用户名: 密码: 验证码:
油松居群对生境差异的响应和适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油松是中国特有乡土树种,是北方温带针叶林中主要建群种。了解该物种的适应性和变异特征对油松资源管理和利用具有重要意义。本文以8省10样地天然油松居群及承德人工林为研究对象,从分子、生理、表型三个水平进行研究,借助方差分析、相关性分析、主成分分析等手段,对不同生境差异下天然油松次生林及人工林的DNA水平多态性、油松针叶生理性状、表型性状、矿物质含量等进行分析,探究不同环境胁迫下油松的变异特征和适应机制。主要研究结果如下:
     确定CTAB法为油松针叶DNA提取的最佳方法;建立了油松ISSR PCR最佳的反应体系(20μL):2μL10×Buffer、1.0U Taq DNA聚合酶、Mg~(2+)2.0mmol/L、模板DNA100μg/20μL、0.20mmol/L dNTPs、0.4μmol/L引物。扩增程序为94℃预变性5min,94℃变性30s,49℃~55℃退火45s,72℃延伸2min,35个循环;72℃再延伸7min;4℃保温。
     不同地理分布区天然油松居群多态位点比率差异明显;Shannon多样性指数范围为0.192~0.249,平均为0.217。居群间变异占居群总变异的47.55%。聚类分析表明,河南宝天曼、承德大窝铺、宁夏苏峪口和甘肃冶力关居群为一组,辽宁医巫闾山、山西沁源灵空山、陕西蔡家川林场、山西和顺云龙公园和山西汶水三道川林场居群为一组,山东蒙山居群独立为一组。经Mantel检验,油松居群间地理距离和遗传距离不存在显著相关性。温度相关因子(年均温、1月均温、极端最低温)、海拔及年降雨量显著影响天然油松居群DNA水平多态性和生理表型性状。天然油松居群分子变异存在一定的地理变异规律。不同环境因子影响下油松生理、表型等性状表现出响应地理分布区环境的变异。研究结果表明,地理隔离不是油松居群遗传变异的主要原因,温度和水分显著影响天然油松居群DNA水平多态性;群落物种多样性与油松居群DNA水平多态性关联密切。
     不同海拔天然油松居群DNA水平多态性差异显著。响应海拔变化,1274m~1354m海拔的油松居群DNA水平多态性最高;不同海拔高度的生态因子、低基因流等对油松居群间的遗传分化影响较大。油松针叶脯氨酸和可溶性糖含量在高、低两个海拔区有显著变异。油松针叶木质素含量、纤维素含量变异程度随海拔升高而增加。油松针叶表型性状随着海拔变化均具有显著差异。结果说明,1000m~1354m海拔油松居群DNA水平多态性高;油松针叶生理性状、表型性状受海拔生境影响显著,中海拔区域油松生理活性高,抗逆性强。
     不同群落类型天然油松居群Shannon信息指数大小排序为白桦油松混交林>白桦落叶松油松混交林>油松纯林>白桦蒙古栎油松混交林;4群落类型油松居群DNA水平多态性间存在明显差异。油松居群DNA水平多态性与油松枝下高及群落辛普森指数呈显著正相关性。响应油松居群土壤矿物质含量增加,油松居群DNA水平多态性具有降低趋势。在不同群落类型间,油松针叶矿物质含量存在显著或极显著性差异。油松针叶比叶面积、干物质含量、叶面积、长/宽等性状在群落类型间存在显著或极显著性差异。说明,油松白桦混交林相对于其他3种群落类型的油松居群DNA水平多态性更高。不同群落类型生境影响油松生理性状和表型性状。
     不同受害程度人工油松居群DNA水平多态性响应受害程度加深而增加。总遗传变异中,71.04%存在于居群内。响应油松受害程度增加,油松针叶脯氨酸含量减少,受害轻和受害中度油松居群含量相似,差异不显著。受害最重林分叶干物质含量及比叶面积值均最高。说明,不同受害程度油松居群表现出不同的DNA水平多态性,响应受害程度加深,油松居群DNA水平多态性增加,油松抗逆性降低,生理活动受到限制。
     通过主成分分析,概括了不同生境油松居群及环境因子的主成分。确立了天然油松居群DNA水平多态性高的地理分布区及主要胁迫环境因子;温度、水分相关因子显著影响天然油松居群DNA水平多态性及针叶生理表型性状;确定中海拔高度油松居群DNA水平多态性、针叶理化性状指标最高,是油松生长最佳海拔生境;获得随受害程度加深,油松居群的DNA水平多态性增加变异规律。总之,利用主成分分析,可有效概括油松居群DNA水平多态性、生理性状、表型性状等指标,进而可确定油松居群响应环境差异或胁迫的变异规律和适应性变异。
Chinese pine (Pinus tabulaeformis Carr.), a species endemic to China, is a mainconstructive species of temperate coniferous forest in northern China. It is important tomake clear the adaptability and variation characteristics of the pine for pine resourcemanagement and utilization. In this study, plant survey and sampling were performed inten plots of natural pine populations in eight Provinces and pine plantations in Chengdecity, Hebei province. The genetic polymorphism, physiological traits, coniferousphenotypic traits and mineral contents were analyzed by molecular marker technique ofinter-simple sequence repeat (ISSR), analysis of variance, correlation analysis inconjunction with principal component analysis. By analyzing the variation characteristicsof Chinese pine in different habitat conditions, the response mechanisms of Chinese pine todifferent environmental stress were investigated. The results are as follows:
     The results showed that the modified CTAB was suitable for DNA extraction ofChinese pine. A reaction system with volume of20μL contains2μL10×PCR Buffer(Mg~(2+)free),1.0U Taq DNA polymerase,2.0mmol·L-1Mg~(2+),100ng template DNA,0.20mmol·L-1dNTPs and0.4μmol·L-1primer. The optimal amplification program was5min ofpre-denaturalization at94℃;35cycles of30s for denaturalization at94℃,45s of anneal at49℃~55℃,2min of extension at72℃; and7min of extension at72℃in the final cycle
