用户名: 密码: 验证码:
孵化温度对鸭胚胎发育和机体代谢的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家禽属卵生动物,胚胎发育容易受到外界环境因素(营养、孵化温度、激素和运动等)的影响,其中孵化温度对禽类胚胎发育和机体代谢影响较大。本研究以鸭胚胎为研究对象,通过在鸭胚孵化中后期改变孵化温度,检测鸭胚及出壳后雏鸭组织器官发育、血液脂质代谢指标的变化,并继续重点以鸭腿肌为研究对象,通过转录组测序分析孵化温度影响胚胎组织发育的分子机制。
     取得的主要研究结果和结论如下:
     (1)孵化温度处理对鸭孵化效果有一定影响,但与对照组比差异不显著(P>0.05)。孵化温度对鸭胚胎腿肌发育具有抑制作用,在E25和出壳时达到显著差异(P<0.05)。孵化温度处理使雏鸭体重增加,在W2、W4和W6时处理组胸肌和腿肌重量都高于对照组,且在W6时两个组腿肌重差异达显著(P<0.05)。
     (2)孵化温度对鸭胚及雏鸭心脏发育影响不明显,整体表现抑制作用,但仅在E25时与对照组比差异达显著水平(P<0.05)。孵化温度升高对鸭胚胎期肝脏发育有抑制作用,但对出壳后肝脏发育有促进作用,在所研究的阶段差异显著(P<0.05)。
     (3)孵化温度提高后,降低了血糖水平,在鸭出壳后4W时差异达到显著水平(P<0.05);孵化温度提高影响了血液脂质代谢指标,处理组血浆甘油三酯(TG)、总胆固醇(TC)和低密度脂蛋白(LDL)水平均高于对照组,其中LDL在胚胎期处理组和对照组间差异显著(P<0.05),TC在鸭出壳后对照组和处理组间差异显著(P<0.05)。
     (4)孵化温度升高对鸭胚胎期免疫器官发育也有一定影响,研究结果表明处理组鸭胚胎胸腺、脾脏和法氏囊器官指数降低,其中在E25法氏囊指数差异显著(P<0.05),在出壳时脾脏指数差异达显著(P<0.05);孵化温度还影响了鸭胚胎及出壳后血液干扰素γ(IFN-γ)水平和免疫球蛋白/总蛋白比值,在2W时处理组和对照组两个指标差异皆达到显著水平(P<0.05)。
     (5)孵化温度对鸭胚胎发育的影响,也间接影响到了胚后鸭组织发育和血液脂质代谢,本研究结果表明:处理组血糖水平在E20和W4之间呈现显著负相关(P<0.01),且出壳和W4之间呈现显著负相关(P<0.01)。对照组血液中的TG水平在出壳和W2之间呈现显著负相关(P<0.05)。处理组TC水平在E20和W2之间呈现负相关,对照组TC水平在E20和W2之间呈现正相关。
     (6)孵化温度对鸭胚肌肉发育形态影响的分析结果表明:E20和W2时处理组胸肌和腿肌纤维均大于对照组,说明孵化温度对鸭E20鸭腿肌发育影响已经明显。因此,运用RNA-Seq转录本测序技术检测了处理组和对照组鸭E20时腿肌样品,分析结果显示:处理组和对照组clean reads占reads总数的98%以上,Reads在参考基因组上的分布均匀,建库策略的随机性好,基因数增长速度趋于平缓,检测到的基因数趋于饱和,基因覆盖度较高,说明测序质量满足后续分析。分析共注释了335个差异表达基因,其中182基因表达上调,153个基因表达下调。GO功能显著性富集性分析显示这些差异表达基因主要参与细胞组成、分子功能和生物学过程三个方面,涉及细胞形态结构、细胞免疫、能量代谢、信号传导等方面的变化。信号通路富集结果表明,孵化温度主要通过影响细胞蛋白质合成等过程,对鸭胚胎肌肉发育产生影响。其中,核糖体代谢过程和MAPK信号路径是孵化温度影响鸭胚骨骼肌发育的重要分子途径。
As the oviparous, Poultry embryonic development is susceptible to external environmental factors, including nutrition, incubation temperature, hormones and exercise, in particular the incubation temperature has great impact on poultry embryonic development and metabolism. In this study the duck embryo was selected as the research, by changing the incubation temperature in duck middle and late embryonic period we detected changes of tissue and organ development, blood lipid metabolism of duck embryo and hatched ducklings. Meanwhile, we further investigated the molecular mechanism of the effects of incubation temperature on embryonic tissue development by Transcriptome sequencing, in which duck leg muscle was selected as the research object.
