用户名: 密码: 验证码:
miR-1下调Dll-1-Hes-1/Notch信号调控骨髓间充质干细胞向心肌样细胞分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分C57BL/c小鼠骨髓间充质干细胞的分离培养和Notch信号检测
     目的:(1)体外分离培养C57BL/c小鼠骨髓间充质干细胞(BMSCs):(2)检测BMSCs上表达的Notch信号。
     方法:用密度梯度离心法和贴壁培养法分离培养BMSCs并扩增传代;流式细胞仪检测获得的第3代细胞表面标志抗原;定向诱导细胞成骨成脂分化及向内皮细胞分化;RT-PCR法和Western Blot法检测BMSCs上表达的Notch信号。
     结果:(1)原代培养的细胞24小时内可见呈梭形或星形的贴壁细胞,在2周内可扩增至106个数量级;第3代后的细胞呈较均一的梭状、成纤维状;传代后的细胞生长活跃,增殖能力强。(2)流式细胞检测显示细胞表达MSCs特异性表面抗原CD29和CD90,而内皮细胞表面抗原CD31和造血干细胞表面抗原CD34、CD45呈阴性。(3)成功诱导细胞分化为成骨细胞、脂肪细胞和内皮细胞。(4)RT-PCR法和Western Blot法检测到细胞上表达Notch通路中的Notch-1、Notch-2、 Notch-4、D11-1、D11-4、Jag-1、Hes-1和Hey-1分子。
     结论:用密度梯度离心法和贴壁培养法相结合可获得纯度较高的BMSCs,传代后的细胞生长活跃,增殖能力强,具有多向分化潜能;BMSCs上表达Notch信号中的Notch-1、 Notch-2、Notch-4、D11-1、 D11-4、Jag-1、Hes-1和Hey-1分子。
     第二部分miR-1下调Dll-1—Hes-1/Notch信号调控BMSCs向心肌样细胞分化
     目的:(1)检测转染miR-1的BMSCs第1、7、14天Notch信号、Nkx2.5、GATA-4.cTnT和CX43表达情况。(2)检测沉默Dll-1的BMSCs第1、7、14天Notch下游效应分子、Nkx2.5、GATA-4、cTnT和CX43变化。(3)检测沉默Hes-1的BMSCs第1、7、14天Nkx2.5、GATA-4、 cTnT和CX43表达情况。
     方法:(1)用pAJ-U6-shRNA-CMV-Puro/GFP载体,构建过表达miR-1慢病毒载体转染BMSCs,RT-qPCR法和Western Blot法检测过表达miR-1的BMSCs第1、7、14天Notch信号、Nkx2.5、GATA-4、 cTnT和CX43表达情况。(2)构建D11-1-shRNA慢病毒干扰载体转染BMSCs以沉默D11-1基因,RT-qPCR法和Western Blot法检测定向沉默Dll-1的BMSCs第1、7、14天Notch下游效应分子、Nkx2.5、GATA-4、 cTnT和CX43表达情况。(3)构建Hes-1-shRNA的慢病毒干扰载体转染BMSCs以沉默Hes-1基因,RT-qPCR法和Western Blot法检测定向沉默Hes-1的BMSCs第1、7、14天Nkx2.5、GATA-4、cTnT和CX43的表达情况。
     结果:(1)转染miR-1的BMSCs在第7、14天Dll-1和Hes-1下调;转染miR-1的BMSCs在第7天有Nkx2.5和GATA-4表达,第14天时表达量下降;cTnT和CX43在转染miR-1的BMSCs第7天开始表达,第14天表达量增加。(2)定向沉默Dll-1的BMSCs在第7、14天Hes-1下调,Nkx2.5、GATA-4、cTnT和CX43的表达情况与转染miR-1后的BMSCs效果相似。(3)定向沉默Hes-1的BMSCs第7、14天Nkx2.5、GATA-4、cTnT和CX43的表达情况与转染miR-1或定向沉默Dll-1的BMSCs相似。
     结论:miR-1可通过下调Dll-1,继而使下游效应分子Hes-1表达下降,调控BMSCs向心肌样细胞分化。
     第三部分验证miR-1靶向基因Dll-1
     目的:验证Dll-1是否miR-1的直接调节靶基因。
     方法:PCR扩增野生型DIM3'-UTR和突变型mutD11-13'-UTR基因序列,分别与双酶切PsiCHECKTM-2载体连接后转化DH5α感受态细胞,质粒酶切鉴定阳性克隆并测序;miR-1与质粒共转染293T细胞后收集裂解细胞液,用Dual-Luciferase Reporter Assay System检测双荧光素酶活性判断Dll-1是否miR-1的靶基因。
     结果:在转染克隆有Dll-13'-UTR质粒的实验组中,检测荧光素酶活性显示miR-1组与空白组比较P<0.01;miR-1组与阴性对照组比较P<0.01,表明miR-1能与Dll-1的3'-UTR结合,从而抑制萤光素酶的活性;在转染克隆有mutD11-13'-UTR质粒的实验组中,miR-1组与空白组和阴性对照组比较差异均无统计学意义,表明miR-1不能与mutD11-13'-UTR结合而抑制萤光素酶的活性。
     结论:Dll-1是miR-1的靶基因。
     第四部分移植转染miR-1的BMSCs对小鼠心肌梗死区修复作用
     目的:探讨转染miR-1的BMSCs对小鼠心肌梗死区的修复作用。
     方法:结扎左前降支建立小鼠心肌梗死模型(假手术组10只),术前超声检测心功能。80只成功建立心肌梗死的小鼠随机分为PBS组、BMSCs组、转染空白载体的BMSCs组(BMSCsnull组)和转染miR-1的BMSCs组(BMSCsmiR-1组),每组20只,心梗后第7天分别以25ulPBS溶液或含相应细胞的溶液(1×106个细胞/m1),开胸直视下分6点注射入梗死区周边(5点)及中央区。移植4周后超声检测左心室功能,取出小鼠心脏标本并测定梗死面积及梗死区室壁厚度,免疫组织化学方法检测梗死区CX43、cTnT、α-SMA、Desmin和Vimentin的表达情况;采用激光共聚焦显微镜观察移植细胞存活及分化情况;Western-blot法检测梗死区Notch信号。
     结果:(1)在细胞移植4周后,超声检测显示各细胞移植组心功能明显优于PBS组(P<0.05或P<0.01),而移植BMSCsmiR-1组的心功能较移植BMSCs组或BMSCsnull组改善明显(均为P<0.05);BMSCs组与BMSCs null比较差异无统计学意义(P>0.05)。(2)各细胞移植组与PBS组比较,梗死面积减小(P<0.05或P<0.01),而移植BMSCsmiR-1组的梗死面积较移植BMSCs组或BMSCsnull组缩小(均为P<0.05),而BMSCs组与BMSCs null组比较差异无统计学意义(P>0.05)。(3)移植细胞组梗死区室壁厚度均较PBS组升高(P<0.05或P<0.01),而BMSCsmiR-1组较BMSCs组或BMSCsnull组室壁厚度增加(均为P<0.05),而BMSCsnull组梗死区室壁厚度与BMSCs组比较差异无统计学意义。(4)免疫组化和Western-blot示各细胞移植组与PBS组比较,梗死区CX43、cTnT、α-SMA、Desmin和Vimentin表达水平升高(P<0.05或P<0.01),其中BMSCs miR-1组均较其他细胞移植组表达增加(P<0.05);而Western-blot示BMSCs miR-1组梗死区D11-1、Hes-1较其他组表达下降(P<0.05或P<0.01)。(5)激光共聚焦显示移植BMSCs miR-1组在梗死区的细胞存活率及向心肌细胞分化率较BMSCsnull组升高(P<0.05)。
