用户名: 密码: 验证码:
SREBP/DDAH/ADMA途径在高胰岛素血症所致血管内皮损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章高胰岛素血症对冠心病患者血浆非对称性二甲基精氨酸水平的影响
     目的:2型糖尿病(T2DM)疾病早期或使用胰岛素治疗期间均有高胰岛素血症,高胰岛素血症促进动脉粥样硬化,是冠心病的独立危险因素。血管内皮功能障碍是动脉粥样硬化的始动环节,内皮来源的NO减少是其损伤的特征性表现,非对称性二甲基精氨酸(ADMA)是内源性NOS抑制剂,减少NO合成,为心血管死亡预测因子。本章研究拟探讨高胰岛素血症对人体血浆ADMA的影响,为高胰岛素血症损伤内皮提供依据。
     方法:来自2009年9月~2010年5月中南大学湘雅医院心内科冠心病患者及体检中心健康人群,共89人,分为三组:(1)正常对照组(Con):30例;(2)冠心病组(CAD):30例;(3)冠心病合并高胰岛血症组(CAD+Hins):29例。测身高、体重,计算体重指数(BMI);测腰围、臀围,计算腰/臀(WHR)测血压。采集过夜空腹10h静脉血5mL,全自动生化分析仪测定:肝功能、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)低密度脂蛋白胆固醇(LDL-C)、空腹血糖(FPG)、高敏C反应蛋白(hs-CRP)、尿酸(UA)、尿素氮(BUN)、血肌酐(Cr); AXSYM全自动标记免疫化学发光仪检测空腹胰岛素(Fins)、餐后2h胰岛素(2h-PIns)。
     结果:1. CAD+Hins组、CAD组、Con组三组间性别、年龄、血压、肝功能无显著性差异,存在可比性。2. CAD+Hins组BMI, FPG, Fins,2h-Pins, HOMA-IR均显著高于CAD组和Con组(P<0.05),CAD组上述指标显著高于Con组(P<0.05)。3.各组间TC无统计学差异,CAD+Hins组和CAD组的TG、HDL-C以及UA. Cr, BUN均显著高于Con组(P<0.05);CAD组LDL-C显著高于Con组(P<0.05); CAD+Hins组UA显著高于CAD组(P<0.05)。4. CAD+Hins组ADMA, hs-CRP水平显著高于CAD组和Con组(P<0.05);CAD组ADMA显著高于Con组(P<0.05)。5.未发现血浆ADMA与其他生化指标的相关性。
     结论:1.高胰岛素血症加重已患冠心病患者的糖、脂代谢与尿酸代谢障碍。2.高胰岛素血症引起冠心病患者血浆ADMA水平进一步升高,是内皮功能损伤加重的表现;3.合并高胰岛素血症的冠心病患者血浆hs-CRP水平升高,提示高胰岛素血症与慢性炎症有关。
     第二章高胰岛素血症大鼠血浆ADMA/NO和主动脉SREBP、DDAH变化及与内膜损伤关系
     目的:第一章临床研究发现合并高胰岛素血症的冠心病患者血浆ADMA水平显著高于单纯冠心病患者与健康对照,提示高浓度胰岛素对内皮的损伤作用。二甲基精氨酸二甲胺水解酶(DDAH)是水解ADMA的关键酶,调节体内ADMA浓度。DDAH启动子区含有能与固醇调节元件结合蛋白(SREBPs)相结合的胆固醇调节组件(SRE),提示SREBPs可结合SRE调节DDAH的表达;研究表明:高胰岛素有促进SREBPs表达的作用。探讨高胰岛素血症SD大鼠主动脉SREBPs、DDAH的表达有助于进一步阐述高胰岛素损伤内皮的具体机制。本章研究拟建立高胰岛素血症SD大鼠动物模型,直接阐述高胰岛素对主动脉内膜损伤作用并探讨其可能机制。
     方法:采用持续皮下注射胰岛素方法建立高胰岛素血症SD大鼠模型(Hins)(N=7),并设立对照组SD大鼠(Con)(N=7)。大鼠处死前测体重,尾静脉采血测空腹血糖(FBG);心脏穿刺法留取空腹血标本,全自动生化分析仪测总胆固醇(TC),甘油三酯(TG),高密度脂蛋白胆固醇(HDL-C)及低密度脂蛋白胆固醇(LDL-C),高敏C反应蛋白(hs-CRP); ELISA法血浆空腹胰岛素(Fins),计算胰岛素抵抗指数(HOMA-IR);比色法测血浆NO、高效液相色谱(HPLC)法测血浆ADMA浓度。大鼠处死后立刻开胸,分离升主动脉组织,快速存入液氮,4%甲醛固定。提取大鼠主动脉组织蛋白,Western-Blotting法检测主动脉SREBP-1、SREBP-2, DDAH-1、DDAH-2蛋白表达;Trizol法提取主动脉组织mRNA, RT-PCR法检测上述基因表达。
     结果:1.Hins组大鼠血浆空腹血糖、胰岛素、HOMA-IR与甘油三酯(TG)均显著高于Con组大鼠(P<0.05),高胰岛素血症SD大鼠模型成功。2. Hins组大鼠体重显著性高于Con组大鼠(P<0.05)。3.两组大鼠胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)无统计学差异。Hins组大鼠ADMA、hs-CRP显著高于Con组(P<0.05),NO显著低于Con组(P<0.05)。4.与Con组大鼠相比,Hins组大鼠主动脉组织SREBP-1、SREBP-2蛋白与基因表达显著升高(P<0.05),DDAH-1、DDAH-2蛋白与基因表达显著下降(P<0.05)。5.主动脉形态学改变:Con组大鼠主动脉内膜光滑,细胞排列整齐,层次清晰;Hins组大鼠主动脉内膜不规整,细胞排列紊乱。
     结论:1.持续皮下注射胰岛素可制作高胰岛素血症SD大鼠模型,为研究高胰岛素对机体的影响提供了可行的动物模型;2.高胰岛素血症SD大鼠血浆ADMA浓度升高、N0浓度降低,提示内皮功能受损;3.高胰岛素血症SD大鼠主动脉内膜形态发生改变,为内皮受损表现;4.高胰岛素血症SD大鼠主动脉组织SREBP-1、SREBP-2基因与蛋白表达增加,DDAH1、DDAH2基因与蛋白表达降低,可能是高胰岛素损伤血管内皮新机制。
     第三章高胰岛素对脐静脉内皮细胞DDAH1、DDAH2基因和蛋白表达的影响及其机制研究
     目的:高胰岛素血症是心血管事件的重要危险因素,我们前期临床试验和动物实验发现:高胰岛素抑制DDAH基因与蛋白表达,促进SREBPs基因与蛋白表达。在此基础上,本章通过细胞实验,进一步证实高胰岛素对内皮细胞DDAH1和DDAH2基因与蛋白表达的影响,并利用siRNA转染技术,抑制SREBP-1和SREBP-2基因表达,以探讨高胰岛素引起内皮细胞损伤的具体机制。
     方法:1、采用不同浓度的胰岛素处理人脐静脉内皮细胞(Human Umbilical Vein Endothelial Cells, HUVEC),并分为24小时和48小时处理组,测定葡萄糖摄取率,分析不同浓度胰岛素、作用不同时间对细胞摄取葡萄糖能力的影响。2、顺利完成siRNA转染预实验后,将HUVEC分为两大组,分别用于siRNA转染SREBP-1和SREBP-2实验,siRNA转染SREBP-1实验具体分组如下:(1)A1组:正常培养HUVEC48h;(2) B1组:培基中6×10-8mol/L胰岛素培养HUVEC细胞48h;(3)C1组:HUVEC转染siRNA-NC,6R10-8mol/L胰岛素培养48h;(4)D1组:HUVEC转染siRNA-SREBP1,正常培养48h;(5)E1组:HUVEC转染siRNA-SREBP1,6×10-8mol/L胰岛素培养48h。siRNA转染SREBP-2实验具体分组如下:(6)A2组:正常培养HUVEC48h;(7) B2组:培基中6×10-8mol/L胰岛素培养HUVEC细胞48h;(8)C2组:HUVEC转染siRNA-NC,6×10-8mol/L胰岛素培养48h;(9)D2组:HUVEC转染siRNA-SREBP2,正常培养48h;(10)E2组:HUVEC转染siRNA-SREBP2,6×10-8mol/L胰岛素培养48h。细胞经上述处理完毕后,提取各组mRNA和蛋白,Real-Time PCR检钡SREBP-1、SREBP-2、 DDAH1和DDAH2的基因表达,Western-Blot检测上述蛋白表达。
     结果:1.低浓度胰岛素促HUVEC摄取葡萄糖,随着胰岛素浓度的升高,HUVEC的葡萄糖摄取率逐渐增高,当胰岛素浓度超过一定范围后,随着胰岛素浓度的升高,HUVEC的葡萄糖摄取率反而随之下降。2.6×10-8mol/L胰岛素孵育HUVEC48h显著诱导HUVEC中的SREBP-1和SREBP-2的基因和蛋白表达(P<0.05),同时显著诱导转染si-RNA-NC组的SREBP-1和SREBP-2的基因和蛋白表达(P<0.05)。3.6×10-8mol/L胰岛素孵育HUVEC48h显著抑制HUVEC的DDAH1、2基因与蛋白表达(P<0.05),同时显著抑制转染si-RNA-NC组的SREBP1、2基因与蛋白的表达(P<0.05)。4.单纯转染siRNA-SREBP-1和siRNA-SREBP-2组不能上调DDAH1、2基因和蛋白表达,但转染了siRNA-SREBP-1、2的高胰岛素处理组DDAH1、2基因与蛋白的下调作用被显著削弱(P<0.05)。
     结论:1.高浓度胰岛素抑制人脐静脉内皮细胞摄取葡萄糖,可能与损伤有关;2.高浓度胰岛素促进人脐静脉内皮细胞SREBP-1和SREBP-2的基因和蛋白表达,抑制其DDAH1和DDAH2的基因和蛋白表达;3. siRNA沉默人脐静脉内皮细胞SREBP-1和SREBP-2基因,削弱了高胰岛素对DDAH1和DDAH2的基因和蛋白表达的抑制;4. SREBP/DDAH/ADMA途径参与高浓度胰岛素损伤人脐静脉内皮细胞。
Chapter1The effect of hyperinsulinemia on plasma asymmetric dimethylarginine in patients with coronary heart disease
     Objectives:Hyperinsulinemia occurs in the early stage of type2diabetes mellitus (T2DM) and the period using insulin as therapy. Hyperinsulinemia, promoting atherosclerosis, is an independent risk factor for coronary heart disease. Since endothelial dysfunction is the initiating factor of atherosclerosis, endothelial-derived NO reduction in endothelial represents endothelial damage. Endogenous NOS inhibitor, asymmetric dimethylarginine (ADMA), decreases NO synthesis, as a predictor of cardiovascular death. The present study aims to investigate the impact of hyperinsulinemia on human plasma ADMA, and want to provide the basis for the damage of ADMA on endothelium by hyperinsulinemia.