     The main results and conclusions are listed as follows:
     (1)Incubation temperature treatment had a certain influence on incubation effect, However, compared with control group no significant difference was found(P>0.05). Leg muscle development was inhibited by elevated incubation temperature, there were significant differences on day E25and the day of hatching between the two groups (P<0.05). Ducklings weight increased by incubation temperature in treatment group. The weight of breast and leg muscle in treatment group were heavier than control group on W2, W4and W6, and there was significant difference between the two groups'leg muscle weight on W6(P<0.05).
     (2) The impact of incubation temperature on duck embryos and ducklings heart development was not obvious, the overall performance was inhibition, only a significant difference on the E25was found between the two groups (P<0.05). We found temperature could inhibit liver development in the embryonic period, but facilitate its developmen in the postnatal period, and significant differences were found in the research stages (P<0.05).
     (3) The duck blood glucose levels were reduced by raising the incubation temperature, and significant difference between the two groups was found at4weeks of age (P<0.05). Higher Incubation temperature had an impact on blood lipid metabolism indicators. The plasma TG, TC and LDL levels of treatment group were higher than the control group. The difference between two groups'LDL levels was significant in embryonic period (P<0.05), and TC was significant in postnatal period (P<0.05).
     (4)Incubation temperature also had some impacts on the duck immune organs development in embryonic stage. The results showed that thymus, spleen and bursa organ index of the treatment group ducks decreased in embryonic period, in which the bursa index differences between the two groups was significant on E25(P<0.05), the spleen index differences of two groups on the day of hatching was significant (P<0.05).Higher incubation temperature also had an impact on the content of IFN-γ and immunoglobulin/total protein ratio, and significant differences of the both indexes between the two groups were found at W2(P<0.05).
     (5) The impact of incubation temperature on the duck embryonic development, also indirectly affect the duck embryo tissue development and blood lipid metabolism during the postnatal period. The results showed that:in the treated group, blood glucose levels revealed a significant negative correlation between the E20and W4(P<0.01), as well as the day of hatching and W4(P<0.01). TG levels in the blood of control group between the day of hatching and W2showed a significant negative correlation (P<0.05), TC levels showed a negative correlation between E20and W2in treatment group, with a positive correlation between E20and W2in the control group.
     (6)The results of analysis of the impact of incubation temperature on duck embryo muscle development showed that the breast and leg muscle of treatment group were larger than that in the control group on the day of E20and W2, which indicated that effect of incubation temperature on the E20duck leg muscle development was obvious. Therefore, the Illumina/Hiseq-2000RNA-seq deep sequencing analysis was used to analysis transcriptome data of duck E20leg muscle, and the analysis showed as follows:clean reads of two groups occupied over98%of the total number of reads. Distribution of Reads in the reference genome database was uniform and random. Growth rate of gene number was gentle, the number of genes detected tended to be saturated. All these results suggested the quality of this sequencing could meet the need of further analysis. In total, we detected335differently expressed genes, in which182genes were up-regulated and153genes were down-regulated. GO significant enrichment analysis showed these differently expressed genes mainly involved in cell composition, molecular function and biological process, which related with changes in cell morphology, cell-mediated immunity, energy metabolism and signal transduction. Signal pathway enrichment results showed that incubation temperature affected the duck embryonic muscle development by affecting the process of protein synthesis. Ribosomal metabolic processes and MAPK signal pathway were important molecular pathways for the effects of incubation temperature on duck embryo skeletal muscle development
引文
[1]Zhu MJ, Ford SP, Nathanielsz PW, et.al. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biology of reproduction.2004,71:1968-1973.
    [2]Christensen V, Grimes J, Donaldson W, et.al. Correlation of body weight with hatchling blood glucose concentration and its relationship to embryonic survival. Poultry Science.2000, 79:1817-1822.
    [3]DuRant S, Hepp G, Moore 1, et.al. Slight differences in incubation temperature affect early growth and stress endocrinology of wood duck (Aix sponsa) ducklings. Journal of Experimental Biology.2010,213:45-51.
    [4]Rehfeldt C, Te Pas M, Wimmers K, et.al.Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. Ⅰ. Regulation of myogenesis and environmental impact, animal.2010,5:703.
    [5]Deeming DC, Ferguson MWJ. Egg incubation:its effects on embryonic development in birds and reptiles. Cambridge University Press.1991.
    [6]Bradley N, Bekoff A.Development of coordinated movement in chicks:Ⅱ. Temporal analysis of hindlimb muscle synergies at embryonic day 10 in embryos with spinal gap transections. Journal of neurobiology.1992,23:420-432.
    [7]G. Velleman S家禽孵化期胚胎肌肉发育研究进展.中国家禽.2010,32:43-45.
    [8]Martell DJ, Kieffer JD. Persistent effects of incubation temperature on muscle development in larval haddock (Melanogrammus aeglefinus L.). Journal of Experimental Biology.2007, 210:1170-1182.