     There was significant differences in polymorphic loci ratio of natural Chinese pinepopulations among different geographic distribution areas. With a range of0.1923~0.2490,the average value of Shannon’s information indexes was0.2165. Analysis of molecularvariance (AMOVA) showed that inter-population variation was47.55%of the totalmolecular variation. Mantel test showed that the correlation of the pine populationsbetween genetic distance and geographic distance was not significant. Temperature factors(annual mean temperature, the average temperature in January, extreme lowesttemperature), elevation and rainfall significantly influenced the genetic polymorphism andphysiological characters. There were general geographic variation regularities in molecularvariation of the natural Chinese pine populations. In respond to environmental differenceamong different geographical distribution areas, the definite variation of genetic,physiological and phenotypic traits aroused, but the geographic distance was not the main reason of those variations. The result showed that the genetic diversity of Chinese pinepopulations was closely associated with temperature and water conditions, and the geneticpolymorphism were significantly influenced by the species diversity.
     The genetic polymorphism level of Chinese pine populations at different altitudes hadsignificantly difference. Chinese pine populations at MH altitude (1274m~1354m) hadthe highest level of genetic polymorphism. Ecological factor at different altitude and lowgene flow greatly influenced genetic differentiation. There was a significant variation ofproline and soluble sugar content in the pine’s leaf between low and high altitude areas.Variation of lignin and cellulose contents increased with elevation changes. Phenotypictraits of Chinese pine population were significantly different in response to elevationchanges. Results indicated that Chinese pine populations in the mid-elevation had thehighest genetic polymorphisms level. Physiological and phenotypic traits of naturalChinese pine populations were significantly affected by habitats conditions at differentaltitudes.
     The order of Shannon's information index in Chinese pine populations of differentforest community types was as follows: Chinese pine-Bitch mixed forest>Chinese pine-Larch-Bitch mixed forest>Chinese pine pure forest>Chinese pine-Mongolian oak-Bitch mixed forest. Genetic polymorphism of Chinese pine’s populations among thecommunity types had significant differences. Genetic polymorphism of Chinese pinepopulations was significantly and positively correlated with heights under branch ofChinese pine and Simpson indices of the community. The level of genetic polymorphismsdecreased with increasing soil mineral content. The mineral content of Chinese pine leaf indifferent community types had a significant or most significant difference. Coniferoustraits of Chinese pine leaf, including specific leaf area, dry matter content, leaf area,length/width, were significantly or most significantly different between community types.The level of genetic polymorphisms of Chinese pine-birch mixed forest was higher thanthat of other three community types. Thus the physiological traits and phenotypiccharacteristics of Chinese pine leaf were influenced by different population habitat types.
     Genetic polymorphism level of the artificial Chinese pine populations increased withthe increasing of damage degrees.71.04%of total genetic variation was fromintra-population while28.96%was from inter-population. The higher the damage degrees,the lower the proline content of Chinese pine. There was no significant difference inproline content of Chinese pine between populations with the middle damage degree andpopulations with the most serious damage degree. There were the highest level of leaf drymatter contents (LDMC) and specific leaf areas (SLA) of Chinese pine in population withthe most serious damage degrees. The results indicated that the level of geneticpolymorphism was in response to different damage degrees of Chinese pine population.With increasing of the damage degrees, the levels of genetic polymorphism increased, stress resistance decreased and physiological activity strengthened.
