz RS. The Insulin-Like Growth Factor Axis[J]. Circ Res 2000,86(2):125-130.
    [68]Boldt HB, Overgaard MT, Laursen LS, et al. Mutational analysis of the proteolytic domain of pregnancy-associated plasma protein-A (PAPP-A): classification as a metzincin[J]. Biochemical Journal 2001,358(Pt 2):359-367.
    [69]Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes[J]. N Engl J Med 2001,345(14): 1022-1029. [70] Iversen KK, Teisner AS, Teisner B, et al. Pregnancy associated plasma protein A, a novel, quick, and sensitive marker in ST-elevation myocardial infarction[J]. Am J Cardiol 2008,101(10):1389-1394.
    [71]Khan DA, Sharif MS, Khan FA. Diagnostic performance of high-sensitivity troponin T, myeloperoxidase, and pregnancy-associated plasma protein A assays for triage of patients with acute myocardial infarction [J]. Korean J Lab Med 2011,31(3): 172-178.
    [72]Gururajan P, Gurumurthy P, Nayar P, et al. Pregnancy associated plasma protein-A (PAPP-A) as an early marker for the diagnosis of acute coronary syndrome[J]. Indian Heart J 2012,64(2):141-145.
    [73]Beaudeux JL, Burc L, Imbert-Bismut F, et al. Serum plasma pregnancy-associated protein A:a potential marker of echogenic carotid atherosclerotic plaques in asymptomatic hyperlipidemic subjects at high cardiovascular risk[J]. Arterioscler Thromb Vasc Biol 2003,23(1):e7-10.
    [74]Qin QP, Laitinen P, Majamaa-Voltti K, et al. Release patterns of pregnancy associated plasma protein A (PAPP-A) in patients with acute coronary syndromes[J]. Scand Cardiovasc J 2002,36(6):358-361.
    [75]Lund J, Qin QP, Ilva T, et al. Pregnancy-associated plasma protein A:a biomarker in acute ST-elevation myocardial infarction (STEMI)[J]. Ann Med 2006, 38(3):221-228.
    [76]Schoos M, Iversen K, Teisner A, et al. Release patterns of pregnancy-associated plasma protein A in patients with acute coronary syndromes assessed by an optimized monoclonal antibody assay[J]. Scand J Clin Lab Invest 2009,69(1):121-127.
    [77]Furenes EB, Arnesen H, Solheim S, et al. The profile of circulating metalloproteinases after PCI in patients with acute myocardial infarction or stable angina[J]. Thromb Res 2009,124(5):560-564.
    [78]Conover CA, Bale LK, Harrington SC, et al. Cytokine stimulation of pregnancy-associated plasma protein A expression in human coronary artery smooth muscle cells:inhibition by resveratrol[J]. American Journal of Physiology-Cell Physiology 2006,290(1):C183-C188.
    [79]Hamm CW, Goldmann BU, Heeschen C, et al. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I[J]. New England Journal of Medicine 1997,337(23):1648-1653.
    [80]Liu JL, Zhang H, Xie XJ, et al. Changes of pregnancy-associated plasma protein-A in patients with acute coronary syndrome[J]. Chin Med J (Engl) 2005, 118(21):1827-1829.
    [81]McCann CJ, Glover BM, Menown IB, et al. Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T[J]. Eur Heart J 2008, 29(23):2843-2850.
    [82]Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez M, et al. Circulating pregnancy-associated plasma protein A is not an early marker of acute myocardial infarction[J]. Clin Biochem 2005,38(2):180-182.
    [83]Bonaca MP, Scirica BM, Sabatine MS, et al. Prospective evaluation of pregnancy-associated plasma protein-a and outcomes in patients with acute coronary syndromes[J]. J Am Coll Cardiol 2012,60(4):332-338.
    [84]Heeschen C, Dimmeler S, Hamm CW, et al. Pregnancy-associated plasma protein-A levels in patients with acute coronary syndromes:comparison with markers of systemic inflammation, platelet activation, and myocardial necrosis[J]. J Am Coll Cardiol 2005,45(2):229-237.
    [85]Iversen KK, Teisner AS, Schoos M, et al. Pregnancy-associated plasma protein-A, a marker for outcome in patients suspected for acute coronary syndrome[J]. Clin Biochem 2010,43(10-11):851-857.
    [86]Laterza OF, Cameron SJ, Chappell D, et al. Evaluation of pregnancy-associated plasma protein A as a prognostic indicator in acute coronary syndrome patients[J]. Clin Chim Acta 2004,348(1-2):163-169.