    [9]Moore D, Ferket P, Mozdziak P. Muscle development in the late embryonic and early post-hatch poult. International Journal of Poultry Science.2005,4:138-142.
    [10]Chen W, Wang R, Wan H, et.al. Influence of in ovo injection of glutamine and carbohydrates on digestive organs and pectoralis muscle mass in the duck. British poultry science.2009, 50:436-442.
    [11]Chen W, Tangara M, Xu J, et.al. Developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates. Experimental physiology 2012, 97:861-872.
    [12]Remignon H, Gardahaut M, Marche G, et.al. Selection for rapid growth increases the number and the size of muscle fibres without changing their typing in chickens. Journal of Muscle Research and Cell Motility.1995,16:95-102.
    [13]De Oliveira J, Uni Z, Ferket P. Important metabolic pathways in poultry embryos prior to hatch. World's Poult Sci J.2008,64:488-499.
    [14]Christensen V, Wineland M, Fasenko G, et.al. Egg storage effects on plasma glucose and supply and demand tissue glycogen concentrations of broiler embryos. Poultry science.2001, 80:1729-1735.
    [15]Peebles E, Keirs R, Bennett L, et.al.Relationships among prehatch and posthatch physiological parameters in early nutrient restricted broilers hatched from eggs laid by young breeder hens. Poultry science 2005,84:454-461.
    [16]Rothenberg SS. Laparoscopic splenectomy in children. Surgical Innovation.1998,5:19-24.
    [1 7]成令忠,钟翠平,蔡文琴.现代组织学.上海科学技术文献出版社.2003.
    [18]杨银凤,赵艳芳.鸡胚脾脏的组织发生.内蒙古农业大学学报.自然科学版.2001,22:28-30.
    [19]鲍恩东,陈万芳.鸡胚免疫系统器官组织学变化观察.中国兽医科技.1996,26:26-27.
    [20]顾文艺,陈少莺.早日龄雏鸡免疫功能探讨.中国畜禽传染病.1991:56-58.
    [21]王水莲,刘进辉,孙志良,等.不同时期鸡法氏囊与脾脏的组织学观察.湖南农业大学学报:自然科学版.2005,31:199-202.
    [22]陈芳,王政富,卢玉葵,等.番鸭胚胎期法氏囊的组织发育.中国家禽.2007,29:40-41.
    [23]陈芳,王政富,卢玉葵,等.番鸭胚胎期胸腺的组织发育.黑龙江畜牧兽医.2008:46-47.
    [24]崔雪.鸭胸腺生长发育的组织结构和神经肽及受体表达的研究.四川农业大学,硕士学位论文,2010.
    [25]林树根,王寿昆.雏番鸭胸腺显微与亚微结构.福建农学院学报.1993,22:466-469.
    [26]王丙云,王政富,王宝琴,等.马冈鹅免疫与内分泌器官的发育变化以及酶制剂的作用.黑龙江畜牧兽医.2002,2011.
    [27]Moog F, Glazier HS. Phosphate absorption and alkaline phosphatase activity in the small intestine of the adult mouse and of the chick embryo and hatched chick. Comparative Biochemistry and Physiology Part A:Physiology.1972,42:321-336.
    [28]Feast M, Noble R, Speake B, etal. The effect of temporary reductions in incubation temperature on growth characteristics and lipid utilisation in the chick embryo. Journal of anatomy.1998, 193:383-390.
    [29]Kocamis H, Gahr SA, Batelli L, et.al. IGF-Ⅰ, IGF-Ⅱ, and IGF-receptor-1 transcript and IGF-Ⅱ protein expression in myostatin knockout mice tissues. Muscle & nerve.2002, 26:55-63.
    [30]Moran Jr E.Nutrition of the developing embryo and hatchling. Poultry science.2007, 86:1043-1049.
    [31]Ricklefs RE, Starck JM. Embryonic growth and development. OXFORD ORNITHOLOGY SERIES.1998,8:31-58.
    [32]Romanoff AL, Romanoff AJ. Biochemistry of the avian embryo, a quantitative analysis of prenatal development.1967.
    [33]Christensen V, Donaldson W, Nestor K. Length of the plateau and pipping stages of incubation affects the physiology and survival of turkeys. British poultry science.1999,40:297-303.
    [34]Uni Z, Ferket R. Methods for early nutrition and their potential. World's Poultry Science Journal.2004,60:101-111.
    [35]Johnson A. Reproduction in the female. Sturkie's avian physiology.2000,5:569-596.
    [36]Pons A, Garcia F, Palou A, et.al. Amino-acid metabolism enzyme activities in the liver, intestine and yolk sac membrane of developing domestic fowl. Archives Of Physiology And Biochemistry.1986,94:219-226.