     结论:(1)移植转染miR-1的BMSCs至梗死区可提高移植的BMSCs存活率及向心肌细胞分化率,减少心肌梗死面积,增加心室壁厚度,改善心功能;(2)体内实验也证实了miR-1能下调梗死区Dll-1、 Hes-1信号,进一步支持了体外细胞实验结论。
Part1:Isolation, cultivation and detection of Notch signaling molecules in bone marrow-derived mesenchymal stem cells of C57BL/c mice
     Objective:To isolate and cultivate of the bone marrow-derived mesenchymal stem cells (BMSCs) in C57BL/c mice in vitro. Moreover, the expressing molecules of Notch signaling pathway were examined in BMSCs.
     Methods:Bone marrow mononuclear cells of C57BL/c mice were isolated with density gradient centrifugation and adherence screening method. Cells were purified and expanded through passaging in time. Then test the surface antigens of the third passage cells with flow cytometry method to confirm if they were BMSCs. These cells were further identified by the potentials in differentiating into osteoblasts, adipocytes and endothelial. Reverse transcription (RT)-PCR and Western Blot were used to detect the molecules of Notch signaling in the stem cells.
     Results:(1) A small amount of short spindle-shaped, star-shaped cells were adherent within24hours after isolation. Cells could be amplified to the density of106within2weeks. The third passage cells appearance of fibroblast spindle-shaped and grew fast.(2) Flow cytometry showed the third passage cells strongly express mesenchymal stem cells surface antigen CD29and CD90, but hardly expression of CD31, CD34and CD45, the specific antigen of endothelial or haematopoietic were dectected on these stem cells.(3)The third passage cells could differentiate into osteoblasts, adipocytes, and endothelial cells.(4) RT-PCR and Western Blot detected the expression of the Notch signaling molecules in the cells, such as Notch-1, Notch-2, Notch-4,D11-1, D11-4, Jag-1, Hes-1and Hey-1.
     Conclusion:The density gradient centrifugation and adherent culture can obtain high purified BMSCs of mice. The passaged cells grow fast and proliferate well, and posse multipotent properties. Interestingly, the stem cells expressed Notch signaling molecules, such as Notch-1, Notch-2, Notch-4, Dll-1, D11-4, to Jag-1, of Hes-1and Hey-1.
     Part2:miR-1promotes the differentiation of BMSCs into cardiomyocytes-like cells via down-regulation of D11-1-Hes-1/Notch pathway
     Objective:(1) To investigate the expression of Notch signaling, Nkx2.5, GATA-4, cTnT and CX43in miR-1-transfected BMSCs on the day of1,7and14.(2) To examine the expression of downstream target molecular of Notch signaling, Nkx2.5, GATA-4, cTnT and CX43in BMSCs with Dll-1-silenced on the day of1,7and14.(3) To identify the expression of Nkx2.5, GATA-4, cTnT and CX43in BMSCs with Hes-1-silenced by day1,7and14.