     Based on principal components analysis, geographic distributions of high levelgenetic polymorphism populations and major stressing factors were identified. Thisresearch showed that temperature and moisture factors significantly influenced geneticpolymorphism and physiological phenotypic traits of Chinese pine. In the mid-altitude, thelevels of genetic polymorphism and the value of physical-chemical indicators of Chinesepine population were the highest. Chinese pine populations adapted best to the growthcondition in mid-altitude. The deeper the degree of damage, the higher the level of geneticpolymorphism of Chinese pine populations. In summary, the genetic polymorphism,physiological traits, phenotypic traits of Chinese pine were effectively summed up on thebasis of principal component analysis, and furthermore to determine variation and adaptivemechanism of Chinese pine populations in response to environmental discrepancies orstresses.
引文
[1]徐化成,孙肇凤,郭广荣,等.油松天然林的地理分布和种源区的划分[J].林业科学,1981,17(3):258-270.
    [2]徐化成.油松地理变异和种源选择[M].北京:中国林业出版社,1992.
    [3]徐化成,唐谦,张淑娟,等.油松气候生态型的研究[J].林业科学,1986,22(1):10-20.
    [4]苗艳明,刘任涛,毕润成.山西霍山油松种群结构和动态研究[J].武汉植物学研究,2008,26(3):288-293.
    [5]黄三祥,赵秀海.山西太岳山天然油松林主要木本植物种群结构及空间分布格局研究[J].林业资源管理,2009,(4):41-47.
    [6]苗方琴,汪金松,孙继超,等.太岳山油松天然林不同土层的碳氮转化速率[J].应用与环境生物学报,2010,16(4):519-522.
    [7]张笑菁,赵秀海,康峰峰,等.太岳山油松天然林林木的空间格局[J].生态学报,2010,30(18):4821-4827.
    [8]侯琳,雷瑞德.完全封育方式对天然油松林的影响[J].生态学报,2007,27(1):288-294.
    [9]李毳,柴宝峰.基于分子标记的油松种群遗传保护分析[J].应用与环境生物学报,2009,15(4):459-463.
    [10]王意龙,李毳,柴宝峰.山西高原天然油松群体过氧化物酶和多酚氧化酶分析[J].生态环境,2007,16(2):530-532.
    [11]李毳,柴宝峰.油松叶绿体DNA间隔序列特点及系统学意义[J].应用与环境生物学报,2010,16(2):143-147.
    [12]李毳,柴宝峰,王孟本.华北地区油松种群遗传多样性分析[J].植物研究,2006,26(1):98-102.
    [13] Barrett M R, Kalin M, Baltisberger M, et al. No genetic variation detected within isolated relictpopulations of Saxifraga cernua in the Alps using RAPD markers [J]. Molecular ecology,1998,7(11):1519-1527.
    [14] Boshier D H, Chase M R, Bawa K S. Population genetics of Cordia alliodora (Boraginaceae), Aneotropical tree.2. Matingsystem[J]. American Journal of Botany,1995,82(4):476-483.
    [15] Chalmers K J, Waugh R, Sprent J I, et al. Detection of genetic variation between and withinpopulation of Gliricidia sepium and G. Maculata using RAPD markers[J]. Heredity,1992,69:465-472.
    [16] Loveless M D, Hamrick J L. Ecological determinants of genetic structure in plant populations [J].Annual Review of Ecology and Systematics,1984,15:65-95
    [17] Reisch C, Poschlod P. Clonal diversity and subpopulation structure in central European relictpopulations of Saxifraga paniculata MILL.(Saxifragaceae)[J]. Feddes Repertorium,2004,3(4):239-247.
    [18] Forcioli D, Saumitou-laprade P, Valero M, et al. Distribution of chloroplast DNA Diversity withinand among populations in gynodioecious Beta vulgari ssp. Maritima (Chenopodiaceae)[J].Molecular Ecology,1998,7(9):119-1204.
    [19] Navarro E, Navarro E, Jaffre T, et al. Microsymniotic Frankia strains in New Caledonia is relatedto soil type and to host-plant species [J]. Molecular Ecology,1999,8(11):1781-1788.
    [20] Streiff R, Streiff R, Labbe T, et al. Within-population genetic structure in Quercus robur L. andQuercus petraea (Matt.) Liebl. Assessed with isozyme and microsatelites[J]. Molecular Ecology,1998,7(3):317-328.
    [21] Huff D R, Quinn J A, Higgins B, et al. Random amplified polymorphic DNA (RAPD) variationamong native little bluestem Schizachyrium scoparium (Michx.)[J]. Molecular Ecology,1998,7(3):1591-1597.
    [22] Nevo E, Zohary D, Brow A D H, Harberm. Genetic diversity and environmental associations ofwild barly, Hordeum spotaneum in Israel[J]. Evolution,1979,33(3):815-833.