     Methods:89people from September2009to May2010in Department of Cardiology, and Medical Examination Center, Xiangya Hospital, Central South University were enrolled in the present study. Cases in3different groups are as:(1) Normal Control group (Con):N=30;(2) Coronary Artery Disease group (CAD): N=30;(3) Coronary Artery Disease combined with Hyperinsulinemia group (CAD+Hins):N=29. The liver function, plasma fasting blood glucose (FBG), lipids (TC, TG, LDL-C, HDL-C), renal function (UA, BUN, Cr), high-sensitivity C-reactive protein (hs-CRP) were all checked after collecting5ml after10h overnight fasting blood samples, by automatic biochemical analyzer. Fasting insulin (Fins) and2h postprandial insulin (2h-Pins) were measured by fully automatic markers of immune chemi-luminescence analyzer. Meanwhile, the age, gender, height, weight and the waistline were recorded, the blood pressure was checked, and the body mass index (BMI) was calculated for all the subjects.
     Results:1. Gender, age, blood pressure, liver function have no significant difference between CAD+Hins group, CAD group, and Con group.2. The BMI of the CAD+Hins group, and FPG, Fins,2h-Pins, HOMA-1R were significantly higher than the CAD group and Con group (P<0.05). And indicators above in CAD group was significantly higher than Con group (P<0.05).3. TC has no significant difference between the groups. TG, HDL-C, and UA, Cr, BUN were significantly higher in CAD+Hins, and CAD group than that of Con group (P<0.05). LDL-C of CAD group was significantly higher than Con group (P<0.05), and UA of CAD+Hins group was significantly higher than CAD group (P<0.05).4. ADMA, hs-CRP levels in the CAD+Hins group were significantly higher than both of CAD group and Con group (P<0.05); ADMA in CAD group was significantly higher than in Con group (P<0.05).5. No correlation between plasma ADMA and other biochemical markers.
     Conclusions:1. Hyperinsulinemia enhanced the metabolic disorders on sugar, lipid, and uric acid metabolism in patients with coronary artery disease.2. Hyperinsulinemia further increased the plasma ADMA levels in patients with coronary artery disease, which means the aggravation of endothelial dysfunction.3. Plasma hs-CRP levels was higher in coronary artery disease patients combined with hyperinsulinemia, suggesting that hyperinsulinemia has relationship with chronic inflammatory response.
     Chapter2Changes of plasma ADMA/NO and aortic SREBPs, DDAH in hyperinsulinemia rats, and their relationship with aortic intimal injury
     Objectives:Clinical study in Chapter1has found that plasma asymmetric dimethylarginin (ADMA) level was significantly higher in coronary artery disease patients accompany by hyperinsulinemia than simple coronary artery disease and healthy controls, suggesting that high insulin concentration might injure endothelial function. Dimethylarginine dimethylaminohydrolate (DDAH), a key enzyme regulating ADMA concentrations, contains sterol regulatory element (SRE) on it's promoter region, which allows sterol regulatory element binding proteins (SREBPs) combine with it and regulate DDAH expression. Since high insulin concentration promotes SREBPs expression, investigation of hyperinsulinemia effect on expression of DDAH through SREBPs regulation pathway might help us clarify the mechanism of high insulin concentration on endothelial injure. This study is to set up hyperinsulinemia SD rat model firstly, and then clarify directly the injury and the possible mechanism on aortic intima by hyperinsulinemia.
     Methods:Establish the insulin-treated animals and control group: hyperinsulinemia SD rat model group (Hins):animals underwent twice daily sc injection of insulin (N=7), and control SD rats group (Con)(N=7). Measurement of body weight before killing the rats, tail vein blood for checking fasting blood glucose (FBG), and taking fasting blood samples by cardiac puncture. The plasma lipids (TC, TG, LDL-C, HDL-C), high-sensitivity C-reactive protein (hs-CRP) were all checked by automatic biochemical analyzer. Fasting insulin (Fins) was measured by ELISA method, and then calculated the HOMA-IR. Colorimetry method for plasma NO concentration, and HPLC method for ADMA concentration were all done. Thoracotomy immediately after the rats were sacrificed, and ascending aorta organizations was isolated and stored in liquid nitrogen rapidly,4%formaldehyde fixed meanwhile. Test the proteins expression of SREBP-1, SREBP-2, DDAH1, DDAH2by Western-Blotting and the corresponding gene expression by RT-PCR.
     Results:1. The FBG in Hins group, and the insulin, HOMA-IR, and triglyceride (TG) were significantly higher than Con rats (P<0.05), which suggests the successful hyperinsulinemia SD rat model.2. The body weight in Hins group was significantly higher than Con group (P<0.05).3. There is no significant difference in TC, LDL-C, and HDL-C between two groups. The ADMA and hs-CRP levels were both significantly higher than Con group (P<0.05), while the NO concentration was significantly lower than Con group (P<0.05).4. Compared with Con rats, SREBP-1and SREBP-2protein and gene expression in Hins rats aortic tissue were significantly increased, while DDAH1, DDAH2results contrasted with the results of SREBPs (P<0.05).5. Aortic morphological changes:aortic intimal looks smooth and clarity, and the cells arranged in neat rows in Con group rat. While the aortic intima looks irregular and the cells looks disorder in the Hins group rats.
     Conclusions:1. Hyperinsulinemia SD rat model can be created by continuous subcutaneous insulin injection, which provides a viable animal model for studying the effect of hyperinsulinemia.2. Plasma ADMA concentration increased, while NO concentration decreased in hyperinsulinemia SD rat, which indicates endothelial dysfunction.3. The aortic intima morphological changes in hyperinsulinemia SD rat due to endothelial injury.4. Proteins and genes expressions of SREBP-I and2in aortic tissue of hyperinsulinemia SD rat increased, while DDAH1and2decreased. It might be the new explanation of the mechanism on the vascular endothelial injury by hyperinsulinemia.
     Chapter3The affects and mechanisms of high insulin on the expressions of DDAH1, DDAH2gene and protein in HUVEC
     Objective:Hyperinsulinemia is an important risk factor of cardiology incidents. We have found that high insulin suppresses the expressions of DDAH gene and protein from former investigations in vivo. Based on the former studies, in this chapter, we move to a forward step to investigate the affect of high concentration insulin on DDAH1and DDAH2expression in human umbilical vein endothelial cells (HUVEC). Also, we will apply the siRNA transfection technology to silent SREBP-1and SREBP-2expression, and then clarify the mechanism of endothelial dysfunction by high hyperinsulinemia.
     Methods:1. Using different concentrations of insulin as treatments on HUVEC. The HUVEC were divided into two groups as treated with24-hour and48-hour, the glucose uptake rate was measured, and the effect of insulin concentration, different treat time on the cellular glucose uptake ability were analyzed.2. Human umbilical vein endothelial cells were divided into two groups after successful completion of the siRNA transfection preliminary experiments:one is for siRNA-SREBP1and the other is for siRNASREBP2. The details of the groups are described as:Experiment for siRNA-SREBP-1:(1) Al:normal culture HUVEC for48h;(2) B1:HUVEC cultured in6×10-8mol/L insulin for48h;(3) Cl:siRNA-NC+Insulin group:HUVEC transfected with siRNA-NC, then cultured in6×10-8mol/L insulin for48h;(4) D1: siRNA-SREBP-1group:HUVEC transfected with siRNA-SREBP-1, cultured in normal condition for48h;(5) El:siRNA-SREBP-1+Insulin group:HUVEC transfected with siRNA-SREBP-1, cultured in6×10-8mol/L insulin for48h. And the experiment for siRNA-SREBP-2:(6) A2:normal culture HUVEC for48h;(7) B2: HUVEC cultured in6×10-8mol/L insulin for48h;(8) C2:siRNA-NC+Insulin group: HUVEC transfected with siRNA-NC, then cultured in6×10-8mol/L insulin for48h;(9) D2:siRNA-SREBP-2group:HUVEC transfected with siRNA-SREBP-2, cultured in normal condition for48h;(10) E2:siRNA-SREBP-2+Insulin group: HUVEC transfected with siRNA-SREBP-2, then cultured in6×0-8mol/L insulin for48h. The mRNA and protein of SREBP-1, SREBP-2, DDAH1and DDAH2of every group were extracted for detection of gene expression with using Real-Time PCR technology, and the protein expression of SREBP-1, SREBP-2, DDAH1and DDAH2were detected by Western-Blot.