     Methods:(1) Using pAJ-U6-shRNA-CMV-Puro/GFP recombinant lentiviral vector encoding miR-1transfected BMSCs, then investigated the expression of Notch signaling, Nkx2.5, GATA-4, cTnT and CX43by RT-qPCR and Western Blot assay on days1,7and14.(2) BMSCs were infected with lentiviral constructs encoding short hairpin RNAs (shRNAs) to silence D11-1gene, then identify the expression of downstream target molecular of Notch signaling, Nkx2.5, GATA-4, cTnT and CX43by RT-qPCR and Western Blot assay by day1,7and14.(3) Recombinant lentivirus-Hes-1-shRNA vector to transfect BMSCs to silence Hes-1gene, then the expression of Nkx2.5、GATA-4, cTnT and CX43were examined by RT-qPCR and Western Blot assay on days1,7and14.
     Results:(1) The expression of Dll-1, Hes-1was down-regulated significantly in BMSCs over-expressing miR-1by day7and14. Nkx2.5and GATA-4were dectected on day7, and the expression decreased by day14. Strikingly, the expression of cTnT and CX43were dectected on day7, and increased by day14.(2)The expression of Hes-1is significantly decreased in BMSCs infected with Dll-1-shRNA on days7and14. And the trends of expression of Nkx2.5, GATA-4, cTnT and CX43were similar to that of miR-1-transfected cells.(3) Knockdown of the Notch downstream target gene-Hes-1, also leads to the similar effects on cell lineage decisions as knockdown of D11-1.
     Conclusion:miR-1promotes the differentiation of BMSCs into cardiomyocyte-like cells via down-regulation of D11-1, which further influence Hes-1, the downstream molecules of Notch.
     Part3:Investigation of miR-1targeting the3'-UTR of D11-1
     Objective:To comfirm if D11-1is the direct target gene of miR-1.
     Methods:Wild type and mutant D11-13'-UTR gene sequence, which were amplified by PCR, were connected to double endonuclease digestion PsiCHECKTM-2vector respectively and transformed into competent cells. Then examined positive clones by plasmid restriction enzyme digestion and sequenced. After miR-1and plasmid had been cotransfected into293T cell, collected the cell cracking cytosol and examined whether Dll-1was the direct target gene of miR-1through Dual-Luciferase Reporter Assay System.
     Results:MiR-1significantly inhibits the activity of luciferase compared with blank group (P<0.01) in the plasmid groups encoding Dll-13'-UTR. The same result was dectected in miR-1group compared to the negative control group (P<0.01). This indicated that miR-1can combine with the3'-UTR of D11-1, thereby inhibiting the activity of luciferase. In the experimental groups of plasmid encoding mutDll-13'-UTR, there was no statistical difference between miR-1group and blank group or negative control group, indicating that miR-1can not target the mutDll-13'-UTR to inhibit the activity of luciferase.
     Conclusion:Dll-1is the target gene of miR-1.
     Part4:Effects of BMSCs transfected with miR-1on repairment of infarct zone in acute myocardial infarction model of mouse
     Objective:To investigate the effects of transplantation with BMSCs over-expressing miR-1on myocardial repairment in acute myocardial infarction model of mouse.
     Methods:After evaluating the cardiac function by echocardiography, acute myocardial infarction was induced in mice by permanent ligation of the left anterior descending coronary artery. A total of80mice were randomly divided into4groups:(1) PBS group, the animals were transplanted with PBS (n=20);(2) BMSCs group, the animals were transplanted with BMSCs (without gene or Lentiviral vector, n=20);(3) BMSCsnull group, the animals were transplanted with BMSCs transfected with lentiviral vectors encoding eGFP gene (n=20);(4) BMSCs miR-1group:the animals were transplanted with BMSCs over-expression of miR-1(n=20). All the animals received exogenous transplantation of cells or PBS by day7after myocardial infarction (concentration of1×106cells/100ul, amount of25ul, injected at multiple points).4weeks after transplantation, echocardiography was performed to evaluate the cardiac function, subsequently, the cardiac sample was obtained and both infarction area and regional wall thickness were measured. Immuno-histochemistry was applied to evaluate the positive expression of CX43, cTnT, a-SMA, Desmin and Vimentin. Also, laser scanning co-focal microscope was used to observe the survival and differentiation of transplanted BMSCs. The expression of molecules of Notch signal in infarction area was detected by Western-blot.
     Results:(1)After transplantation for4weeks, a greater improvement in cardiac function was obtained in the cells implantation groups than that in the PBS group (P<0.05or P<0.01). The improvement in cardiac function was greater in BMSCsmiR-1group than in BMSCs or BMSCsnull group (all P<0.05), but there was no significant difference between BMSCs group and BMSCsnull group (P>0.05).(2)Compared with PBS group, the infarct size significantly decreased in the cells implantation groups (P<0.05or P<0.01). The decrease of infarct size was greater in BMSCsmiR-1group than in BMSCs or BMSCsnull group (all P<0.05). But there was no significant difference in infarct size between BMSCs group and BMSCsnull group (P>0.05).(3)Compared with the PBS group, the thickness of the infarct-zone was significantly thicker in these three cells implantation groups (P<0.05or P<0.01). Of note, the increase in thickness of the infarct-zone in the BMSCsmiR-1group was more significant than that in BMSCs or BMSCsnull group (all P<0.05). But there was no significant difference in thickness of the infarct-zone between BMSCs group and BMSCsnull group (P>0.05).(4)The immuno-histochemistry and western-blot results showed that the expression of CX43, cTnT, a-SMA, Desmin and Vimentin were all up-regulated in the infracted area in cells implantation groups than that of the PBS group (P<0.05). Of note, these markers are higher in BMSCsmiR-1group than in other cell transplantation groups (all P<0.05), whereas western-blot showed D11-1and Hes-1levels were decreased more in the infracted area (P<0.05or P<0.01).(5)The survival number of transplanted cells and the differentiation rates into myofibroblast was significantly higher in BMSCmiR-1group than in the BMSCsnull groups (P <0.05).