    [37]Uni Z, Ferket P, Tako E, et.al. In ovo feeding improves energy status of late-term chicken embryos. Poultry science.2005,84:764-770.
    [38]Ohta Y, Tsushima N, Koide K, et.al. Effect of amino acid injection in broiler breeder eggs on embryonic growth and hatchability of chicks. Poultry science.1999,78:1493-1498.
    [39]Sugimoto Y, Sanuki S, Ohsako S, et.al. Ovalbumin in developing chicken eggs migrates from egg white to embryonic organs while changing its conformation and thermal stability. Journal of Biological Chemistry.1999,274:11030-11037.
    [40]Surai PF, Speake BK, Noble RC, et.al. Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. Biological trace element research.1999, 68:63-78.
    [41]Speake BK, Noble RC, Murray A. The utilization of yolk lipids by the chick embryo. World's Poult Sci J.1998,54:319-334.
    [42]班谦.家鸡胚胎早期发育过程中DNA甲基化的MSAP分析.石河子大学,硕士学位论文,2009.
    [43]Noble R, Cocchi M. Lipid metabolism and the neonatal chicken. Progress in lipid research. 1990,29:107-140.
    [44]Speake BK. Transport and transformation of yolk lipids during development of the avian embryo. Progress in lipid research.1998,37:1-32.
    [45]Kusuhara S, Ishida K. Histochemical observations on the enzymes of chicken yolk sac membrane. British poultry science.1974,15:391-394.
    [46]Powell K, Deans E, Speake B. Fatty acid esterification in the yolk sac membrane of the avian embryo. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology.2004,174:163-168.
    [47]Yalcin S, Bagdatlioglu N, Bruggeman V, et.al.Acclimation to heat during incubation.2. Embryo composition and residual egg yolk sac fatty acid profiles in chicks. Poultry science.2008, 87:1229-1236.
    [48]Holdsworth C, Wilson TH. Development of active sugar and amino acid transport in the yolk sac and intestine of the chicken. American Journal of Physiology-Legacy Content.1967, 212:233-240.
    [49]Juurlink BHJ, Gibson M.Histogenesis of the yolk sac in the chick. Canadian journal of zoology. 1973,51:509-519.
    [50]Corssmit E, Romijn J, Sauerwein H.Review article:Regulation of glucose production with special attention to nonclassical regulatory mechanisms:a review. Metabolism.2001, 50:742-755.
    [51]Hazelwood RL. Endocrine control of avian carbohydrate metabolism. Poultry science.1971, 50:9-18.
    [52]Chen JF, Mandel EM, Thomson JM, et.al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature.2005,38:228-233.
    [53]Donaldson W. Carbohydrate, hatchery stressors affect poult survival. Feedstuffs 1995,67.
    [54]Sheid B, Hirschberg E. Glutamic dehydrogenase and aspartic and alanine aminotransferase activities in chick embryo liver. American Journal of Physiology--Legacy Content.1967, 213:1173-1176.
    [55]Ballard F, Oliver 1:Glycogen metabolism in embryonic chick and neonatal rat liver. Biochimica et biophysica acta.1963,71:578-588.
    [56]Donaldson W, Christensen V, Krueger K:Effects of stressors on blood glucose and hepatic glycogen concentrations in turkey poults. Comparative Biochemistry and Physiology Part A: Physiology.1991,100:945-947.
    [57]杨永青Perilipin A调控慢性高剂量胰岛素和白细胞介素-6刺激的猪脂肪细胞脂肪分解及其分子机制.西北农林科技大学,博士学位论文,2008.
    [58]Freeman B.The mobilization of hepatic glycogen in< i> Gallus domesticus at the end of incubation. Comparative Biochemistry and Physiology 1969,28:1169-1176.
    [59]Wigmore P, Stickland N. Muscle development in large and small pig fetuses. Journal of Anatomy.1983,137:235.
    [60]Ezekwe M, Opoku J. Postnatal response of liver and skeletal muscle in pigs from gestationally fasted gilts. Growth, development, and aging.GDA.1988,52:47.
    [61]Dwyer C, Stickland N, Fletcher J. The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth. Journal of Animal Science.1994,72:911-917.
    [62]ASHTON C, BAYOL S, MCENTEE G, et.al.Prenatal influences on skeletal muscle development in mammals, birds and fish. Arch Tierz, Dummerstorf.2005,48:04-10.
    [63]Maltby V, Somaiya A, French N, et.al. In ovo temperature manipulation influences post-hatch muscle growth in the turkey. British poultry science.2004,45:491-498.
    [64]Heywood J, McEntee G, Stickland N. In ovo neuromuscular stimulation alters the skeletal muscle phenotype of the chick. Journal of Muscle Research and Cell Motility.2005,26:49-56.