     Results:1. Low concentration insulin improved the glucose uptake rate of HUVEC, and the glucose uptake rate was increased gradually with the increasing of insulin concentration. But when insulin concentration is over one point, the glucose uptake rate was declined instead.2.6×10-8mol/L insulin, with48h treatment significantly induced the expression of SREBP-1and SREBP-2genes and protein in HUVEC (P<0.05) and the group without siRNA transfection (P<0.05).3.6×10-8mol/L insulin, with48h significantly inhibit the expression of DDAH1and DDAH2gene and protein in HUVEC (P<0.05), as well as the group without siRNA transfection (P<0.05).4. Transfected with siRNA-SREBP-1and siRNA-SREBP-2 alone can not raise the expression of DDAH1and DDAH2genes and proteins. But the suppression on DDAH1and DDAH2was significantly reduced in the groups with transfection of siRNA-SREBP-1and siRNA-SREBP-2(P<0.05).
     Conclusions:1. High insulin concentration induces dysfunction on HUVEC, which related with injury;2. High insulin concentration induces protein and gene expression of SREBP-1and SREBP-2, while suppresses DDAH1and DDAH2;3. Silent the expression of SREBP-1and SREBP-2with siRNA reduced the suppression of high insulin concentration on DDAH1and DDAH2expression of gene and protein.4. SREBP/DDAH/ADMA pathway participates the damage effect of high insulin on HUVEC.
引文
[1]Cleeman JI. Executive summary of the third report of the national cholesterol edeeation program(NCEP)expert panel on determination,evaluation and treatment of high blood cholesterol in adults(ATP-Ⅲ)[J JAMA.2001;285(19):2486-2497.
    [2]胡大一,潘长玉.中国心脏调查组.中国住院冠心病患者糖代谢异常研究.中华内分泌代谢杂志.2006;22(1):7-10.
    [3]Jia EZ, Yang ZJ, Yuan B, et al. Relationship between true fasting plasma insulin level and angiographic characteristics of coronary athero-sclerosis. Clin Cardiol.2006;29(1):25-30.
    [4]Karabulut A, Iltumur K, Toprak N, et al. Insulin response to oral glucose loading and coronary artery disease in nondiabetics. Int Heart J. 2005;46(5):761-770.
    [5]Muis MJ, Bots ML, Bilo HJ, et al. High cumulative insulin exposure:a risk factor of atherosclerosis in type 1 diabetes? Atherosclerosis.2005;181(1):185-192.
    [6]Rewers M, Zaccaro D, D'Agostino R, et al. Insulin sensitivity, insulinemia, and coronary artery disease:the Insulin Resistance Atherosclerosis Study. Diabetes Care.2004;27(3):781-787.
    [7]PiPinkney JH, Stehouwer CD, Coppack SW. et al. Endothelial dysfunction: cause of the insulin resistance syndrome. Diabetes.1997;46(Suppl 2):S9-13.
    [8]Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature.1980;288 (5789):373-376.
    [9]Murray-Rust J, Leiper J, McAlister M, et al. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat Struct Biol.2001;8(8):679-83.
    [10]Xiao HB, Yang ZC, Jia SJ, et al. Effect of asymmetric dimethylarginine on atherogenesis and erythrocyte deformability in apolipoprotein E deficient mice. Life Sci.2007;81(1):1-7.
    [11]Yang ZC, Xia K, Wang L. et al. Asymmetric dimethylarginine reduced erythrocyte deformability in streptozotocin-induceddiabetic rats. Microvasc Res. 2007;73(2):131-6. Epub 2006 Nov 13.
    [12]Achan V, Broadhead M, Malaki M, et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol. 2003;23(8):1455-9.
    [13]Perticone F, Sciacqua A, Maio R, et al. Asymmetric dimethylarginine,1-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol. 2005;46(3):518-523.
    [14]Skoro-Sajer N, Mittermayer F, Panzenboeck A, et al. Asymmetric dimethylarginine is increased in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med.2007; 176(11):1154-60.
    [15]Li D, Xia K, Li NS Reduction of asymmetric dimethylarginine involved in the cardioprotective effect of losartan in spontaneously hypertensive rats. Can J Physiol Pharmacol.2007;85(8):783-9.
    [16]Vladimirova-Kitova L, Deneva T, Angelova E, et al. Relationship of asymmetric dimethylarginine with flow-mediated dilatation in subjects with newly detected severe hypercholesterolemia. Clin Physiol Funct Imaging.2008;28(6):417-425.
    [17]Stuhlinger MC, Conci E, Haubner BJ, et al. Asymmetric dimethyl 1-arginine (ADMA) is a critical regulator of myocardial reperfusion injury. Cardiovasc Res. 2007;75(2):417-425.
    [18]Duckelmann C, Mittermayer F, Haider DG, et al. Asymmetric dimethylarginine enhances cardiovascular risk prediction in patients with chronic heart failure. Arterioscler Thromb Vasc Biol.2007;27(9):2037-2042.
    [19]Stuhlinger MC, Oka RK, Graf EE, et al. Endothelial dysfunction induced by hyperhomocyst(e)inemia:role of asymmetric dimethylarginine. Circulation. 2003;108(8):933-8.
    [20]Boger RH, Maas R, Schulze F, et al. Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality-an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res.2009; 60(6):481-487.
    [21]Stuhlinger MC, Abbasi F, Chu JW, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 2002;287(11):1420-6.
    [22]Sydow K, Mondon CE, Cooke JP. Insulin resistance:potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc Med.2005;10(Suppl 1):S35-43.
    [23]Sydow K, Mondon CE, Schrader J, et al. Dimethylarginine dimethyla- minohydrolase overexpression enhances insulin sensitivity. Arterioscler Thromb Vasc Biol.2008;28(4):692-7.
    [24]World Health Organization. Obesity:preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii,1-253.
    [25]Burchfiel CM,Sharp DS,Curb JD. et al. Hyperinsulinemia and cardiovascular disease in eldedy men:the Honolulu HeartPmgram.Arterioscler Thromb Vasc Biol. 1998;18(3):450-457.
    [26]Shanik MH,Xu Y,sklla J,et al.Insulin resistance and hyperiosulinemia:is hyperinsulinemia tile cart or the horse? Diabetes Care,2008;31(Suppl 2):s262-268.
    [27]DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009.2010;53(7):1270-87.
    [28]Kim SH, Reaven GM. Insulin resistance and hyperinsulinemia:you can't have one without the other. Diabetes Care.2008;31(7):1433-1438.
    [29]DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique:a method for quantifying insulin secretion and resistance. Am J Physiol.1979;237(3):E214-223.
    [30]De Marco M, de Simone G, Izzo R, et al. Classes of antihypertensive medications and blood pressure control in relation to metabolic risk factors. J Hypertensions. 2012;30(1)188-193.
    [31]Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1:diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med.1999; 15 (7): 539-53.
    [32]NCEP Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel Ⅲ). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel Ⅲ) final report. Circulation.2002; 106(25):3143-421.
    [33]中华医学会糖尿病学分会代谢综合征研究协作组.中华医学会糖尿病学分会关于代谢综合征的建议.中华糖尿病杂志.2004;12(3):156-161.
    [34]Stepien M, Rosniak-Bak K, Paradowski M, et al. Waist circumference, ghrelin and selected adipose tissue-derived adipokines as predictors of insulin resistance in obese patients:preliminary results. Med Sci Monit.2011;17(11):PR13-18.
    [35]Pimentel GD, Moreto F, Takahashi MM, et al. Sagital abdominal diameter, but not waist circumference is strongly associated with glycemia, triacilglycerols and HDL-C levels in overweight adults. Nutr Hosp.2011;26(5):1125-9.
    [36]冯琼,周智广,唐炜立,杨晓琳,龙欣.3种代谢综合征工作定义在男性健康体检者中的比较.2005;30(2):130-134.
    [37]Shao J, Yu L, Shen X, et al. Waist-to-height ratio, an optimal predictor for obesity and metabolic syndrome in Chinese adults. J Nutr Health Aging.2010; 14 (9): 782-5.
    [38]Kelley DE, Thaete FL, Troost F, et al. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab.2000;278 (5):E941-8.
    [39]Dankner R, Chetrit A, Shanik MH, et al. Basal-state hyperinsulinemia in healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up:a preliminary report. Diabetes Care.2009;32(8):14646-66.
    [40]Ko GT, Chan JC, Chow CC, et al. Effects of obesity on the conversion fromnormal glucose tolerance to diabetes in Hong Kong. Chinese Obes Res. 2004; 12(6):889-895.
    [41]Bonora E, Formentini G, Calcaterra F, et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study. Diabetes Care. 2002;25(7):1135-41.
    [42]Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia.1985;28(7):412-419.
    [43]Bonora E, Targger G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degree of glucose tolerance and insulin sensitivity. Diabetes Care.2000;23(1):57-63.
    [44]Emoto M, Nishizawa Y, Maekawa K, et al. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulphonylureas. Diabetes Care.1999;22(5):818-822.
    [45]Robins SJ, Lyass A, Zachariah JP, et al. Insulin resistance and the relationship of a dyslipidemia to coronary heart disease:the Framingham Heart Study. Arterioscler Thromb Vasc Biol.2011;31 (5):1208-14.