     Conclusion:Our findings suggest that (1) BMSCs modified with miR-1could remarkably promote the survival and differentiation of the stem cells into myofibroblast in the infracted area, decreased infarct size, thicker infarct area and improving the cardiac function;(2) Strinkingly, miR-1could attenuate the the expression of D11-1and Hes-1of the infracted area in vivo, which strongly support our previous experiment.
引文
[1]Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue [J]. Stem Cells, 2006,24(5):1294-1301.
    [2]Phinney DG, Prockop DJ. Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair--current views [J]. Stem Cells,2007,25(11):2896-2902.
    [3]Ertl G, Frantz S. Healing after myocardial infarction [J]. Cardiovasc Res,2005, 66(1):22-32.
    [4]Pitzalis M, Massari F, Guida P, et al. Shortened head-up tilting test guided by systolic pressure reductions in neurocardiogenic syncope [J]. Circulation,2002, 105(2):146-148.
    [5]Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function [J]. Stem Cells,2007,25(8):2118-2127.
    [6]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium [J]. Nature,2001,410(6829):701-705.
    [7]Schrepfer S, Deuse T, Reichenspurner H, et al. Stem cell transplantation for the ischemic myocardium:answering the basic questions of bone marrow stromal cell migration, homing, and survival [J]. J Heart Lung Transplant,2008,27:S321.
    [8]Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation [J]. Nat Med,2004,10(5):494-501.
    [9]Grinnemo KH, Mansson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel [J]. Ann Med,2006,38(2):144-153.
    [10]Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines [J]. Circulation,2001,104(9):1046-1052.
    [11]Kajstura J, Rota M, Whang B, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion [J]. Circ Res,2005, 96(1):127-137.
    [12]Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart [J]. Circulation,2002,105(1):93-98.
    [13]Tsuji H, Miyoshi S, Ikegami Y, et al. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes [J]. Circ Res,2010,106(10):1613-1623.
    [14]Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity [J]. Proc Natl Acad Sci U S A,2009,106(33): 14022-14027.
    [15]Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction [J]. Nat Med,2006,12(4): 459-465.
    [16]Deuse T, Peter C, Fedak PW, et al. Hepatocyte Growth Factor or Vascular Endothelial Growth Factor Gene Transfer Maximizes Mesenchymal Stem Cell-Based Myocardial Salvage After Acute Myocardial Infarction [J]. Circulation,2009,120(suppl 1):S247-254.
    [17]Bartunek J, Croissant JD, Wijns W, et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium [J]. Am J Physiol Heart Circ Physiol,2007, 292(2):1095-1104.
    [18]Suarez Y, Fernandez-Hemando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells [J]. Circ Res, 2007,100(8):1164-1173.
    [19]Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization [J]. EMBO J,2002,21(17):4663-4670.
    [20]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ[J]. EMBO J,2004,23(20):4051-4060.
    [21]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell, 2004,116(2):281-297.
    [22]Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing [J]. FEBSLett,2005,79(26):5830-5840.
    [23]Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology [J]. Nature,2011,469(7330):336-342.
    [24]Shan ZX, Lin QX, Deng CY, et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes [J]. FEBS Lett, 2010,584(16):3592-3600.
    [25]Chen J, Yin H, Jiang Y, et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation [J]. Arterioscler Thromb Vasc Biol,2011, 31(2):368-375.
    [26]Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes [J]. J Cell Sci,2007(Pt17),120:3045-3052.
    [27]Tang Y, Zheng J, Sun Y, et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2 [J]. Int Heart J,2009,50(3):377-387.
    [28]Patrick DM, Montgomery RL, Qi X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice [J]. J Clin Invest,2010,120(11): 3912-3916.
    [29]Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature,2008, 456(7224):980-984.
    [30]Dong S, Cheng Y, Yang J, Li J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction [J]. J Biol Chem,2009,284(43):29514-29525.
    [31]Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice [J]. FEBS Lett,2008,582(30):4137-4142.
    [32]Qian L, Van Laake LW, Huang Y, et al. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes [J]. J Exp Med,2011,208(3):549-560.
    [33]Hu S, Huang M, Li Z, et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease [J]. Circulation,2010,122(11 Suppl):S124-131.
    [34]Wang X, Zhang X, Ren XP, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusi on-induced cardiac injury [J]. Circulation,2010,122(13):1308-1318.
    [35]Wang JX, Jiao JQ, Li Q, et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1 [J]. Nat Med,2011,17(1): 71-78.
    [36]Cordes KR, Srivastava D. MicroRNA regulation of cardiovascular development [J]. Circ Res,2009,104(6):724-732.