    [23] Nevo E, Brow A D H, Zohary D, et al. Microgeographic edaphic differentiation in allozymepolymorphisms of wild barley (Hordeum spotaneum, Poaceae)[J]. Plant Systematics andEvolution,1981,138(3):287-292.
    [24] Nevo E, Beilesa. Genetic parallelism of protein polymorphism in nature: ecological test of theneutral theory of molecular evolution[J]. Biological Journal of the Linnean Society,1988,35(3):229-245.
    [25] Nevo E, Elkaheria, Garty J, et al. Natural selection causes microscale allozyme diversity in wildbarley and alichen at 'Evolution Canyon', Mt. Carmel, Israel[J]. Heredity,1997,78:373-382.
    [26] Li Y C, Fahima T, Beiles A, et al. Microclimatic stress and adaptive DNA differentiation in wildemmer wheat, Triticum dicoccoides[J]. Theoretical and Applied Genetics,1999,98(6-7):873-883.
    [27] Li Y C, Roder M S, Fahima T, et al. Natural selection causing microsatellite divergence in wildemmer wheat at the ecologically variable microsite at Ammiad, Israel [J]. Theoretical and AppliedGenetics,2000,100(7):985-999.
    [28] Li Y C, Roder M S, Fahima T, et al. Edaphic microsatellite DNA divergence in wild emmer wheat,Triticum dicoccoides, at a microsite: Tabigha, Israel [J]. Theoretical and Applied Genetics,2000,101(7):1029-1038.
    [29] Li Y C, Krugman T, Fahima T, et al. Spatiotemporal allozyme divergence caused by aridity stressin a natural population of wild wheat, Triticum dicoccoides, at the Ammiad microsite, Israel[J].Theoretical and Applied Genetics,2001,102(6-7):853-864.
    [30] Fahima T, Roder M S, Wendehake K, et al. Microsatellite polymorphism in natural populations ofwild emmer wheat, Triticum dicoccoides, in Israel [J]. Theoretical and Applied Genetics.2002,104(1):17-29.
    [31] Gupta P K, Sharma P K, Balyan H S, et al. Polymorphism at rDNA loci in barley and its relationwith climatic variables [J]. Theoretical and Applied Genetics.2002,104(2):473-481.
    [32]珊丹,赵萌莉,韩冰,等.不同放牧压力下大针茅种群的遗传多样性[J].生态学报,2006,26(10):3175-3183.
    [33]王静,杨持,尹俊,等.冷蒿种群在放牧干扰下遗传多样性的变化[J].生态学报,2004,24(11):2465-2471.
    [34]赵念席,高玉葆,王金龙,等.大针茅种群RAPD多样性及其与若干生态因子的相关关系[J].生态学报,2006,26(5):1312-1319.
    [35]操国兴,钟章成,谢德体,等.四川大头茶在不同群落中的遗传分化及适合度成分[J].生态学报,2005,25(1):13-17.
    [36]葛菁萍,林鹏.盐度变化对秋茄种群遗传分化的影响[J].生态学报,2004,24(4):730-735.
    [37]王丽,杨娟,郭晶,等.用RAPD检测华山新麦草自然居群的遗传结构和居群分化[J].生态学报,2005,25(4):719-726.
    [38]红雨,王林和,梁小荣.不同生境臭柏种群的遗传多样性分析及其与环境因子的相[J].干旱区资源与环境,2006,20(3):184-187.
    [39]李钧敏,金则新,钟章.不同海拔高度大血藤群体遗传多样性的RAPD分析及其与环境因子的相关性[J].生态学报,2004,24(3):567-573.
    [40]唐晓萌,代玉梅,熊智,等.自然环境胁迫对旱冬瓜Frankia菌基因多样性的影响[J].应用生态学报2003,14(10):1743-1746.
    [41]赵桂仿、Felber F、 Kuepfer P.阿尔卑斯山高山-亚高山过渡区高山黄花茅的群体遗传结构和分化研究[J].植物分类学报,2001,39(1):20-30.
    [42]李丹,彭少麟.三个不同海拔梯度马尾松种群的遗传多样性及其与生态因子的相关性[J].生态学报,2001,21(3):415-421.
    [43]陈小勇,庞勇鸥,邱琮华.大气硫氧化物污染对早熟禾种群遗传结构的影响[J].中国环境科学,2000,20(2):124-127.
    [44]张军丽王峥峰,王伯荪,等.鹤山人工林大叶相思种群遗传结构的AFLP分析[J].应用生态学报.2001,12(4):491-495.
    [45]张军丽,王峥峰,王伯荪,等.黑石顶南亚热带常绿阔叶林优势种群黄果厚壳桂的AFLP分析[J].生态学报,2001,21(3):391-398.