    [46]Taskinen MR. Type 2 diabetes as a lipid disorder. Curr Mol Med.2005;5(3): 297-308.
    [47]Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis:the role of oxidized phospholipids and HDL. J Lipid Res.2004; 45(6):993-1007.
    [48]Navab M, Hama SY, Ananthramaiah GM, Reddy ST, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein:steps 2 and 3. J Lipid Res.2000;41(9):1495-508.
    [49]Navab M, Reddy ST, Van Lenten BJ, et al. The role of dysfunctional HDL in atherosclerosis. J Lipid Res.2009;50(Suppl):S145-9.
    [50]Hara S, Tsuji H, Ohmoto Y, et al. High serum uric acid level and low urine pH as predictors of metabolic syndrome:a retrospective cohort study in a Japanese urban population. Metabolism.2012;61(2):281-8.
    [51]Kohjimoto Y, Iba A, Sasaki Y, et al. Metabolic syndrome and nephrolithiasis. Hinyokika Kiyo.2011;57(1):43-7.
    [52]Enomoto A,Kjmura H,Chaimunua A,et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels.Nature.2002;417 (6887):447-452.
    [53]Hikita M, Ohno I, Mori Y, et al. Relationship between hyperuricemia and body fat distribution. Intern Med.2007;46(17):1353-1358.
    [54]Johansson GS, Arnqvist HJ. Insulin and IGF-I action on insulin receptors, IGF-I receptors, and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol Endocrinol Metab.2006;291(5):E 1124-30.
    [55]Rask-Madsen C, Li Q, Freund B, et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab.2010;11(5):379-89.
    [56]Kuboki K, Jiang ZY, Takahara N, et al. Regulation ofendothelial constitutive nitric oxide sythase gene expression in endothelial cell and in vivo. Circulation. 2000;101(6):676-81
    [57]Boger RH, Vallance P, Cooke JP. Asymmetric dimethylarginine (ADMA):a key regulator of nitric oxide synthase. Atherosclerosis.2003;4(4):1-3.
    [58]Murray-Rust J, Leiper J, McAlister M, et al. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat Struct Biol.2001,8(8):679-683.
    [59]Can A. Bekpinar S. Gurdol F, et al. Dimethylarginines in patients with type 2 diabetes mellitus:relation with the glycaemic control.2011;94(3):e61-4.
    [60]Palomo I, Contreras A, Alarcon LM, et al. Elevated concentration of asymmetric dimethylarginine (ADMA) in individuals with metabolic syndrome. Nitric Oxide. 2011;24(4):224-8.
    [61]Smith CL. C-reactive protein and asymmetric dimethylarginine:markers or mediators in cardiovascular disorders? Curr Pharm Des.2007;13(16):1619-29.
    [62]Pradhan AR, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6,and risk of developing type 2 diabetes mellitus. JAMA.2001;286(3):327-34.
    [1]Jia EZ, Yang ZJ, Yuan B, et al. Relationship between true fasting plasma insulin level and angiographic characteristics of coronary atherosclerosis. Clin Cardiol.2006;29(1):25-30.
    [2]Karabulut A, Iltumur K, Toprak N, et al. Insulin response to oral glucose loading and coronary artery disease in nondiabetics. Int Heart J.2005;46(5):761-770.
    [3]Muis MJ, Bots ML, Bilo HJ, et al. High cumulative insulin exposure:a risk factor of atherosclerosis in type 1 diabetes? Atherosclerosis.2005; 181(1):185-192.
    [4]Howard G, O'Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation. 1996;93(10):1809-17.
    [5]李怡,吴翥镗,刘振,等.高果糖饲料诱导的胰岛素抵抗伴高血压大鼠模型及其特点.中国比较医学杂志.2004;14(4):211-214.
    [6]马海港,张汝学,贾正平.胰岛素抵抗动物模型的研究进展.国际内分泌代谢杂志.2008;28(1)33-36.
    [7]Poretsky L, Glover B, Laumas V, et al. The effects of experimental hyperinsulinemia on steroid secretion, ovarian [125I]insulin binding, and ovarian [125I]insulin-like growth-factor I binding in the rat. Endocrinology. 1988;122(2):581-5.
    [8]Behrendt D, Ganz P. Endothelial function:From vascular biology to clinical applications. Am J Cardiol.2002,90(suppl):40-48.
    [9]Egashira K. Clinical importance of endothelial function in arteriosclerosis and ischemic heart disease. Circ J.2002,66(6):529-533.
    [10]Stokes KY, Granger DN. The microcirculation:a motor for the systemic inflammatory response and large vessel disease induced by hypercholesterolaemia? J Physiol.2005;562(Pt 3):647-53.
    [11]Wang D, Gill PS, Chabrashvili T, et al. Isoform-specific regulation by N(G),N(G)-dimethylarginine dimethy-laminohydrolase of rat serum asymmetric dimethylarginine and vascular endothelium-derived relaxing factor/NO. Circ Res.2007; 101(6):627-35.
    [12]Hu X, Xu X, Zhu G, et al. Vascular endothelial-specific dimethylarginine dimethylaminohydrolase-1-deficient mice reveal that vascular endothelium plays an important role in removing asymmetric dimethylarginine. Circulation. 2009;120(22):2222-9.
    [13]Achan V, Tran CT, Arrigoni F, et al. All-trans-retinoic acid increases nitric oxide synthesis by endothelial cells:a role for the induction of dimethylarginine dimethylaminohydrolase. Circ Res.2002;90(7):764-9.
    [14]Abhary S, Burdon KP, Kuot A. et al. Sequence variation in DDAH1 and DDAH2 genes is strongly and additively associated with serum ADMA concentrations in individuals with type 2 diabetes. PLoS One.2010;5(3):e9462.
    [15]Holden DP, Cartwright JE, Nussey SS, Whitley GS. Estrogen stimulates dimethylarginine dimethylaminohydrolase activity and the metabolism of asymmetric dimethylarginine. Circulation 2003; 108:1575-80.
    [16]Wakino S, Hayashi K, Tatematsu S, Hasegawa K, Takamatsu I, Kanda T, Homma K, Yoshioka K, Sugano N, Saruta T. Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats. Hypertens Res.2005; 28:255-262.
    [17]Deng S, Deng PY, Jiang JL, Ye F, Yu J, Yang TL, Deng HD, Li YJ. Aspirin protected against endothelial damage induced by LDL:role of endogenous NO synthase inhibitors in rats. Acta Pharmacol Sin.2004; 25(12):1633-9.
    [18]Eid HM, Lyberg T, Arnesen H, et al. Insulin and adiponectin inhibit the TNFalpha-induced ADMA accumulation in human endothelial cells:the role of DDAH. Atheroscherosis.2007; 194(2):e 1-8. Epub 2006 Dec 1.
    [19]Leiper J, Nandi M. The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis [J]. Nature reviews Drug discovery,2011,10(4):277-91.
    [20]Ivashchenko CY, Bradley BT, Ao ZR, et al. Regulation of the ADMA-DDAH system in endothelial cells:a novel mechanism for the sterol response element binding proteins, SREBPlc and-2. Am J Physiol Heart Circ Physiol.2010; 298(1):H251-8
    [21]Lemoine M, Barbu V, Girard PM et al. Altered hepatic expression of SREBP-1 and PPARgamma is associated with liver injury in insulin-resistant lipodystrophic HIV-infected patients. AIDS.2006; 20(3):387-95.
    [22]Owen JL, Zhang Y, Bae SH, et al. Insulin stimulation of SREBP-1 c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc Natl Acad Sci USA. 2012;109(40):16184-16189
    [23]Xie X, Liao H, Dang H, et al.Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrinol.2009;23(4):434-43
    [24]Yeh M, Cole AL, Choi J, et al. Role for sterol regulatory element-binding protein in activation of endothelial cells by phospholipid oxidation products. Circ Res. 2004;95(8):780-8.
    [25]SMITH LH, PETRIE MS, MORROW JD, et al. The sterol response element binding protein regulates cyclooxygenase-2 gene expression in endothelial cells. J Lipid Res.2005;46(5):862-71.
    [26]BONORA E, WILLEIT J, KIECH IS, et al. U-shaped and J-shaped relationships between serum insulin and coronary heart disease in the general population. The Bruneck Study. Diabetes Care.1998;21(2):221-230
    [27]Rewers M, Zaccaro D, D'Agostino R, et al. Insulin sensitivity, insulinemia, and coronary artery disease:the Insulin Resistance Atherosclerosis Study. Diabetes Care.2004;27(3):781-787.
    [28]EZ Jia.ZJ Yang.B Yuan, et al. Relationship between true fasting plasma insulin level and angiographic characteristics of coronary atherosclerosis. Clin Cardiol. 2006;29(1):25-30.
    [29]Rolla AR. Progression of type 2 diabetes and insulin initiation. J Natl Med Assoc. 2011 Mar;103(3):241-6.
    [30]Ikeda H, Shino A, Matsuo T, et al. A new genetically obese-hypergly-cemic rat (Wistar fatty). Diabetes.1981; 30(12):1045-50.
    [31]van den Brandt J, Kovacs P, Kloting I. Features of the metabolic syndrome in the spontaneously hypertriglyceridemic Wistar OttawaKarlsburg W (RTlu Haploty pe) rat. Metabolism.2000 Sep;49(9):1140-4.
    [32]Penicaud L, Ferre P, Terretaz J, et al. Development of obesity in Zucker rats. Early insulin resistance in muscles but normal sensitivityin white adipose tissue. Diabetes.1987;36(5):626-31.