    [37]Zhao Y, Semal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J]. Nature,2005,436(7048): 214-220.
    [38]Sluijter JP, van Mil A, van Vliet P, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells [J]. Arterioscler Thromb Vasc Biol,2010,30(4):859-868.
    [39]Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction and cell cycle in mice lacking miRNA-1-2 [J]. Cell,2007,129(2): 303-317.
    [40]Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells[J]. Cell Stem Cell,2008,2(3):219-229.
    [41]Chen JF, Mandel EM, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J]. Nat Genet, 2006,38(2):228-233.
    [42]Kim HK, Lee YS, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation [J]. J Cell Biol,2006,174:677-687.
    [43]Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development [J]. DNA Cell Biol,2007,26(4):219-225.
    [44]Rones MS, McLaughlin KA, Raffin M, et al. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis [J]. Development,2000, 127(17):3865-3876.
    [45]Han Z, Bodmer R. Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the Drosophila heart, with or without cell division [J]. Development,2003,130(13):3039-3051.
    [46]Koyanagi M, Bushoven P, Iwasaki M, et al. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells [J]. Circ Res, 2007,101(11):1139-1145.
    [47]Li H, Yu B, Zhang Y, et al. Jaggedl protein enhances the differentiation of mesenchymal stem cells into cardiomyoeytes [J]. Biochem Biophys Res Commun, 2006,341(2):320-325.
    [48]Miazga CM, McLaughlin KA. Coordinating the timing of cardiac precursor development during gastrulation:a new role for Notch signaling [J]. Dev Biol, 2009,333(2):285-29.
    [49]Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling [J]. Proc Nail Acad Sci USA,2005, 102(52):18986-18991.
    [1]Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells [J]. Cell Tissue Kinet,1970,3(4):393-403.
    [2]Phinney DG, Prockop DJ. Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair-current views [J]. Stem Cells,2007,25(11):2896-902.
    [3]Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue [J]. Stem Cells, 2006,24(5):1294-301.
    [4]Li CD, Zhang WY, Li HL, et al. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation [J]. Cell Res,2005,15(7):539-547.
    [5]Jeong JO, Han JW, Kim JM, et al. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy [J]. Circ Res,2011, 108(11):1340-1347.
    [6]Chacko SM, Khan M, Kuppusamy ML, et al. Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells [J]. Am JPhysiol Heart Circ Physiol,2009,296(5):1263-1273.
    [7]Sanchez L, Gutierrez-Aranda I, Ligero G, et al. Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease [J]. Stem Cells,2011,29(2):251-62.
    [8]Zanini C, Bruno S, Mandili G, et al. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype [J]. PLoS One,2011,6(12):e28175.
    [9]Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling:cell fate control and signal integration in development [J]. Science,1999,284(5415):770-776.
    [10]Niessen K, Karsan A. Notch signaling in the developing cardiovascular system [J]. Am J Physiol Cell Physiol,2007,293(1):C1-11.
    [11]Niessen K, Karsan A. Notch signaling in cardiac development [J]. Cire Res,2008, 102(10):1169-1181.
    [12]de la Pompa JL. Notch signaling in cardiac development and disease [J]. Pediatr Cardiol,2009,30(5):643-650.
    [13]Nemir M, Croquelois A, Pedrazzini T, et al. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling [J]. Circ Res,2006, 98(12):1471-1478.
    [14]Rones MS, McLaughlin KA, Raffin M, et al. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis [J]. Development,2000, 127(17):3865-3876.
    [15]Han Z, Bodmer R. Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the Drosophila heart, with or without cell division [J]. Development,2003,130(13):3039-3051.
    [16]Chau MD, Tuft R, Fogarty K, et al. Notch signaling plays a key role in cardiac cell differentiation [J].Mech Dev,2006,123(8):626-640.
    [17]Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells [J]. Cell Stem Cell,2008,2(3):219-229.
    [18]Chen VC, Stull R, Joo D, et al. Notch signaling respecifies the hemangioblast to a cardiac fate [J]. Nat Biotechnol,2008,26(10):1169-1178.
    [19]Li H, Yu B, Zhang Y, et al. Jaggedl protein enhances the differentiation of mesenchymal stem cells into cardiomyoeytes [J]. Biochem Biophys Res Commun, 2006,341(2):320-325.
    [1]Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro [J]. J Clin Invest,1999,103(5):697-705.
    [2]Kajstura J, Rota M, Whang B, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion [J]. Circ Res,2005, 96(1):27-37.
    [3]Toma C, Pittenger MF, Cahill KS, et al. Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart [J]. Circulation,2002,105(1):93-98.
    [4]Tsuji H, Miyoshi S, Ikegami Y, et al. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes [J]. Circ Res,2010,106(10):1613-1623.
    [5]Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity [J]. Proc Natl Acad Sci U S A,2009,106(33): 14022-14027.
    [6]Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction [J]. Nat Med,2006,12(4): 459-65.
    [7]Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation [J]. J Thome Cardiovasc Surg,2002,123(6):1132-1140.
    [8]Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation inpostinfarcted rat myocardium:short-and long-term effects [J]. Circulation,2005,112(2):214-223.
    [9]Deuse T, Peter C, Fedak PW, et al. Hepatocyte Growth Factor or Vascular Endothelial Growth Factor Gene Transfer Maximizes Mesenchymal Stem Cell-Based Myocardial Salvage After Acute Myocardial Infarction [J]. Circulation,2009,120(suppl 1):S247-S254.