    [46]周志强,郝雨,刘彤,等.大兴安岭北段天然樟子松林遗传多样性与主要生态因子的相关性研究[J].北京林业大学学报,2006,28(6):22-27.
    [47] Joshua J, Haag, Malcolm D, et al. Antagonistic interactions between competition and insectherbivory on plant growth[J]. Journal of Ecology,2004,92(1),156-167.
    [48] Constabel C P, Bergey D R, Ryan C A. Systemin activate synthesis of wound-inducible tomato leafpolyphenol oxidase via the octade canoid defense signaling pathway[J]. Proceedings of theNational Academy of Science of USA Plant Biology,1995,92(2):407-411.
    [49] Constabel C P, Peter C, Ryan C A. A survey of wound-and methyl jasmonate-induced leafpolyphenol oxidase in Crop plants[J]. Phytochemistry (Oxford),1998,47(4):507-511.
    [50]李镇宇,陈华盛,袁晓环,等.油松对赤松毛虫的诱导化学防御[J].林业科学,1998,34(2):43-49
    [51]颜增光,阎云花,王琛柱.棉铃虫和烟青虫取食诱导的烟草挥发物吸引棉铃虫齿唇姬蜂[J].科学通报,2005,50(12):1220-1227.
    [52]贾贞,宋占午,金祖荫,等.山楂叶螨危害对海棠叶片POD的影响[J].西北植物学报,2004,24(11):2136-2139.
    [53]董钧锋,张继红,王琛柱.植物次生物质对烟青虫和棉铃虫食物利用及中肠解毒酶活性的影响[J].昆虫学报,2002,45(3):296-300.
    [54]王琛柱.棉铃虫幼虫对氨基酸、糖类和棉花次生物质的取食选择性[J].植物保护,2001,27(1):3-5.
    [55]李捷.棉铃虫、烟青虫对几种常见植物挥发性次生物质的触角电位反应比较[J].山西农业大学学报,2000,20(1):108-111.
    [56]成卫宁,李长青,李修炼,等.美洲斑潜蝇寄主植物生化抗性机制的初步研究[J].西北农业学报2004,13(4):73-76.
    [57] Wang C Z, Effects of gossypol and tannic acid on the growth and digestion physiology of cottonbollworm larvae[J]. Acta Phytophylacica Sinica.,1997.24(1):13-18.
    [58]曾乃燕,何军贤,赵文,等.低温胁迫期间水稻光合膜色素与蛋白水平的变化[J].西北植物学报,2000,20(1):8-14.
    [59] Elger A, Deboer T, Hanley M E. Invertebrate herbivory during the regeneration phase: experimentswith a freshwater angiosperm [J]. Journal of Ecology,200795(1):106-114.
    [60]郭蔚岚,高述民,李凤兰.日本桃叶珊瑚在低温下的光合作用及蛋白的研究初报[J].江西农业大学学报(自然科学版),2002,24(3):336-339.
    [61]王振英,彭永康,郑坚瑜.盐胁迫下水稻和黑麦幼苗蛋白质组份的变化[J].南开大学学报(自然科学版).2001,34(3):112-115.
    [62]郭房庆,周建民,汤章城.胁迫下小麦突变体和野生叶片中有机溶质积累和基因表达差异[J].植物生理学报,1999,25(3):263-268.
    [63]李善菊,任小林.植物水分胁迫下功能蛋白的研究进展[J].水土保持研究,2005,12(3):64-69.
    [64]杜金友,陈晓阳,李伟,等.干旱胁迫诱导下植物基因的表达与调控[J].生物技术通报,2004,2:10-14.
    [65]姜慧芳,任小平.干旱胁迫对花生叶片活性和蛋白质的影响[J].作物学报,2004,30(2):169-174.
    [66] Trunova T J, Zverena G H. Effect of prote in synthesis inhibitions on frost hardiness of winterwheat [J]. Soviet Plant Physiology,1997,24(2):311-316.
    [67] Caltivelli L, Bartels B. Molecular coloning and characterization of cold-regulated genes in barley[J]. Plant Physiology,1990,93(4):1504-1510.
    [68]牛成伟,张青文,叶志华,等.不同地区甜菜夜蛾种群的遗传多样性分析[J].昆虫学报2006,49(5):867-873.
    [69]李明,蒙世杰,魏辅文,等.羚牛的遗传多样性及其种群遗传结构分析[J].兽类学报.2003,23(1):10-16.
    [70]徐化成.油松[M].北京:中国林业出版社,1993.6-89.
    [71]《中国森林》编辑委员会.中国森林第2卷:针叶林[M].北京:中国林业出版社,1999.884-900.