    [33]Chadwick WA, Rous S, van de Venter, et al. Anti-diabetic effects of Sutherlandia frutescens in Wistar rats fed a diabetogenic diet. J Ethnopharmacol. 2007;109(1):121-7
    [34]Kim JY, Nolte LA, Hansen PA, et al. High-fat diet-induced muscle insulin resistance:relationship to visceral fat mass. Am J Physiol Regul Integr Comp Physiol.2000;279(6):R2057-65.
    [35]Shapiro A, Mu W, Roncal C. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fatfeeding Am J Physiol Regul Integr Comp Physiol.2008;295(5):R1370-5.
    [36]Korach-Andre M, Gao J, Gounarides JS. et al Relationship between visceral adiposity and intramyocellular lipid content in two rat models of insulin resistance. Am J Physiol Endocrinol Metab.2005;288(1):E106-16
    [37]Duan C, Yang H, White MF. et al Disruption of the SH2-B gene causes age-dependent insulin resistance and glucose intolerance. Mol Cell Biol.2004; 24(17):7435-43.
    [38]Oshikawa J, Otsu K, Toya Y. et al Insulin resistance in skeletal muscles of caveolin-3-null mice.. Epub 2004 Aug 16.
    [39]Pryor PR, Liu SC, Clark AE, et al Chronic insulin effects on insulin signalling and GLUT4 endocytosis are reversed by metformin. Biochem J.2000 May 15;348 Pt 1:83-91.
    [40]刘兆川,王旭开,杨立,等.外源性高胰岛素血症对血管内皮细胞sICAM-1表达的影响.第三军医大学学报.2006;28(9):936-938.
    [41]Taskinen MR. Type 2 diabetes as a lipid disorder. Curr Mol Med. 2005;5(3):297-308.
    [42]Azzout-Marniche D, Becard D, Guichard C, et al. Insulin effects on sterol regulatory-element-binding protein-lc (SREBP-1c) transcriptional activity in rat hepatocytes. Biochem J.2000;350 Pt 2:389-93.
    [43]Dentin R, Pegorier JP, Benhamed F, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-lc on glycolytic and lipogenic gene expression. J Biol Chem.2004;7;279(19):20314-26.
    [44]Chakravarty K, Leahy P, Becard D, et al. Sterol regulatory element-binding protein-lc mimics the negative effect of insulin on phosphoenolpyruvate carboxykinase (GTP) gene transcription. J Biol Chem.2001 Sep 14;276 (37):34816-23
    [45]Van Rooyen DM, Farrell GC. SREBP-2:a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J Gastroenterol Hepatol.2011 May;26(5):789-92.
    [46]Boonsong T, Norton L, Chokkalingam K. et al. Effect of exercise and insulin on SREBP-lc expression in human skeletal muscle:potential roles for the ERK1/2 and Akt signalling pathways. Biochem Soc Trans.2007 Nov;35(Pt 5):1310-1.
    [47]Yellaturu CR, Deng X, Cagen LM, et al. Insulin Enhances Post-translational Processing of Nascent SREBP-lc by Promoting Its Phosphorylation and Association with COPII Vesicles. J Biol Chem.2009 Mar 20;284(12):7518-32
    [48]Eberle D, Hegarty B, Bossard P, et al. SREBP transcription factors:master regulators of lipid homeostasis [J]. Biochimie.200;86(11):839-848.
    [49]Shimano H.Sterol regulatory element-binding protein family as global regulators of lipid synthetic genes in energy metabolism. Vitam Horm.2002;65:167-94. Review.
    [50]Dif N, Euth'ine V, Gonnet E, Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J.2006 Nov 15;400(1):179-88.
    [51]Dombroski BA, Nayak RR, Ewens KG, et al. Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells [J]. American journal of human genetics,2010,86(5):719-29.
    [52]Hou J, Aerts J, den Hamer B, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction [J]. PloS one,2010,5(4): e10312.
    [53]Lukk M, Kapushesky M, Nikkila J, et al. A global map of human gene expression [J]. Nature biotechnology,2010,28(4):322-4.
    [54]Aung HH, Lame MW, Gohil K, et al. Comparative gene responses to collected ambient particles in vitro:endothelial responses [J]. Physiological genomics,2011, 43(15):917-29.
    [55]Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer [J]. International journal of cancer Journal international du cancer,2011,129(2): 355-64.
    [56]Swindell WR, Johnston A, Carbajal S, et al. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis [J]. PloS one,2011,6(4):e18266.
    [57]den Engelsen C, Koekkoek PS, Gorter KJ, et al. High-sensitivity C-reactive protein to detect metabolic syndrome in a centrally obese population:a cross-sectional analysis. Cardiovasc Diabetol.2012 Mar 14;11:25.
    [1]ZHANG P, ZHANG X, BROWN J, et al. Global healthcare expenditure on diabetes for 2010 and 2030 [J]. Diabetes research and clinical practice,2010, 87(3):293-301.
    [2]SHAW J E, SICREE R A, ZIMMET P Z. Global estimates of the prevalence of diabetes for 2010 and 2030 [J]. Diabetes research and clinical practice,2010, 87(1):4-14.
    [3]ABACI A, OGUZHAN A, KAHRAMAN S, et al. Effect of diabetes mellitus on formation of coronary collateral vessels [J]. Circulation,1999,99(17):2239-42.
    [4]SHEETZ M J, KING G L. Molecular understanding of hyperglycemia's adverse effects for diabetic complications [J]. JAMA:the journal of the American Medical Association,2002,288(20):2579-88.
    [5]LIU Z J, VELAZQUEZ O C. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing [J]. Antioxidants & redox signaling,2008,10(11): 1869-82.
    [6]SHERRILL J W, LAWRENCE R, JR. Insulin resistance. The mechanisms involved and the influence of infection and refrigeration [J]. United States Armed Forces medical journal,1950,1(12):1399-409.
    [7]PANIAGUA M E. Insulin resistance; a review of the subject and presentation of two cases [J]. Boletin de la Asociacion Medica de Puerto Rico,1950,42(1): 17-29.
    [8]REAVEN G M. Banting lecture 1988. Role of insulin resistance in human disease [J]. Diabetes,1988,37(12):1595-607.
    [9]NANKERVIS A, PROIETTO J, AITKEN P, et al. Hyperinsulinaemia and insulin insensitivity:studies in subjects with insulinoma [J]. Diabetologia,1985,28(7): 427-31.
    [10]DEL PRATO S, RICCIO A, VIGILI DE KREUTZENBERG S, et al. Mechanisms of fasting hypoglycemia and concomitant insulin resistance in insulinoma patients [J]. Metabolism:clinical and experimental,1993,42(1): 24-9.
    [11]MATTHEWS D R, NAYLOR B A, JONES R G, et al. Pulsatile insulin has greater hypoglycemic effect than continuous delivery [J]. Diabetes,1983,32(7): 617-21.
    [12]SCHMITZ O, ARNFRED J, NIELSEN O H, et al. Glucose uptake and pulsatile insulin infusion:euglycaemic clamp and [3-3H]glucose studies in healthy subjects [J]. Acta endocrinologica,1986,113(4):559-63.
    [13]PAOLISSO G, SGAMBATO S, PASSARIELLO N, et al. Greater efficacy of pulsatile insulin in type I diabetics critically depends on plasma glucagon levels [J]. Diabetes,1987,36(5):566-70.
    [14]PAOLISSO G, SGAMBATO S, TORELLA R, et al. Pulsatile insulin delivery is more efficient than continuous infusion in modulating islet cell function in normal subjects and patients with type 1 diabetes [J]. The Journal of clinical endocrinology and metabolism,1988,66(6):1220-6.
    [15]SHANIK M H, XU Y, SKRHA J, et al. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? [J]. Diabetes care,2008,31 Suppl 2(S262-8.
    [16]GAMBLE J M, SIMPSON S H, EURICH D T, et al. Insulin use and increased risk of mortality in type 2 diabetes:a cohort study [J]. Diabetes, obesity & metabolism,2010,12(1):47-53.
    [17]HOLDEN S E, CURRIE C J. Endogenous hyperinsulinaemia and exogenous insulin:a common theme between atherosclerosis, increased cancer risk and other morbidities [J]. Atherosclerosis,2012,222(1):26-8.
    [18]SUZUKI M, NISHIZAKI M, ARITA M, et al. Impaired glucose tolerance with late hypersecretion of insulin during oral glucose tolerance test in patients with vasospastic angina [J]. Journal of the American College of Cardiology,1996, 27(6):1458-63.
    [19]SHINOZAKI K, SUZUKI M, IKEBUCHI M, et al. Insulin resistance associated with compensatory hyperinsulinemia as an independent risk factor for vasospastic angina [J]. Circulation,1995,92(7):1749-57.
    [20]SHIMABUKURO M, SHINZATO T, HIGA S, et al. Enhanced insulin response relates to acetylcholine-induced vasoconstriction in vasospastic angina [J]. Journal of the American College of Cardiology,1995,25(2):356-61.
    [21]NAKAGOMI A, SAIKI Y, KOSUGI M, et al. Effect of insulin resistance associated with compensatory hyperinsulinemia on the long-term prognosis in patients with vasospastic angina [J]. International journal of cardiology,2012,
    [22]ARCARO G. Insulin Causes Endothelial Dysfunction in Humans:Sites and Mechanisms [J]. Circulation,2002,105(5):576-82.
    [23]MUNIYAPPA R, MONTAGNANI M, KOH K K, et al. Cardiovascular actions of insulin [J]. Endocrine reviews,2007,28(5):463-91.