    [10]Bartunek J, Croissant JD, Wijns W, et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium [J]. Am J Physiol Heart Circ Physiol,2007, 292(2):H1095-H1104.
    [11Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J]. Nature,2005,436(7048): 214-220.
    [12]Kwon C, Han Z, Olson EN, el al. MicroRNAl influences cardiac differentiation in Drosophila and regulates Notch signaling [J]. Proc Nail Acad Sci USA,2005, 102(52):18986-18991.
    [13]Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction and cell cycle in mice lacking miRNA-1-2 [J]. Cell,2007,129(2): 303-317.
    [14]Sluijter JP, van Mil A, van Vliet P, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells [J]. Arterioscler Thromb Vase Biol,2010,30(4):859-868.
    [15]Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells [J]. Cell Stem Cell,2008,2(3):219-229.
    [16]Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs [J]. Nature,2005, 433(7027):769-173.
    [17]Nakajima N, Takahashi T, Kitamura R, et al. MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation [J]. Biochem Biophys Res Commun,2006,350(4):1006-1012.
    [18]Nanjundappa A, Raza JA, Dieter RS, et al. Cell transplantation for treatment of left-ventricular dysfunction due to ischemic heart failure:from bench to bedside [J]. Expert Rev Cardiovasc Ther,2007,5(1):125-131.
    [19]Dai W, Wold LE, Dow JS, et al. Thickening of the infarcted wall by collagen injection improves left ventricular function in rats:a novel approach to preserve cardiac function after myocardial infarction [J]. J Am Coll Cardiol,2005,46(4): 714-719.
    [20]Labovsky V, Hofer EL, Feldman L, et al. Cardiomyogenic differentiation of human bone marrow mesenchymal ceils:Role of cardiac extract from neonatal rat cardiomyocytes [J]. Differentiation,2010,79(2):93-101.
    [21]Tokcaer-Keskin Z, Akar AR, Ayaloglu-Butun F, et al. Timing of induction of cardiomyocyte differentiation for in vitro cultured mesenchymal stem cells:a perspective for emergencies [J]. Can JPhysioi Pharmacol,2009,87(2):143-50.
    [22]Karamboulas C, Swedani A, Ward C, et al. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage [J]. J Cell Sci,2006,119(Pt 20): 4305-4314.
    [23]Yamada Y, Yokoyama S, Wang XD, et al. Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes [J]. Stem Cells,2007,25(5):1326-1333.
    [24]Li H, Yu B, Zhang Y, et al. Jaggedl protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes [J]. Biochem Biophys Res Commun, 2006,341(2):320-325.
    [25]Wang T, Xu Z, Jiang w, et al. Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell [J]. Int J Cardiol, 2006,109(1):74-81.
    [26]Bai Y, Soda Y, Izawa K, et al. Effective transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector [J]. Gene Ther,2003,10(17):1446-1457.
    [27]Ruitenberg MJ, Plant GW, Christensen CL, et al. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord [J]. Gene Ther,2002,9(2):135-146.
    [28]Mah C, Byrne BJ, Floote TR. Virus-based gene delivery systems [J]. Clin Pharmacokinet,2002,41(12):901-911.
    [29]Hendriks WT, Ruitenberg MJ, Blits B, et al. Viral vector-mediated gene transfer of neurotrophins to promote regeneration of the injured spinal cord [J]. Prog Brain Res,2004,146:451-476.
    [30]Tenenbaum L, Lehtonen E, Monahan PE. Evaluation of risks related to the use of adeno-associated virus-based vectors [J]. Curr Gene Ther,2003,3(6):545-565.
    [31]Poeschla EM, Wong-Staal F, Looney D J, et al. Efficient transduction of non dividing hum an cells by feline immunodeficiency virus lentiviral vectors [J]. Nat Med,1998,4(3):354-357.
    [32]Bai Y, Soda Y, lzawa K, et al. Effctive transduction and stable transgene expression in human blood cells by a third-generation lentiviral vector [J]. Gene Ther,2003,10 (17):1446-1457.
    [33]Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [J]. Science,1996, 272(5259):263-267.
    [34]Yoshimitsu M, Sato T, Tao K, et al. Bioluminescent imaging of a marking transgene and correction of Fabry mice by neonatal injection of recombinant lentiviral vectors [J]. Proc Natl Acad Sci USA,2004,101(48):16909-16914.
    [35]Chan J, Donoghue K, FuenieJ, et al. Human fetal mesenehymal stem cells as vehieles for gene delivery [J]. Stem Cells,2005,23(1):93-102.
    [36]Van Damme A, Thorrez L, Ma L, et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesene hymal cells [J]. Stem Cells, 2006,24(4):896-907.
    [37]Cordes KR, Srivastava D. MicroRNA regulation of cardiovascular development [J]. Circ Res,2009,104(6):724-732.
    [38]Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J]. Nat Genet, 2006,38(2):228-233.
    [39]Mina J, Parker JR, Sharon W, et al. Nkx2.5 activity is essential for cardiomyogenesis [J]. JBiol Chem,2001,276(45):42252-42258.
    [40]Molkentin JD, Lin Q, Duncan SA, el al. Requirement ofthe transcription factor GATA4 for heart tube formation and ventral morphogenesis [J]. Genes Dev,1997, 11(8):1061-1072.