    [72]阎爱民,陈文新.首蓓、草木挥、锦鸡儿根瘤菌的表型多样性分析.生物多样性[J].1999,7(2):112-118.
    [73]赵虎基,乐锦华,李红霞.应用形态标记对籽瓜品种(系)的聚类分析[J].石河子大学学报.2000,4(2):107-112.
    [74]蔡永立,王希华,宋永昌.中国东部亚热带青冈果实形态变异的研究[J].生态学报.1999,19(4):581-586.
    [75] Hannrup B. Time trend of genetic parameters of wood density and growth characteristics in Pinussylvestris[J]. Silvae Genetica,1998,47(4):214-219.
    [76] Harju A M. Genetic and phenotypic variation of seed maturity in Pinus sylvestris[J]. SilvaeGenetica,1996,45(4):205-211.
    [77] Rehfeldt E G. Genetic variation pattern of Pinus ponderosaand its application in gene resourcesmanagement[J]. Canadian Journal of Research,1991,21(10):1491-1450.
    [78] Matziris D I. Genetic variation of floresence biology in Pinus nigra[J]. Silvae Genetica,1994,43(5/6):321-328.
    [79] Kaya I. Genetic variation pattern of population characteristics in Pinus brutia[J]. Silvae Genetica,1997,46(2/3):73-81.
    [80] Sehgal R N. Variation of cones, seeds and seedling of longleaf pine in India[J]. Indian Jornal ofForest,1994,17(2):105-111.
    [81] Kremer A. Genetic variation of leaf order among ages and individual development of three pinespecies[J]. Canadian Journal of Forest Research,1989,67(4):1254-1261.
    [82]王娟娟,刘永红,樊军锋,等.油松优良家系数量性状遗传距离分析[J].西北林学院学报2008,23(6):87-90.
    [83]毕春侠,郭军战,王宏武,等.油松数量性状间相关及通径分析[J].西北林学院学报,2000,15(2):7-12
    [84]陈建中,葛水莲,陈雷,等.油松种子园的遗传变异分析[J].河南农业大学学报,2008,42(2):507-510.
    [85]刘永红,杨培华,韩创举,等.油松不同种源种实性状的变异分析[J].浙江林学院学报,2008,25(2):163-168.
    [86]张飞琳,郭美丽,齐天进,等.太白山油松球果和种子形态变异分析[J].陕西林业科技2007,(4):1-4,28.
    [87]张华新,沈熙环.油松种子园无性系球果性状的变异和空间变化[J].北京林业大学学报1996.18(1):29-37.
    [88]宋朝枢.山西太岳山油松形态特征与类型的初步研究[J].林业科学,1979,15(2),153-156.
    [89]陈建中,葛水莲,叶嘉,等.油松无性系数量性状的遗传变异分析[J].浙江林业科技,2008,28(1):10-13.
    [90]郭军战,李周岐,毕春侠.油松表型性状三水平遗传变异分析[J].西北林学院学报,1997,12(1):13-16.
    [91]李军,李悦,李国锋,等.油松优树子代遗传变异与选择的初步研究[J].北京林业大学学报,1998,20(3):19-24.
    [92]张锁,樊军锋,刘永红,等.油松自由授粉子代抗逆性性状遗传分析与初选[J].西北林学院学报,2011,26(3):93-98.
    [93] Lange O L. Encyclopedia of Plant Physiology[M]. New Series Volum1982,12.
    [94]蒋高明.植物生理生态学的学科起源与发展史[J].植物生态学报2004,28(2)278-284.
    [95]徐燕,薛立,屈明.植物抗寒性的生理生态学机制研究进展[J].林业科学,2007,43(4):88-93.
    [96]李庆,马克平.植物群落演替过程中植物生理生态学特性及其主要环境因子的变化[J].植物生态学报,2002,26(增刊):9-19.
    [97]上官周平.植物生理生态学研究现状及发展[J].世界农业,1997,2:23-25.
    [98]杨建伟,梁宗锁,韩蕊莲,等.不同土壤水分下刺槐和油松的生理特征[J].植物资源与环境学报,2004,13(3):12-17.
    [99]张卫强,贺康宁,王正宁,等.光辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响[J].中国水土保持科学,2006,4(2):108-113.
    [100]田有亮,郭连生.呼和浩特地区不同种源油松个体光合和水分生理特征的研究[J].干旱区资源与环境,2004,8(3):96-101.
    [101]黄华,梁宗锁,韩蕊莲,等.干旱胁迫条件下油松幼苗生长及抗旱性研究[J].西北林学院学报,2004,19(2):1-4.
    [102] Mckersie B D, Bowley S R, Harjanto E, et al. Water-deficit tolerance and field performance oftransgenic alfalfa over expressing superoxide dismutase[J]. Plant Physiology,1996,111(4):1177-1181.