    [24]KIM J A, MONTAGNANI M, KOH K K, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction:molecular and pathophysiological mechanisms [J]. Circulation,2006,113(15):1888-904.
    [25]OGAWA T, KIMOTO M, SASAOKA K. Occurrence of a new enzyme catalyzing the direct conversion of NG,NG-dimethyl-L-arginine to L-citrulline in rats [J]. Biochemical and biophysical research communications,1987,148(2):671-7.
    [26]OGAWA T, KIMOTO M, SASAOKA K. Purification and properties of a new enzyme, NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney [J]. The Journal of biological chemistry,1989,264(17):10205-9.
    [27]GORENFLO M, ZHENG C, WERLE E, et al. Plasma levels of asymmetrical dimethyl-L-arginine in patients with congenital heart disease and pulmonary hypertension [J]. Journal of cardiovascular pharmacology,2001,37(4):489-92.
    [28]SURDACKI A, NOWICKI M, SANDMANN J, et al. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension [J]. Journal of cardiovascular pharmacology,1999,33(4):652-8.
    [29]SCHULZE F, LENZEN H, HANEFELD C, et al. Asymmetric dimethylarginine is an independent risk factor for coronary heart disease:results from the multicenter Coronary Artery Risk Determination investigating the Influence of ADMA Concentration (CARDIAC) study [J]. American heart journal,2006, 152(3):493 e1-8.
    [30]KUMAGAI H, SAKURAI M, TAKITA T, et al. Association of homocysteine and asymmetric dimethylarginine with atherosclerosis and cardiovascular events in maintenance hemodialysis patients [J]. American journal of kidney diseases:the official journal of the National Kidney Foundation,2006,48(5):797-805.
    [31]SYDOW K, MONDON C E, SCHRADER J, et al. Dimethylarginine dimethylaminohydrolase overexpression enhances insulin sensitivity [J]. Arteriosclerosis, thrombosis, and vascular biology,2008,28(4):692-7.
    [32]KIMOTO M, MIYATAKE S, SASAGAWA T, et al. Purification, cDNA cloning and expression of human NG,NG-dimethylarginine dimethylaminohydrolase [J]. European journal of biochemistry/FEBS,1998,258(2):863-8.
    [33]LEIPER J M, SANTA MARIA J, CHUBB A, et al. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases [J]. The Biochemical journal,1999, 343 Pt 1(209-14.
    [34]DAYOUB H, ACHAN V, ADIMOOLAM S, et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis:genetic and physiological evidence [J]. Circulation,2003,108(24):3042-7.
    [35]HASEGAWA K, WAKINO S, TATEMATSU S, et al. Role of asymmetric dimethylarginine in vascular injury in transgenic mice overexpressing dimethylarginie dimethylaminohydrolase 2 [J]. Circulation research,2007, 101(2):e2-10.
    [36]LEIPER J, NANDI M, TORONDEL B, et al. Disruption of methylarginine metabolism impairs vascular homeostasis [J]. Nature medicine,2007,13(2): 198-203.
    [37]TRAN C T, FOX M F, VALLANCE P, et al. Chromosomal localization, gene structure, and expression pattern of DDAH1:comparison with DDAH2 and implications for evolutionary origins [J]. Genomics,2000,68(1):101-5.
    [38]CHEN Y, LI Y, ZHANG P, et al. Dimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts [J]. American journal of physiology Heart and circulatory physiology,2005,289(5):H2212-9.
    [39]TOJO A, WELCH W J, BREMER V, et al. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney [J]. Kidney international,1997,52(6):1593-601.
    [40]HU X, XU X, ZHU G, et al. Vascular endothelial-specific dimethylarginine dimethylaminohydrolase-1-deficient mice reveal that vascular endothelium plays an important role in removing asymmetric dimethylarginine [J]. Circulation, 2009,120(22):2222-9.
    [41]BROWN M S, GOLDSTEIN J L. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J]. Cell, 1997,89(3):331-40.
    [42]HUA X, WU J, GOLDSTEIN J L, et al. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13 [J]. Genomics,1995, 25(3):667-73.
    [43]DENG X, CAGEN L M, WILCOX H G, et al. Regulation of the rat SREBP-lc promoter in primary rat hepatocytes [J]. Biochemical and biophysical research communications,2002,290(1):256-62.
    [44]SHIMOMURA I, BASHMAKOV Y, IKEMOTO S, et al. Insulin selectively increases SREBP-lc mRNA in the livers of rats with streptozotocin-induced diabetes [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(24):13656-61.
    [45]SHIMOMURA I, SHIMANO H, HORTON J D, et al. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells [J]. The Journal of clinical investigation,1997,99(5):838-45.
    [46]YELLATURU C R, DENG X, CAGEN L M, et al. Posttranslational processing of SREBP-1 in rat hepatocytes is regulated by insulin and cAMP [J]. Biochemical and biophysical research communications,2005,332(1):174-80.
    [47]GINSBERG H N, ZHANG Y L, HERNANDEZ-ONO A. Metabolic syndrome: focus on dyslipidemia [J]. Obesity (Silver Spring),2006,14 Suppl 1(41S-9S.
    [48]TASKINEN M R. Diabetic dyslipidaemia:from basic research to clinical practice [J]. Diabetologia,2003,46(6):733-49.
    [49]XIE X, LIAO H, DANG H, et al. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs [J]. Molecular endocrinology, 2009,23(4):434-43.
    [50]LEIPER J, NANDI M. The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis [J]. Nature reviews Drug discovery,2011, 10(4):277-91.
    [51]IVASHCHENKO C Y, BRADLEY B T, AO Z, et al. Regulation of the ADMA-DDAH system in endothelial cells:a novel mechanism for the sterol response element binding proteins, SREBP1c and-2 [J]. American journal of physiology Heart and circulatory physiology,2010,298(1):H251-8.
    [52]NAIR R P, DUFFIN K C, HELMS C, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways [J]. Nature genetics, 2009,41(2):199-204.
    [53]DOMBROSKI B A, NAYAK R R, EWENS K Q et al. Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells [J]. American journal of human genetics,2010,86(5):719-29.
    [54]HOU J, AERTS J, DEN HAMER B, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction [J]. PloS one,2010, 5(4):e10312.
    [55]LUKK M, KAPUSHESKY M, NIKKILA J, et al. A global map of human gene expression [J]. Nature biotechnology,2010,28(4):322-4.
    [56]AUNG H H, LAME M W, GOHIL K, et al. Comparative gene responses to collected ambient particles in vitro:endothelial responses [J]. Physiological genomics,2011,43(15):917-29.
    [57]SANCHEZ-PALENCIA A, GOMEZ-MORALES M, GOMEZ-CAPILLA J A, et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer [J]. International journal of cancer Journal international du cancer,2011, 129(2):355-64.
    [58]SWINDELL W R, JOHNSTON A, CARBAJAL S, et al. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis [J]. PloS one,2011,6(4):e18266.
    [1]Behrendt D, Ganz P. Endothelial function:From vascular biology to clinical applications. Am J Cardiol.2002;90(suppl):40-48.
    [2]Egashira K. Clinical importance of endothelial function in arteriosclerosis and ischemic heart disease. Circ J.2002,66(6):529-533.
    [3]Vallance P, Leone A, Calver A, et al. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmaco.1992;20(suppl)):S60-62.
    [4]Cooke JP. NO and angiogenesis. Atheroscler Suppl.2003;4(4):53-60.
    [5]Murohara TAT. Nitric oxide and angiogenesis in cardiovascular disease. Antioxid Redox ignal.2002;4(5):825-31.
    [6]Olsson AK, Dimberg A, et al. VEGF receptor signalling-in control of vascular function. Nat Rev Mol Cell Biol.2006;7(5):359-71.
    [7]Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol.2006;176(Pt 1):213-54.
    [8]Yasinska IM, Kozhukhar AV, Sumbayev VV. S-nitrosation of thioredoxin in the nitrogen monoxide/superoxide system activates apoptosis signal-regulating kinase 1. Arch Biochem Biophys.2004;428(2):198-203.
    [9]Lee JR, Kim JK, Lee SJ, et al. Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis. Arch Pharm Res.2009;32(8):1109-18.
    [10]Venardos K, Zhang WZ, Lang C, et al. Effect of peroxynitrite on endothelial L-arginine transport and metabolism. Int J Biochem Cell Biol.2009;41(12):2522-7.
    [11]Boger RH. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res.2003;59(4):824-33.
    [12]Leiper J, Vallance P. New tricks from an old dog:nitric oxide-independent effects of dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol. 2006;26(7):1419-20.
    [13]Vallance P, Leiper J. Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol. 2004;24(6):1023-30.
    [14]Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. MolCell.2005;18(3):263-72.
    [15]McBride AE, Silver PA. State of the arg:rotein methylation at arginine comes of age. Cell.2001;106(1):5-8.
    [16]Boger RH, Sydow K, Borlak J, et al. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells:involvement of S-adenosylmethionine dependent methyltransferases.Circ Res.2000;87(2):99-105.
    [17]Chen Y, Xu X, Sheng M, et al. PRMT-1 and DDAHs-induced ADM A upregulation is involved in ROS-and RAS-mediated diabetic retinopathy. Exp Eye Res;2009;89(6):1028-34.
    [18]Osanai T, Saitoh M, Sasaki S, et al. Effect of shear stress on asymmetric dimethylarginine release from vascular endothelial cells. Hypertension. 2003;42(5):985-90.
    [19]Sasser JM, Moningka NC, et al. Asymmetric dimethylarginine in angiotensin II-induced hypertension. Am J Physiol Regul Integr Comp Physiol. 2010;298(3):R740-6.