    [65]Lourens A, Van den Brand H, Meijerhof R, et.al. Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poultry science. 2005,84:914-920.
    [66]Lourens A, Van den Brand H, Heetkamp M, et.al. Effects of eggshell temperature and oxygen concentration on embryo growth and metabolism during incubation. Poultry science.2007, 86:2194-2199.
    [67]Leksrisompong N, Romero-Sanchez H, Plumstead P, et.al. Broiler incubation.1. Effect of elevated temperature during late incubation on body weight and organs of chicks. Poultry science.2007,86:2685-2691.
    [68]French N.Modeling incubation temperature:The effects of incubator design, embryonic development, and egg size. Poultry science.1997,76:124-133.
    [69]Van Brecht A, Aerts JM, Degraeve P, et.al. Quantification and control of the spatiotemporal gradients of air speed and air temperature in an incubator. Poultry science.2003,82:1677-1687.
    [70]Joseph N, Lourens A, Moran E. The effects of suboptimal eggshell temperature during incubation on broiler chick quality, live performance, and further processing yield. Poultry science.2006,85:932-938.
    [71]Hulet R. Symposium:Managing the Embryo for Performance Managing Incubation:Where Are We and Why? Poultry science.2007,86:1017-1019.
    [72]De Smit L, Bruggeman V, Debonne M, et.al. The effect of nonventilation during early incubation on the embryonic development of chicks of two commercial broiler strains differing in ascites susceptibility. Poultry science.2008,87:551-560.
    [73]Wilson H, Tulett S:Physiological requirements of the developing embryo:temperature and turning. In Avian incubation. Butterworth (Publishers) Ltd.1990:145-156.
    [74]Goth A, Booth DT.Temperature-dependent sex ratio in a bird. Biology letters.2005,1:31-33.
    [75]Hepp GR, Kennamer RA, Johnson MH. Maternal effects in wood ducks:incubation temperature influences incubation period and neonate phenotype. Functional Ecology.2006, 20:308-314.
    (76] Nilsen N(?).Vascular abnormalities due to hyperthermia in chick embros. Teratology.2005, 30:237-251.
    [77]Delphia JM, Elliott J. The effect of high temperature incubation upon the myocardial glycogen in the chick embryo. Journal of embryology and experimental morphology.1965,14:273-280.
    [78]Bensaude O, Pinto M, Dubois M, et.al. Protein denaturation during heat shock and related stress. Stress Proteins:Induction and Function, Springer-Verlag, Berlin.1990:89-99.
    [79]Peterka M, Peterkova R, Likovsky Z.Teratogenic and lethal effects of long-term hyperthermia and hypothermia in the chick embryo. Reproductive Toxicology.1996,10:327-332.
    [80]Burggren WW, Pinder AW. Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annual review of physiology.1991,53:107-135.
    [81]Christensen V, Wineland M, Yildrum I, et.al. Incubator temperature and oxygen concentrations during the plateau stage in oxygen uptake affect turkey embryo plasma T and T concentrations. Int J Poult Sci.2005,4:4.
    [82]Janke O, Tzschentke B, Boerjan M. Comparative investigations of heat production and body temperature in embryos of modern chicken breeds. Avian and Poultry Biology Reviews.2004, 15:3-4.
    [83]Manlove CA, Hepp GR. Patterns of nest attendance in female wood ducks. The Condor 2000, 102:286-291.
    [84]Christensen V, Bagley L. Efficacy of fertilization in artificially inseminated turkey hens. Poultry science.1989,68:724-729.
    [85]Piestun Y, Harel M, Barak M, et.al. Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. Journal of Applied Physiology.2009,106:233-240.
    [86]Booth DT. Effect of temperature on development of mallee fowl Leipoa ocellata eggs. Physiological zoology.1987:437-445.
    [87]Hiebert SM, Noveral J. Are chicken embryos endotherms or ectotherms? A laboratory exercise integrating concepts in thermoregulation and metabolism. Advances in Physiology Education.2007,31:97-109.
    [88]Vleck C, Vleck D. Embryonic energetics. Avian Energetics and Nutritional Ecology (C Carey, Ed) Chapman and Hall, New York.1996:417-460.
    [89]Hopkins BC, DuRant SE, Hepp GR, Hopkins WA:Incubation temperature influences locomotor performance in young wood ducks (Aix sponsa). Journal of Experimental Zoology Part A:Ecological Genetics and Physiology.2011,315:274-279.
    [90]Uni Z, Gal-Garber O, Geyra A, et.al. Changes in growth and function of chick small intestine epithelium due to early thermal conditioning. Poultry science.2001,80:438-445.
    [91]Yahav S, Collin A, Shinder D, Picard M:Thermal manipulations during broiler chick embryogenesis:Effects of timing and temperature. Poultry science.2004,83:1959-1963.