    [1]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell, 2004,116(2):281-297.
    [2]Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing [J]. FEBSLett,2005,79(26):5830-5840.
    [3]Xiao L, Rao J N, Zou T, et al. Polyamines regulate the stability of activating transcription factor-2 mRNA through RNA-binding protein HuR in intestinal epithelial ceils [J]. Mol Biol Cell,2007,18(11):4579-4590.
    [4]Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila [J]. Genome Biol,2003,5(1):R1.
    [5]Xu X. Same computational analysis, different miRNA target predictions [J]. Nat Methods,2007,4(3):191.
    [6]Beitzinger M, Peters L, Zhu J Y, et al. Identification of human microRNA targets from isolated argonaute protein complexes [J]. RNA Biol,2007,4(2):76-84.
    [7]Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs [J]. Nature,2005, 433(7027):769-773.
    [8]Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification [J]. RNA,2007,13(8):1198-1204.
    [9]Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes [J]. Nucleic Acids Res,2008,36(16):5391-5404.
    [10]Selbach M, Schwanh usser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs [J]. Nature,2008,455 (7209):58-63.
    [11Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output [J]. Nature,2008,455(7209):64-71.
    [12]Welch C, Chen Y, Stallings R L. Micro RNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells [J]. Oncogene,2007, 26(34):5017-5022.
    [1]Langeland S, D'Hooge J, Wouters PF, et al. Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle [J]. Circulation,2005, 112(14):2157-2162.
    [2]Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy [J]. Circulation,2005,112(8):1128-1135.
    [3]Zhang Y, Takagawa J, Sievers RE, et al. Validation of the wall motion score and myocardial performance indexes as novel techniques to assess cardiac function in mice after myocardial infarction [J]. Am J Physiol Heart Circ Physiol,2007, 292(2):H1187-H1192.
    [4]Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function [J]. Nat Med,2001, 7(4):430-436.
    [5]Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy [J]. Lancet, 2003,361(9356):491-492.
    [6]Schuleri KH, Amado LC, Boyle AJ, et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells [J]. Am J Physiol Heart Circ Physiol, 2008,294(5):H2002-H2011
    [7]Abarbanell AM, Coffey AC, Fehrenbacher JW, et al. Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart [J]. Ann Thorac Surg,2009,88(3):1036-1043.
    [8]Challen GA, Little MH. A side order of stem cells:the SP phenotype [J]. Stem Cells,2006,24(1):3-12.
    [9]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium [J]. Nature,2001,410(6829):701-705.
    [10]Halkos ME, Zhao ZQ, Kerendi F, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction [J]. Basic Res Cardiol,2008,103(6): 525-536.
    [11Lin GS, Lu JJ, Jiang XJ, et al. Autologous transplantation of bone marrow mononuclear cells improved heart function after myocardial infarction [J]. Acta Pharmacol Sin,2004,25(7):876-886.
    [12]Osterziel KJ. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction:final 1 year results of the REPAIR-AMI trial [J]. Eur Heart J,2007,28(5):638.
    [13]Bhindi R, Witting PK, McMahon AC, et al. Rat models of myocardial infarction. Pathogenetic insights and clinical relevance [J]. Thromb Haemost,2006,96(5): 602-610.
    [14]Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial [J]. Lancet,2006,367(9505):113-121.
    [15]Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction [J]. NEngl J Med,2006,355(12): 1210-1221.
    [16]Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans [J]. Circulation,2002,106(15):1913-1918.
    [17]Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI) [J]. Heart, 2006,92(12):1764-1767.
    [18]18Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) [J]. Circulation,2002,106(24):3009-3017.
    [19]Ma J, Ge J, Zhang S, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction [J]. Basic Res Cardiol, 2005,100(3):217-223.
    [20]Sluijter JP, van Mil A, van Vliet P, et al. MicroRNA-1 and-499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells [J]. Arterioscler Thromb Vasc Biol,2010,30(4):859-868.
    [21]Nakajima N, Takahashi T, Kitamura R, et al. MicroRNA-1 facili-tates skeletalmyogenic differentiation without affecting osteoblastic and adipogenic differentiation [J]. Biochem BiophysRes Commun,2006,350 (4):1006-1012.
    [22]Kwon C, Han Z, Olson E N, et al. MicroRNAl influences cardiac differentiation in Drosophila and regulates Notch signaling [J]. Proc Natl Acad Sci USA,2005, 102(52):18986-18991.
    [23]Ivey KN, Muth A, Arnold J, et al. Micro RNA regulation of cell lineages in mouse and human embryonic stem cells [J]. Cell Stem Cell,2008,2(3):219-229.
    [1]Suarez Y, Fernandez-Hemando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells [J]. Circ Res, 2007,100(8):1164-1173.
    [2]Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation:stepwise processing and subcellular localization [J]. EMBO J,2002,21(17):4663-4670.
    [3]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ [J]. EMBO J,2004,23(20):4051-4060.
    [4]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell, 2004,116(2):281-297.
    [5]Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing [J]. FEBS Lett,2005,79(26):5830-5840.
    [6]Xiao L, Rao JN, Zou T, et al. Polyamines regulate the stability of activating transcription factor-2 mRNA through RNA-binding protein HuR in intestinal epithelial ceils [J]. Mol Biol Cell,2007,18(11):4579-4590.