    [20]Hasegawa K, Wakino S, Tanaka T, et al. Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Spl transcription factor in endothelial cells. Arterioscler Thromb Vasc Biol.2006;26(7):1488-94.
    [21]Murray-Rust J, Leiper J, McAlister M, et al. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase. Nat Struct Biol.2001;8(8):679-83.
    [22]Closs EI, Basha FZ, Habermeier A, et al. Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide. 1997;1(1):65-73.
    [23]Boger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the "L-arginine paradox" and acts as a novel cardiovascular risk factor. J Nutr.2004;134(10 Suppl):2842S-7. discussion 2853S.
    [24]Teerlink T, Luo Z, Palm F, et al. Cellular ADMA:regulation and action. Pharmacol Res.2009;60(6):448-60.
    [25]Schnabel R, Blankenberg S, Lubos E, et al. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease:results from the AtheroGene Study. Circ Res.2005;97(5):e53-9.
    [26]Cardounel AJ, Cui H, Samouilov A, et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem.2007;282(2):879-87.
    [27]Wells SM, Holian A. Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells. Am J Respir Cell Mol Biol.2007;36(5):520-8.
    [28]Billecke SS, D'Alecy LG, Platel R, et al. Blood content of asymmetric dimethylarginine:new insights into its dysregulation in renal disease. Nephrol Dial Transplant.2009;24(2):489-96.
    [29]Horowitz JD, Heresztyn T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;851(1-2):42-50.
    [30]Tran CT, Fox MF, Vallance P, et al. Chromosomal localization, gene structure, and expression pattern of DDAH1:comparison with DDAH2 and implications for evolutionary origins. Genomics.2000;68(1):101-5.
    [31]Nijveldt RJ, Teerlink T, Siroen MP, et al. The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA). Clin Nutr.2003;22(1):17-22.
    [32]Tojo A, Welch WJ, Bremer V, et al. Colocalization of demethylating enzymes and NOS and functional effects of methylarginines in rat kidney. Kidney Int.1997;52(6): 1593-601.
    [33]Leiper J, Nandi M, Torondel B, et al. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med.2007; 13(2):198-203.
    [34]Onozato ML, Tojo A, Leiper J, et al. Expression of NG, NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney:effects of angiotensin II receptor blockers. Diabetes. 2008;57(1):172-80.
    [35]Ogawa T, Kimoto M, Sasaoka K, et al. Purification and properties of a new enzyme, NG, NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J Biol Chem. 1989;264(17):10205-9.
    [36]Achan V, Tran CT, Arrigoni F, et al. All-trans-retinoic acid increases nitric oxide synthesis by endothelial cells:a role for the induction of dimethylarginine dimethylaminohydrolase. Circ Res.2002;90(7):764-9.
    [37]Abhary S, Burdon KP, Kuot A. et al. Sequence variation in DDAH1 and DDAH2 genes is strongly and additively associated with serum ADMA concentrations in individuals with type 2 diabetes. PLoS One.2010;5(3):e9462.
    [38]Wang J, Sim AS, Wang XL, et al. L-arginine regulates asymmetric dimethylarginine metabolism by inhibiting dimethylarginine dimethylaminohydrolase activity in hepatic (HepG2) cells. Cell Mol Life Sci.2006;63(23):2838-46.
    [39]Schulman SP, Becker LC, Kass DA, et al. L-arginine therapy in acute myocardial infarction:the Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA.2006;295(1):58-64.
    [40]Holden DP, Cartwright JE, Nussey SS, et al. Estrogen stimulates dimethylarginine dimethylaminohydrolase activity and the metabolism of asymmetric dimethylarginine. Circulation.2003; 108(13):1575-80.
    [41]Eid HM, Lyberg T, Arnesen H, et al. Insulin and adiponectin inhibit the TNFalpha-induced ADMA accumulation in human endothelial cells:the role of DDAH. Atherosclerosis.2007;194(2):e1-8.
    [42]Wakino S, Hayashi K, Tatematsu S, et al. Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats. Hypertens Res.2005; 28:255-262.
    [43]Deng S, Deng PY, Jiang JL, et al. Aspirin protected against endothelial damage induced by LDL:role of endogenous NO synthase inhibitors in rats. Acta Pharmacol Sin.2004; 25(12):1633-9.
    [44]Sydow K, Mondon CE, Schrader J, et al. Dimethylarginine dimethylamino-hydrolase overexpression enhances insulin sensitivity. Arterioscler Thromb Vasc Biol.2008; 28(4):692-7.
    [45]Baylis C. Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract Nephrol.2006;2(4):209-20.
    [46]Kielstein JT, Boger RH, Bode-Boger SM, et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol.2002; 13(1):170-6.
    [47]Fliser D, Kronenberg F, Kielstein JT, et al. Asymmetric dimethylarginine and progression of chronic kidney disease:the mild to moderate kidney disease study. J Am Soc Nephrol.2005; 16(8):2456-61.
    [48]Ravani P, Tripepi G, Malberti F, et al. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease:a competing risks modeling approach. J Am Soc Nephrol.2005;16(8):2449-55.
    [49]Zoccali C, Bode-Boger S, Mallamaci F, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease:a prospective study. Lancet.2001;358(9299):2113-7.
    [50]Abedini S, Meinitzer A, Holme I, et al. Asymmetrical dimethylarginine is associated with renal and cardiovascular outcomes and all-cause mortality in renal transplant recipients. Kidney Int.2010;77(1):44-50.
    [51]Dayoub H, Achan V, Adimoolam, et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis:genetic and physiological evidence. Circulation. 2003;108(24):3042-7
    [52]Hasegawa K, Wakino S, Tatematsu S, et al. Role of asymmetric dimethylarginine in vascular injury in transgenic mice overexpressing dimethylarginie dimethylaminohydrolase 2. Circ Res.2007;101(2):e2-10.
    [53]Pope AJ, Karrupiah K, Rearns PN, et al. Role of dimethylarginine dimethylaminohydrolases in the regulation of endothelial nitric oxide production. J Biol Chem.2009;284(51):35338-47.
    [54]Ueda S, Kato S, Matsuoka H, et al. Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine:role of dimethylarginine dimethylaminohydrolase. Circ Res.2003;92(2):226-233.
    [55]Matsumoto, Y. et al. Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J Am Soc Nephrol. 2007; 18(5):1525-1533.
    [56]Ueda S, Yamagishi S, Matsumoto Y, et al. Involvement of asymmetric dimethylarginine (ADMA) in glomerular capillary loss and sclerosis in a rat model of chronic kidney disease (CKD). Life Sci.2009;84(23-24):853-856.
    [57]Hu T, Chouinard M, Cox AL, et al. Farnesoid X receptor agonist reduces serum asymmetric dimethylarginine levels through hepatic dimethylarginine dimethylaminohydrolase-1 gene regulation. J. Biol. Chem.2006;281 (52): 39831-39838.
    [58]Shibata R, Ueda S, Yamagishi S, et al. Involvement of asymmetric dimethylarginine (ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol Dial Transplant.2009;24(4):1162-1629.
    [59]Bai F, Makino T, Ono T, et al. Anti-hypertensive effects of shichimotsukokato in 5/6 nephrectomized Wistar rats mediated by the DDAH-ADMA-NO pathway. Nat Med. 2012 Feb 21. [Epub ahead of print]
    [60]Lundman P, Eriksson MJ, Stuhlinger M, et al. Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. J Am Coll Cardiol.2001;38(1):111-6.
    [61]Thum T, Tsikas D, Stein S, et al. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J Am Coll Cardiol.2005;46(9):1693-701.
    [62]Wang D, Gill PS, Chabrashvili T, et al. Isoform-specific regulation by N(G), N(G)-dimethylarginine dimethylaminohydrolase of rat serum asymmetric dimethylarginine and vascular endothelium-derived relaxing factor/NO. Circ Res. 2007;101(6):627-35.
    [63]Smith CL, Birdsey GM, Anthony S, et al. Dimethylarginine dimethylaminohydrolase activity modulates ADMA levels, VEGF expression, and cell phenotype. Biochem Biophys Res Commun.2003;308(4):984-9.
    [64]Kostourou V, Robinson SP, Cartwright JE, et al. Dimethylarginine dimethylaminohydrolase I enhances tumour growth and angiogenesis. Br J Cancer. 2002;87(6):673-80.
    [65]Konishi H, Sydow K, Cooke JP, et al. Dimethylarginine dimethylaminohydrolase promotes endothelial repair after vascular injury. J Am Coll Cardiol. 2007;49(10):1099-105.
    [66]Brunner H, Cockcroft JR, Deanfield J, et al. Endothelial function and dysfunction. Part II:association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens.2005;23(2):233-46.
    [67]Boger RH, Bode-Boger SM, Sydow K, et al. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol.2000;20(6):1557-64.
    [68]Perticone F, Sciacqua A, Maio R, et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol. 2005;46(3):518-23.
    [69]Xia W, Feng W, Guan M, et al. Increased levels of asymmetric dimethylarginine and C-reactive protein are associated with impaired vascular reactivity in essential hypertension. Clin Exp Hypertens.2010;32(1):43-8.
    [70]Carlstrom M, Brown RD, Edlund J, et al. Role of nitric oxide deficiency in the development of hypertension in hydronephrotic animals. Am J Physiol Renal Physiol. 2008;294(2):F362-70.
    [71]Hsu CN, Huang LT, Lau YT, et al. The combined ratios of L-arginine and asymmetric and symmetric dimethylarginine as biomarkers in spontaneously hypertensive rats. Transl Res.2012 Feb;159(2):90-8. Epub 2011 Sep 29.