    [103]任彩虹,张丽萍,闫桂琴,等.高温胁迫对马铃薯幼苗抗氧化酶系统和叶绿素含量的影响[J].科技情报开发与经济,2007,17(14):3-4.
    [104]徐胜,何兴元,陈玮,等.高羊茅对高温的生理生态响应[J].应用生态学报,2007,18(10):2219-2226.
    [105]陈全光,戚大伟.高温胁迫对黑皮油松主要生理指标的影响[J].森林工程,2011,27(2):16-22.
    [106]李晓强.热胁迫对华北落叶松、油松针叶SOD、POD活性的影响[J].山西农业大学学报(自然科学版)2007,27(2):120-124.
    [107]马程,董文倩,郑彩霞.油松针叶细胞膜脂肪酸组成的季节性变化研究[J].安徽农业科学,2010,38(19):10303-10305.
    [108]徐众帅,徐东昱,郭太君.低温胁迫对黑皮油松与华山松的几种保护酶的影响[J].安徽农业科学,2010,38(4):2127-2129.
    [109]张巍巍,赵天宏,王美玉,等. O3浓度升高对油松光合作用的影响[J].农业环境科学学报2007,26(3):1024-1028.
    [110]付士磊,吴红.油松光合作用对臭氧浓度升高的响应[J].西北林学院学报2010,25(2):11-14.
    [111]郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J].生态学报,2007,27(1):171-180.
    [112]崔继光.早春施肥对油松生长与针叶色素含量、净光合速率的影响[J].农学学报,2011,10:33-36.
    [113]狄晓艳,朱小琪,马建平,等.土壤水分胁迫对5个种源油松光合特性的影响[J].植物研究,2009,29(5):539-543.
    [114]郑有飞,徐卫民,吴荣军,等.地表臭氧浓度增加和UV-B辐射增强及其复合处理对大豆光合特性的影响[J].生态学报,2012,32(8):2515-2524.
    [115]郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报,2007,18(1):16-22.
    [116]王琰,狄晓艳,马建平,等.8个油松种源抗旱性的比较研究[J].水土保持通报.2009,29(4):46-50.
    [117]汪晓峰,任红旭,孙国钧.四裂红景天与长鳞红景天叶片中抗氧化系统随海拔梯度的变化[J].植物生态学报,2005,29(2):331-337.
    [118]吴兵,韩发,岳相国,等.长期增强UV_B辐射对高寒草甸植物光合速率和抗氧化系统的影响[J].西北植物学报,2005,25(10):2010-2016.
    [119] Walk M A, Mckersie B D. Role of the ascorbate-gluathione antioxidant system in chillingresistance of tomato[J]. Plant Physiology,1993,141(2):234-239.
    [120]晏斌,戴秋杰.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响[J].植物生理学报,1996,22(4):373-378.
    [121]周瑞莲,赵哈林.高寒山区草本植物的保护酶系统及其在低温生长中的作用[J].西北植物学报,2002,22(3):566-573.
    [122]冯建灿,张玉洁,杨天柱.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响[J].林业科学研究,2002,15(2):197-202.
    [123]梁建萍,牛远,谢敬斯,等.不同海拔华北落叶松针叶三种抗氧化酶活性与光合色素含量[J].应用生态学报,2007,18(7):1414-1419.
    [124]胡景江,文建雷,王妹清.土壤干旱对元宝枫渗透调节能力的影响[J].西北植物学报,2004,24(10):1832-1836.
    [125]刘亚云,孙红斌,陈桂珠. PCBs对红树林沉积物中微生物及酶活性的影响[J].应用生态学报,2007,18(1):123-128.
    [126]杨明博,杨劼,杨九艳.鄂尔多斯高原不同生境下中间锦鸡儿(Caragana. davazameii)叶片的游离脯氨酸、丙二醛含量以及POD活性的变化[J].内蒙古大学学报(自然科学版),2005,36(2):192-196.
    [127] Wildi B, Luzt B. Antioxidant composition of selected high alpine plant species from differentaltitudes[J]. Plant, Cell&Environment,1996,19(2):138-146.
    [128] Munns R A. Whole plant responses to salinity[J]. Plant Physiol.1986,13(1):143-160.
    [129] Weng J H, Lai M F. Esitmating heat tolerance among plant species by two chlorophyllfluorescence parameters [J]. Photosynthetica,2005,43(3):439-444.
    [130] Zhang S B, Zhou Z K, Hu H, et al. Gas exchange and resource utilization in two alpine oaks atdifferent altitudes in Hengduan Mountains[J]. Canadian Journal of Forest Research,2007,37(7):1184-1193.