    [7]Cordes KR, Srivastava D. MicroRNA regulation of cardiovascular development [J]. Circ Res,2009,104(6):724-732.
    [8]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J]. Nature,2005,436(7048): 214-220.
    [9]Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction and cell cycle in mice lacking miRNA-1-2 [J]. Cell,2007,129(2): 303-317.
    [10]Sluijter JP, van Mil A, van Vliet P, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells [J]. Arterioscler Thromb Vasc Biol,2010,30(4):859-868.
    [11]Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells [J]. Cell Stem Cell,2008,2(3):219-229.
    [12]Chen JF, Mandel EM, Thomson JM, el al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J]. Nat Genet, 2006,38(2):228-233.
    [13]Kim HK, Lee YS, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation [J]. J Cell Biol,2006,174:677-687.
    [14]Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development [J]. DNA Cell Biol,2007,26(4):219-225.
    [15]Sun Q, Zhang Y, Yang G, et al. Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation [J]. Nucleic Acids Res,2008,36(8): 2690-2699.
    [16]Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis [J]. Cardiovasc Res,2008,79(4):581-588.
    [17]Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis [J]. Trends Pharmacol Sci,2008,29(1):12-15.
    [18]Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity [J]. Dev Cell,2008,15(2):272-284.
    [19]Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis [J]. Dev Cell,2008, 15(2):261-271.
    [20]Wang XH, Qian RZ, Zhang W, et al. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats [J]. Clin Exp Pharmacol Physiol,2009,36(2): 181-188.
    [21]Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis [J]. Circ Res,2007,101(1). 59-68.
    [22]Artavanis Tsakonas S, Rand MD, Lake RJ. Notch signaling:cell fate control and signal integration in development [J]. Science,1999,284:770-776.
    [23]Niessen K, Karsan A. Notch signaling in the developing cardiovascular system [J]. Am J Physiol Cell Physiol,2007,293(1):C1-11.
    [24]Niessen K, Karsan A. Notch signaling in cardiac development [J]. Circ Res,2008, 102(10):1169-1181.
    [25]de la Pompa JL. Notch signaling in cardiac development and disease [J]. Pediatr Cardiol,2009,30(5):643-650.
    [26]Vrljicak P, Chang AC, Morozova O, et al. Genomic analysis distinguishes phases of early development of the mouse atrio-ventricular canal [J]. Physiol Genomics, 2010,40(3):150-157.
    [27]Chau MD, Tuft R, Fogarty K, et al. Notch signaling plays a key role in cardiac cell differentiation [J]. Mech Dev,2006,123(8):626-640.
    [28]Koyanagi M, Bushoven P, Iwasaki M, et al. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells [J]. Circ Res, 2007,101(11):1139-1145.
    [29]Nemir M, Croquelois A,Pedrazzini T,et al.Induction of cardiogenesis in embryonic stem cells via downregulation of Notchl signaling [J]. Circ Res,2006, 98(12):1471-1478.
    [30]Chen VC, Stull R, Joo D, et al. Notch signaling respecifies the hemangioblast to a cardiac fate [J]. Nat Biotechnol,2008,26(10):1169-1178.
    [31]Li H, Yu B, Zhang Y, et al. Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyoeytes [J]. Biochem Biophys Res Commun, 2006,341(2):320-325.
    [32]Miazga CM, McLaughlin KA. Coordinating the timing of cardiac precursor development during gastrulation:a new role for Notch signaling [J]. Dev Biol, 2009,333(2):285-29
    [33]Kume T. Novel insights into the differential functions of Notch ligands in vascular formation [J]. J Angiogenes Res,2009,1:8.
    [34]Roca C, Adams RH. Regulation of vascular morphogenesis by Notch signaling [J]. Genes Dev,2007,21(20):2511-2524.
    [35]Caiado F, Real C, Carvalho T, et al. Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential [J]. PLoS One,2008,3(11):e3752.
    [36]Dufraine J, Funahashi Y, Kitajewski J. Notch signaling regulates tumor angiogenesis by diverse mechanisms [J]. Oncogene,2008,27(38):5132-5137.
    [37]Limbourg A, Ploom M, Elligsen D, et al. Notch ligand Delta like 1 is essential for postnatal arteriogenesis [J]. Circ Res,2007,100(3):363-371.
    [38]Holderfield MT, Hughes CC. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis [J]. Cire Res,2008,102(6):637-652.
    [39]Suchting S, Eichmann A. Jagged gives endothelial tip cells an edge [J]. Cell,2009, 137(6):988-990.
    [40]Hellstrom M, Phng LK, Hofmann JJ, et al. D114 signalling through Notchl regulates formation of tip cells during angiogenesis [J]. Nature,2007,445(7129): 776-780.
    [41]Leslie JD, Ariza-McNaughton L, Bermange AL, et al. Endothelial signaling by the Notch ligand Delta like 4 restricts angiogenesis [J]. Development,2007, 134(5):839-844.
    [42]Jain R, Rentschler S, Epstein JA. Notch and cardiac outflow tract development [J]. Ann NYAcad Sci,2010,1188:184-190.
    [43]Lai EC, Tam B, Rubin GM. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs [J]. Genes Dev,2005, 19(9):1067.
    [44]Kwon C, Han Z, Olson EN, el al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling [J]. Proc Nail Acad Sci USA,2005, 102(52):18986-18991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700