    [72]Bai Y, Hui R. Dimethylarginine dimethylaminohydrolase (DDAH)--a critical regulator of hypertensive left ventricular hypertrophy? Med Hypotheses.2008;70(5):962-6.
    [73]Valkonen VP, Tuomainen TP, Laaksonen R. DDAH gene and cardiovascular risk. Vasc Med 10, Suppl 1:S45-S48,2005.
    [74]Millatt LJ, Whitley GS, Li D, et al. Evidence for dysregulation of dimethylarginine dimethylaminohydrolase I in chronic hypoxia-induced pulmonary hypertension. Circulation.2003; 108(12):1493-8.
    [75]Miyazaki H, Matsuoka H, Cooke JP, et al. Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation.1999;99(9):1141-1146.
    [76]Wang J, Sim AS, Wang XL, et al. Relations between plasma asymmetric dimethylarginine (ADMA) and risk factors for coronary disease. Atherosclerosis 2006; 184(2):383-388.
    [77]Boger RH, Bode-Boger SM, Szuba A, et al. Asymmetric dimethylarginine (ADMA):a novel risk factor for endothelial dysfunction. Circulation 1998;98(18):1842-1847.
    [78]Ito A, Tsao PS, Adimoolam S, et al. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation. 1999(24):3092-5.
    [79]Lundman P, Eriksson MJ, Stuhlinger MC, et al. Mild to moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine. J Am Coll Cardiol. 2001;38(1):111-6.
    [80]Riccioni G, Bucciarelli V, Scotti L, et al. Relationship between asymmetric dimethylarginine and asymptomatic carotid atherosclerosis. J Biol Regul Homeost Agents.2010;24(3):351-8.
    [81]Hasanoglu A, Okur I, Oren AC, et al. The levels of asymmetric dimethylarginine, homocysteine and carotid intima-media thickness in hypercholesterolemic children. Turk J Pediatr.2011;53(5):522-527.
    [82]Schulza F, Lenzen H, Hanefeld C, et al. Asymmetric dimethylarginine is an independent risk factor for coronary heart disease:results from the multicenter Coronary Artery Risk Determination investigating the Influence of ADMA Concentration (CARDIAC) study. Am Heart J.2006;152(3):493.e1-8.
    [83]Achan V, Ho HK, Heeschen C, et al. ADMA regulates angiogenesis:genetic and metabolic evidence. Vasc Med.2005;10(1):7-14.
    [84]Stuhlinger MC, Tsao PS, Her JH, et al. Homocysteine impairs the nitric oxide synthase pathway:Role of asymmetric dimethylarginine. Circulation. 2001;104(21):2569-75.
    [85]Sydow K, Mondon CE, Cooke JP. Insulin resistance:potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc Med.2005; 10(1):S35-43.
    [86]Balletshofer BM, Rittig K, Enderle MD, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance Circulation.2000; 101 (15):1780-1784.
    [87]Lin KY, Ito A, Asagami T, et al. Impaired nitric oxide synthase pathway in diabetes mellitus:role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation.2002;106(8):987-992.
    [88]Chan NN, Chan JC. Asymmetric dimethylarginine (ADMA):a potential link between endothelial dysfunction and cardiovascular diseases in insulin resistance syndrome? Diabetologia.2002;45(12):1609-1616.
    [89]Stuhlinger M, Abbasi F, Chu J, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA.2002;287 (11):1420-1426.
    [90]Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003;88(6):2399-403.
    [91]Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol.2005;46(11):1978-85.
    [92]Roberts CK, Barnard RJ, Sindhu RK, et al. A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression. J Appl Physiol.2005;98(1):203-10.
    [93]Roberts CK, Vaziri ND, Wang XQ, et al. Enhanced NO inactivation and hypertension induced by a high-fat, refined-carbohydrate diet. Hypertension.2000;36(3):423-9.
    [94]Sun YX, Hu SJ, Zhang XH, et al. Plasma levels of vWF and NO in patients with metabolic syndrome and their relationship with metabolic disorders. Zhejiang Da Xue Xue Bao Yi Xue Ban.2006;35(3):315-8.
    [95]Gonzalez M, Flores C, Pearson JD, et al. Cell signalling-mediating insulin increase of mRNA expression for cationic amino acid transporters-1 and-2 and membrane hyperpolarization in human umbilical vein endothelial cells. Pflugers Arch. 2004;448(4):383-94.
    [96]Xiong Y, Fu YF, Fu SH, et al. Elevated levels of the serum endogenous inhibitor of nitric oxide synthase and metabolic control in rats with streptozotocin-induced diabetes. J Cardiovasc Pharmacol.2003;42(2):191-6.
    [97]Fard A, Tuck CH, Donis JA, et al. Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vase Biol.2000;20:2039-2044.
    [98]Kim JA, Montagnani M, Koh KK, et al. Reciprocal relationships between insulin resistance and endothelial dysfunction:molecular and pathophysiological mechanisms. Circulation.2006;113(15):1888-904.
    [99]Palm F, Buerk DG, Carlsson PO,et al. Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats:effects on renal oxygenation and microcirculation. Diabetes.2005;54(11):3282-3287.
    [100]Sydow K, Schwedhelm E, Arakawa N, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia:effects of 1-arginine and B vitamins. Cardiovasc Res.2003;57(1):244-252.
    [101]Xiong Y, Lei M, Fu S, et al. Effect of diabetic duration on serum concentrations of endogenous inhibitor of nitric oxide synthase in patients and rats with diabetes. Life Sci.2005;77(2):149-59.
    [102]Sorrenti V, Mazza F, Campisi A, et al. High glucose-mediated imbalance of nitric oxide synthase and dimethylarginine dimethylaminohydrolase expression in endothelial cells. Curr Neurovasc Res.2006;3(1):49-54.
    [103]Lu CW, Xiong Y, He P. Dimethylarginine dimethylaminohydrolase-2 overexpression improves impaired nitric oxide synthesis of endothelial cells induced by glycated protein. Nitric Oxide.2007;16(1):94-103.
    [104]Lai YL, Aoyama S, Nagai R, et al. Inhibition of L-arginine metabolizing enzymes by L-argininederived advanced glycation end products. J Clin Biochem Nutr.2010; 46(2):177-85.
    [105]Masuda H, Goto M, Tamaoki S, et al. Accelerated intimal hyperplasia and increased endogenous inhibitors of NO synthesis in rabbits with alloxan-induced hyperglycaemia. BrJ Pharmacol.1999;126(1):211-218.
    [106]Delles C, Schneider MP, John S, et al. Angiotensin converting enzyme inhibition and angiotensin Ⅱ AT1-receptor blockade reduce the levels of asymmetrical N(G), N(G)-dimethylarginine in human essential hypertension. Am J Hypertens.2002; 15(7 Pt 1):590-593.
    [107]Munzel T, Keaney Jr JF. Are ACE inhibitors a''magic bullet" against oxidative stress? Circulation.2001; 104(13):1571-1574.
    [108]Wagner AH, Kohler T, Ruckschloss U, et al. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol.2000;20(1):61-9.
    [109]Nishiyama Y, Ueda M, Otsuka T, et al. Statin treatment decreased serum asymmetric dimethylarginine (ADMA) levels in ischemic stroke patients. J Atheroscler Thromb. 2011;18(2):131-137.
    [110]Jones SP, Gibson MF, Rimmer DM et al. Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor. J Am Coll Cardiol. 2002;40(6):1172-8.
    [111]Pei Y, Ma P, Wang X, et al. Rosuvastatin attenuates monocrotaline-induced pulmonary hypertension via regulation of Akt/eNOS signaling and asymmetric dimethylarginine metabolism. Eur J Pharmacol.2011;666(1-3):165-72.
    [112]Ivashchenko CY, Bradley BT, Ao Z, et al. Regulation of the ADMA-DDAH system in endothelial cells:a novel mechanism for the sterol response element binding proteins, SREBP1c and-2. Am J Physiol Heart Circ Physiol.2010;298(1):H251-8.
    [113]Wang TD, Chen WJ, Cheng WC, et al. Relation of improvement in endothelium-dependent flow-mediated vasodilation after rosiglitazone to changes in asymmetric with dimethylarginine, endothelin-1, and C-reactive protein in nondiabetic patients the metabolic syndrome. Am J Cardiol.2006;98(8):1057-62.
    [114]Habib ZA, Havstad SL, Wells K, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592-600.
    [115]Asagami T, Abbasi F, Stuelinger M, et al. Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism. 2002;51(7):843-846.
    [116]Heutling D, Schulz H, Nickel I, et al. Asymmetrical dimethylarginine, inflammatory and metabolic parameters in women with polycystic ovary syndrome before and after metformin treatment. J Clin Endocrinol Metab.2008;93(1):82-90.
    [117]Marchetti P, Del Guerra S, Marselli L, et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab.2004;89:5535-5541.
    [118]Isoda K, Young JL, Zirlik A, et al. Metformin inhibits proinflammatory responses and nuclear factor-KB in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26:611-617.
    [119]Marcovecchio ML, Widmer B, Dunger DB, et al. Effect of acute variations of insulin and glucose on plasma concentrations of asymmetric dimethylarginine in young people with Type 1 diabetes Clin Sci(Lond).2008; 115(12):361-369.
    [120]Eid HM, Reims H, Arnesen H, et al. Decreased levels of asymmetric dimethylarginine during acute hyperinsulinemia. Metabolism.2007;56(4):464-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700