    [92]Christensen V, Wineland M, Yildirum 1, et.al. Incubator Temperature and Oxygen Concentration at the Plateau Stage Affect Cardiac Health of Turkey Embryosl. Journal of Animal and Veterinary Advances.2004,3.
    [93]Puvadolpirod S, Thaxton J. Model of physiological stress in chickens 4. Digestion and metabolism. Poultry science.2000,79:383-390.
    [94]Whitehead P.Respiration of Crocodylus johnstoni embryos. Wildlife management:crocodiles and alligators Surrey Beatty and Sons, Sydney, Australia.1987:473-497.
    [95]Webb G, Beal A, Manolis S, Dempsey K. The effects of incubation temperature on sex determination and embryonic development rate in Crocodylus johnstoni and C. porosus. Wildlife management:crocodiles and alligators.1987:507-531.
    [96]Angilletta Jr MJ, Winters RS, Dunham AE. Thermal effects on the energetics of lizard embryos: implications for hatchling phenotypes. Ecology.2000,81:2957-2968.
    [97]Bar-Shira E, Sklan D, Friedman A:Establishment of immune competence in the avian GALT during the immediate post-hatch period. Developmental & Comparative Immunology.2003, 27:147-157.
    [98]Bockman DE, Boydston WR, Beezhold DH. THE ROLE OF EPITHELIAL CELLS IN GUT ASSOCIATED IMMUNE REACTIVITY*. Annals of the New York Academy of Sciences.2006,409:129-144.
    [99]Owen RL. M cells--entryways of opportunity for enteropathogens. The Journal of experimental medicine.1994,180:7-9.
    [100]Honjo K, Hagiwara T, Itoh K, et.al. Immunohistochemical analysis of tissue distribution of B and T cells in germfree and conventional chickens. The Journal of veterinary medical science/the Japanese Society of Veterinary Science.1993,55:1031.
    [101]Bar-Shira E, Friedman A. Development and adaptations of innate immunity in the gastrointestinal tracl of the newly hatched chick. Developmental & Comparative Immunology.2006,30:930-941.
    [102]Shira EB, Sklan D, Friedman A. Impaired immune responses in broiler hatchling hindgut following delayed access to feed. Veterinary immunology and immunopathology.2005, 105:33-45.
    [103]Mikec M, Bidin Z, Valentic A, et.al.Influence of environmental and nutritional stressors on yolk sac utilization, development of chicken gastrointestinal system and its immune status. World's Poultry Science Journal.2006,62:31-40.
    [104]Hegde PS, White 1R, Debouck C.Interplay of transcriptomics and proteomics. Current opinion in biotechnology.2003,14:647-651.
    [105]张春兰,秦孜娟,王桂芝,等.转录组与RNA-Seq技术.生物技术通报.20]2:5]-56.
    [106]Ahluwalia A, Hurteau J, Bigsby R, et.al.DNA methylation in ovarian cancer.Ⅱ. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecologic oncology.2001,82:299.
    [107]赵学明,王靖宇,陈涛,等.后基因组时代的代谢工程:机遇与挑战.生物加工过程.2004,2:1-7.
    [108]Herrgard MJ, Swainston N, Dobson P, et.al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature biotechnology.2008,26:1155-1160.
    [109]魏利斌,苗红梅,张海洋.芝麻发育转录组分析.中国农业科学.2012,7:003.
    [1]0] 王刚.棉花幼苗盐胁迫条件下Solexa转录组测序结果的分析及验证.山东农业大学,硕士学位论文,201].
    [111]Canovas A, Rincon G, Islas-Trejo A, et.al. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mammalian Genome.2010,21:592-598.
    [112]姚娜,张文广,张兵,等.利用RNA-Seq技术筛选不同海拔地区山羊转录组SNP. In生态环境与畜牧业可持续发展学术研讨会暨中国畜牧兽医学会2012年学术年会和第七届全国畜牧兽医青年科技工作者学术研讨会会议论文集——T07家畜微生态与健康养殖专题.万方数据资源系统;2012
    [113]Shafey T. Effect of lighted incubation on embryonic growth and hatchability performance of two strains of layer breeder eggs. British poultry science.2004,45:223-229.
    [114]Molenaar R, Hulet R, Meijerhof R, et.al. High eggshell temperatures during incubation decrease growth performance and increase the incidence of ascites in broiler chickens. Poultry science.2011,90:624-632.
    [115]Christensen V, Wineland M, Grimes J, et.al. Effect of incubator temperature and oxygen concentration at the plateau stage in oxygen consumption on turkey embryo muscle growth and development. International Journal of Poultry Science.2007,6:406-412.