    [87]Li XP, Zhou SH, Tang JJ, et al. Association between plasma pregnancy-associated plasma protein a and restenosis after percutaneous coronary angioplasty[J]. Circ J 2008,72(5):729-733.
    [88]Lund J, Qin QP, Ilva T, et al. Circulating pregnancy-associated plasma protein a predicts outcome in patients with acute coronary syndrome but no troponin Ⅰ elevation[J]. Circulation 2003,108(16):1924-1926.
    [89]Mei WY, Du ZM, Zhao Q, et al. Pregnancy-associated plasma protein predicts outcomes of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome[J]. Heart Lung 2011,40(3):e78-83.
    [90]Postadzhiyan AS, Velinov H, Velchev V, et al. Clinical value of pregnancy-associated plasma protein-A in patients with acute coronary syndromes[J]. EUR HEART J SUPP1 2010,12(suppl):F61.
    [91]Dosh K, Berger PB, Marso S, et al. Relationship between baseline inflammatory markers, antiplatelet therapy, and adverse cardiac events after percutaneous coronary intervention:an analysis from the clopidogrel for the reduction of events during observation trial[J]. Circ Cardiovasc Interv 2009,2(6):503-512.
    [92]Kavsak PA, Wang X, Henderson M, et al. PAPP-A as a marker of increased long-term risk in patients with chest pain[J]. Clin Biochem 2009,42(10-11): 1012-1018.
    [93]Lund J, Wittfooth S, Qin QP, et al. Free vs total pregnancy-associated plasma protein A (PAPP-A) as a predictor of 1-year outcome in patients presenting with non-ST-elevation acute coronary syndrome[J]. Clin Chem 2010,56(7):1158-1165.
    [94]McCann CJ, Glover BM, Menown IB, et al. Prognostic value of a multimarker approach for patients presenting to hospital with acute chest pain[J]. Am J Cardiol 2009,103(1):22-28.
    [95]Oemrawsingh RM, Lenderink T, Akkerhuis KM, et al. Multimarker risk model containing troponin-T, interleukin 10, myeloperoxidase and placental growth factor predicts long-term cardiovascular risk after non-ST-segment elevation acute coronary syndrome[J]. Heart 2011,97(13):1061-1066.
    [96]Schaub N, Reichlin T, Meune C, et al. Markers of plaque instability in the early diagnosis and risk stratification of acute myocardial infarction[J]. Clin Chem 2012, 58(1):246-256.
    [97]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics 1989,123(3):585-595.
    [98]Park S, Youn JC, Shin DJ, et al. Genetic polymorphism in the pregnancy-associated plasma protein-A associated with acute myocardial infarction[J]. Coron Artery Dis 2007,18(6):417-422.
    [99]钱志宏,何国平,蔡高军,等.PAPP-A基因IVS6+95多态性与不稳定型心绞痛的相关性[J].心脏杂志2010,6(22):905-908.
    [100]刘凤杰,何国平,钱志宏,等.急性心肌梗死患者PAPP-A基因IVS6+95多态性与血清PAPP-A水平的相关性[J].江苏大学学报(医学版)2011,1(21):50-54.
    [101]Boldt HB, Conover CA. Pregnancy-associated plasma protein-A (PAPP-A):a local regulator of IGF bioavailability through cleavage of IGFBPs[J]. Growth hormone & IGF research:official journal of the Growth Hormone Research Society and the International IGF Research Society 2007,17(1):10.
    [102]Cosin-Sales J, Christiansen M, Kaminski P, et al. Pregnancy-associated plasma protein A and its endogenous inhibitor, the proform of eosinophil major basic protein (proMBP), are related to complex stenosis morphology in patients with stable angina pectoris[J]. Circulation 2004,109(14):1724-1728.
    [103]Cosin-Sales J, Kaski JC, Christiansen M, et al. Relationship among pregnancy associated plasma protein-A levels, clinical characteristics, and coronary artery disease extent in patients with chronic stable angina pectoris[J]. Eur Heart J 2005, 26(20):2093-2098.
    [104]Maehara A, Mintz GS, Bui AB, et al. Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound[J]. Journal of the American College of Cardiology 2002,40(5):904-910.
    [105]Naghavi M, Falk E, Harvy S, et al. From vulnerable plaque to vulnerable patient-Part Ⅲ.In Asymptomatic Atherosclerosis 2010:517-535.
    [106]刘振良,刘铭,王恒大.妊娠相关蛋白A与急性冠状动脉综合征的关系[J].中国心血管病杂志2004,9(3):180-183.
    [107]Elesber AA, Conover CA, Denktas AE, et al. Prognostic value of circulating pregnancy-associated plasma protein levels in patients with chronic stable angina[J]. Eur Heart J 2006,27(14):1678-1684.
    [108]Consuegra-Sanchez L, Petrovic I, Cosin-Sales J, et al. Prognostic value of circulating pregnancy-associated plasma protein-A (PAPP-A) and proform of eosinophil major basic protein (pro-MBP) levels in patients with chronic stable angina pectoris[J]. Clin Chim Acta 2008,391(1-2):18-23.
    [109]Iversen KK, Teisner B, Winkel P, et al. Pregnancy associated plasma protein-A as a marker for myocardial infarction and death in patients with stable coronary artery disease:a prognostic study within the CLARICOR Trial[J]. Atherosclerosis 2011, 214(1):203-208.
    [110]Schulz O, Reinicke M, Kramer J, et al. Pregnancy-associated plasma protein A values in patients with stable cardiovascular disease:use of a new monoclonal antibody-based assay[J]. Clin Chim Acta 2011,412(11-12):880-886.
    [111]Heider P, Pfaffle N, Pelisek J, et al. Is serum pregnancy-associated plasma protein A really a potential marker of atherosclerotic carotid plaque stability?[J]. Eur J Vasc Endovasc Surg 2010,39(6):668-675.
    [112]Fialova L, Pileckova N, Bauer J, et al. Pregnancy-associated plasma protein-A in patients with cerebrovascular diseases--a pilot study[J]. Prague Med Rep 2006, 107(1):37-45.
    [113]Mueller T, Dieplinger B, Poelz W, et al. Increased pregnancy-associated plasma protein-A as a marker for peripheral atherosclerosis:results from the Linz Peripheral Arterial Disease Study[J]. Clin Chem 2006,52(6):1096-1103.
    [114]Mueller T, Dieplinger B, Forstner T, et al. Pregnancy-associated plasma protein-A as a marker for long-term mortality in patients with peripheral atherosclerosis:inconclusive findings from the Linz Peripheral Arterial Disease (LIPAD) study[J]. Clin Chem Lab Med 2010,48(4):537-542.
    [115]Aso Y, Okumura K, Wakabayashi S, et al. Elevated pregnancy-associated plasma protein-a in sera from type 2 diabetic patients with hypercholesterolemia: associations with carotid atherosclerosis and toe-brachial index[J]. J Clin Endocrinol Metab 2004,89(11):5713-5717.
    [116]Anantharaman R, Heatley M, West on C. Hyperglycaemia in acute coronary syndromes:risk-marker or therapeutic target?[J]. Heart 2009,95(9):697-703.
    [117]Stulc T, Malbohan I, Malik J, et al. Increased levels of pregnancy-associated plasma protein-A in patients with hypercholesterolemia:the effect of atorvastatin treatment[J]. Am Heart J 2003,146(6):E21.
    [118]Ridker PM, Danielson E, Fonseca F, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein[J]. New England Journal of Medicine 2008,359(21):2195.
    [119]Miedema MD, Conover CA, MacDonald H, et al. Pregnancy-associated plasma protein-A elevation in patients with acute coronary syndrome and subsequent atorvastatin therapy[J]. Am J Cardiol 2008,101 (1):35-39.
    [120]Ostadal P, Alan D, Vejvoda J, et al. Fluvastatin in the first-line therapy of acute coronary syndrome:results of the multicenter, randomized, double-blind, placebo-controlled trial (the FACS-trial)[J]. Trials 2010,61 (11):1745-1762.
    [121]Khosravi J, Diamandi A, Krishna RG, et al. Pregnancy associated plasma protein-A:ultrasensitive immunoassay and determination in coronary heart disease[J]. Clin Biochem 2002,35(7):531-538.
    [122]Terkelsen CJ, Oxvig C, Norgaard BL, et al. Temporal course of pregnancy-associated plasma protein-A in angioplasty-treated ST-elevation myocardial infarction patients and potential significance of concomitant heparin administration[J]. Am J Cardiol 2009,103(1):29-35.
    [123]Hajek P, Macek M, Sr., Lashkevich A, et al. Influence of concomitant heparin administration on pregnancy-associated plasma protein-A levels in acute coronary syndrome with ST segment elevation[J]. Arch Med Sci 2011,7(6):977-983.
    [124]Weyer K, Overgaard MT, Laursen LS, et al. Cell surface adhesion of pregnancy-associated plasma protein-A is mediated by four clusters of basic residues located in its third and fourth CCP module[J]. Eur J Biochem 2004,271(8):1525-1535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700