    [116]闫俊书,周维仁,宦海林,等.家禽肌纤维的生长发育规律及其调控.江苏农业科学.2010,5:105.
    [117]Hammond CL, Simbi BH, Stickland NC. In ovo temperature manipulation influences embryonic motility and growth of limb tissues in the chick (Gallus gallus). Journal of Experimental Biology.2007,210:2667-2675.
    [118]Werner C, Riegel J, Wicke M. Slaughter performance of four different turkey strains, with special focus on the muscle fiber structure and the meat quality of the breast muscle. Poultry science.2008,87:1849-1859.
    [119]秦四海.种蛋孵化前的管理技术.中国家禽.2004,26:15-16.
    [120]明道绪.生物统计附实验设计.中国农业出版社.2002.
    [121]Moraes V, Malheiros R, Bruggeman V, et.al. Effect of thermal conditioning during embryonic development on aspects of physiological responses of broilers to heat stress. Journal of Thermal Biology.2003,28:133-140.
    [122]French N. Effect of short periods of high incubation temperature on hatchability and incidence of embryo pathology of turkey eggs. British poultry science.2000,41:377-382.
    [123]Tzschentke B. Attainment of thermoregulation as affected by environmental factors. Poultry science.2007,86:1025-1036.
    [124]文凤云,董淑丽,李晓丽,等.热应激对獭免血液生化指标的影响[J].中国养兔2009,3:17-19.
    [125]李绍钰,张敏红,张子仪,等.热应激对肉用仔鸡生产性能及生理生化指标的影响.华北农学报.2000,1 5:140-144.
    [126]刘凤华,刘四朝,王占贺,等.蛋鸡热应激中代谢指标的动态变化及相关性.中国畜牧杂志2003,39:15-16.
    [127]周杰,檀其梅.高温对肉用仔鸡生产性能和某些血清生化指标的影响.畜牧与兽医.1997,29:57-59.
    [128]王勇.高温对成年家兔生长和胴体性状的影响.中国养兔杂志.1995:35-36.
    [129]李军乔.高温环境对肉仔鸡血液生化指标,热应激蛋白(HSP72)转录及肉品质的影响[D].河北农业大学,2004.
    [130]董淑丽,邓雯,雷雪芹,等.热应激对动物理化特性及生产性能的影响.河南科技大学学报(农学版).2003,23.
    [131]董淑丽,王占彬,雷雪芹,等.热应激对动物血液生化指标的影响.家畜生态.2004,25:54-56.
    [132]王启军.高温环境对不同生长阶段北京油鸡脂肪沉积及脂质代谢的影响.杨凌:西北农林科技大学,2006.
    [133]Noble R:Lipid metabolism in the chick embryo. Proceedings of the Nutrition Society.1986, 45:17-25.
    [134]Yahav S, McMurtry J. Thermotolerance acquisition in broiler chickens by temperature conditioning early in life--the effect of timing and ambient temperature. Poultry science.2001, 80:1662-1666.
    [135]Bennett L, Keirs R, Peebles E, et.al. Methodologies of tissue preservation and analysis of the glycogen content of the broiler chick liver. Poultry science.2007,86:2653-2665.
    [136]Fasenko G, Christensen V, Wineland M, et.al. Examining the effects of prestorage incubation of turkey breeder eggs on embryonic development and hatchability of eggs stored for four or fourteen days. Poultry science.2001,80:132-138.
    [137]Starck JM, Ricklefs RE. Avian growth and development:evolution within the altricial-precocial spectrum. Oxford University Press, USA; 1998.
    [138]Vieira S, Moran Jr E. Effects of egg of origin and chick post-hatch nutrition on broiler live performance and meat yields. World's Poult Sci J.1999,55:125-142.
    [139]Ndong D, Chen Y-Y, Lin Y-H, et.al.The immune response of tilapia< i> Oreochromis mossambicus and its susceptibility to< i> Streptococcus iniae under stress in low and high temperatures. Fish & Shellfish Immunology.2007,22:686-694.
    [140]崔亚利,郑世学,胡永芬,等.热应激后雏鸡免疫器官组织学结构观察.河北农业大学学报.2004,27.
    [141]宋智娟,赵国先,张艳铭.热应激对家兔的影响及其营养调控.饲料博览.2006:19-22.
    [142]Iqbal A, Decuypere E, Abd El Azim A,et.al.Pre-and post-hatch high temperature exposure affects the thyroid hormones and corticosterone response to acute heat stress in growing chicken (< i> Gallus domesticus). Journal of thermal biology.1990,15:149-153.
    [143]翟少伟,刘福柱.热应激对鸡免疫功能的影响.河南畜牧兽医.2000.
    [144]姜爱庆,佘锐萍,刘凤华,等.中药清凉散冲剂对鸡血液流变学3个指标的影响.中国畜牧兽医学会兽医病理学分会第十三次学术讨论会和中国病理生理学会动物病理生理专业委员会第十二次学术讨论会论文集.2005.
    [145]文贵辉,李丽立,张彬,等.白术粗多糖对樱桃谷鸭免疫器官的影响.嘉应学院学报2009,27:60-64.
    [146]李国勤,卢立志,罗锦标,等.缙云麻鸭与绍兴鸭免疫器官与细胞免疫功能比较研究.中国家禽2008,30:19-21.
    [147]郭新华,邱妍,严桂芹,等.板蓝根多糖对鸡新城疫抗体滴度和免疫器官的影响.饲料广角.2007,11:20-22.
    [148]刘映娴,安立龙,许英梅,等.热应激对鸡生理机能的影响.饲料工业.2007,28.
    [149]张乐萃,张刚:抗应激药物对热应激肉鸡免疫器官的组织学影响.中国家禽.1998,20:11-13.
    [150]吴建设,呙于明,周毓平.日粮铁缺乏对肉仔鸡生长性能和免疫功能影响的研究.动物营养学报.1999,11:19-24.
    [151]Du W-G, Ji X:The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. Journal of Thermal Biology.2003,28:279-286.
    [152]陈玥.天府肉鸭脾脏生长发育及细胞增殖与凋亡的研究.四川农业大学,硕士学位论文,2011.
    [153]李亚杰,赵献军.益生菌·黄芪多糖微胶囊制剂对肉仔鸡生长性能·免疫器官指数及血液生化指标的影响.安徽农业科学2007,35:100-103.
    [154]李素芬,罗绪刚.有机铬对热应激蛋鸡产蛋和免疫功能的影响.营养学报2001,23:]17-]21.
    [155]杨玉荣,郑世民,姜义宝,等.益生菌与新城疫疫苗协同对雏鸡局部体液免疫球蛋白相对含量的影响Journal of Fujian Agrlculture and Forestry University (Natural Science Edition).2008,37.
    [156]刘淑英,齐景伟,张有存,等.不同光照条件下褪黑素对鸡鸭外同血白细胞和γ-IFN含量变化的影响[J].中国家禽.2006,28:73-75.
    [157]祁云霞,刘永斌,荣威恒.转录组研究新技术:RNA-Seq及其应用HEREDITAS (Beijing). 2011,33:1191-1202.
    [158]Li S, Wang C, Yu W, et.al. Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks. PloS one.2012,7:e36592.
    [159]Li R, Yu C, Li Y, et.al. SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics.2009,25:1966-1967.
    [160]许国强,林岳光,李刚,等.人工诱发合浦珠母贝雌核二倍体发生及"Hertwig效应”的初步研究.热带海洋学报.]990.
    [161]李茂照,孙海锋.企鹅扇贝与马氏珠母贝人工杂交育苗成功.水产科技情报.2005:24-25.
    [162]何毛贤,沈琪,林岳光,等.合浦珠母贝二倍体,三倍体和非整倍体群体的基因杂合度与生长比较.热带海洋学报.2002,21:55-62.
    [163]白应林,胡康荃,苗毓华.枯草杆菌168核糖体蛋白质基因突变.遗传学报,1985,12:102-105.
    [164]Deprem T, Gulmez N. The effects of in ovo insulin-like growth factor-1 on embryonic development of musculus longus colli dorsalis in Japanese Quail. Turkish Journal of Veterinary and Animal Sciences.2007,31:233.
    [165]段宇.胰岛素样生长因子-1研究进展[J].国外医学:内分泌学分册.2001,21:305-307.
    [166]郑师陵,叶贤坤,王青.不同运动训练量与骨骼肌细胞凋亡的实验研究.中国实验诊断学.2001.5:310-312.
    [167]McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. Biochemical and biophysical research communications.1997,239:357-366.
    [168]杨市荣,刘世民,刘品,等.雏鸡服用益生素后免疫器官指数及局部体液免疫球蛋白相对含量的动态变化.2005.
    [169]Davoli R, Braglia S.Molecular approaches in pig breeding to improve meat quality. Briefings in functional genomics & proteomics.2007,6:313-321.
    [170]Kaufman RJ. Orchestrating the unfolded protein response in health and disease. Journal of Clinical Investigation.2002,110:1389-1398.
    [171]Wong W, Brostrom M, Kuznetsov G,et.al. Inhibition of protein synthesis and early protein processing by thapsigargin in cultured cells. Biochemical Journal.1993,289:71.
    [172]李焕春,肖国强.内质网应激和热休克与运动.体育学刊.2009,16:109-112.
    [173]潘林林.基于新一代测序技术的生后小鼠卵巢发育过程中基因表达谱变化的研究.浙江大学,博士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700