    [131]耶兴元,马锋旺,王顺才,等.高温胁迫对猕猴桃幼苗叶片某些生理效应的影响[J].西北农林科技大学学报,2004,32(12):33-37.
    [132]王剑国,初建祥,夏军,等.华北落叶松在低海拔地区的生长表现[J].河北林业科技,2001,4:48-48.
    [133]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004:27-301.
    [134]秦海,李俊祥,高三平,等.中国660种陆生植物叶片8种元素含量特征[J].生态学报,2010,30(5):1247-1257.
    [135]张福维,侯冬岩,李学成,等.不同季节油松松针挥发性化学成分的GC/MS分析[J].质谱学报,2009,30(2):118-123.
    [136]董岩,邱琴,刘廷礼. GC/MS法分析油松节挥发油化学成分[J].理化检验-化学分册,2003,39(12):718-720.
    [137]李善家,张有福,陈拓.西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J].植物生态学报2011,35(6):596-604.
    [138] Bristow C M. Host development offers new insight into insect plant interaction[J]. Trends inEcology&Evolution,1989,5(4):123-124.
    [139]万方浩,夏云龙.青年生态学者论丛(二)[C].北京:中国科学技术出版社,1992.87-91.
    [140]杨继.植物种内形态变异的机制及其研究方法[J].武汉植物学研究,1991,2:186-195.
    [141]刘雨,李登武,秦廷松.宁夏贺兰山杜松天然群体的表型多样性[J].浙江农林大学学报,2011,28(4):619-627.
    [142] Lester D T. Variation in cone morphology of Balsam fir[J]. Abies balsamer Rhoda,1968,70(2):83-94.
    [143] Khalil M A K. Genetics of con morphology in white spruce[J]. Canadian Journal of Botany,1974,52(1):15-21.
    [144] Maley M L, Parker W H. Phenotypic variation in con and needle characters of Pinus banksianainnorthwester Ontario[J]. Canadian Journal of Botany,1993,17(8):43-51.
    [145] Parker M H And Maze J. Intraspecific variation in Aies lasioearpa from British Columbia andWashington[J]. American Journal of Botany,1984,71(8):1051-1059.
    [146]穆立蔷,马瑶,杨国亭,等.长白山地区不同海拔紫椴枝叶解剖构造比较分析[J].植物研究,2006,26(6):658-662.
    [147]祁建,马克明,张育新.北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J].生态学报,2008,28(1):122-128.
    [148]梁宇,高玉葆,任安芝,等.不同沙地生境下黄柳(Salix gordejevii)种群若干数量特征的比较研究[J].生态学报,2000,20(1):80-87.
    [149]李轩然,刘琪,王景,等.千烟洲针叶林的比叶面积及叶面积指数[J].植物生态学报,2007,31(1):93-101
    [150]郭峰,周运超.不同密度马尾松林针叶养分含量及其转移特征[J].南京林业大学学报(自然科学版),2010,34(4):93-96.
    [151]戴怡龄,安黎哲,陈拓,等.寒区不同海拔橘黄罂粟叶片结构特征的比较研究[J].西北植物学报,2004,24(3):495-503.
    [152]杨冬梅,章佳佳,周丹,等.木本植物茎叶功能性状及其关系随环境变化的研究进展[J].生态学杂志,2012,31(3):702-713.
    [153]战伟,沙伟,王淼,等.降水和温度变化对长白山地区水曲柳幼苗生长和光合参数的影响[J].应用生态学报,2012,23(3):617-624.
    [154]周玉亮.分子标记技术及其在遗传育种中的应用[J].生物技术通讯,2005,16(3):350-352.
    [155]李造哲,扈廷茂.分子标记及其在植物育种中的应用[J].内蒙古农业大学学报2009,21(3):102-105.
    [156]李义良,赵奋成,张应中,等.分子标记在松树遗传与进化研究中的应用[J].分子植物育种,2009,7(5):1004-1009.
    [157]李希臣,雷勃钧,卢翠华,等.高效的植物DNA提取方法[J].生物技术,1994,4(3):39.
    [158]王珍,方宣钧.植物DNA分离[J].分子植物育种,2003,1(2):281.
    [159] Guillemaut P, Marechal-Drouard H. Isolation of plant DNA: A fast, inexpensive, and reliablemethod[J]. Plant Molecular Biology Reporter,1992,10(1):60-65.
    [160]李丹,凌定厚.五种提取马尾松基因组DNA方法的比较[J].植物学通报,2000,17(2):168-173.
    [161] Zeng J, Zou Y P, Bai J Y, et al. Preparation of total DNA from “Recalcitrant Plant Taxa”[J]. ActaBotanica Sinica,2002,44(6):694-697.
    [162]阎桂琴,李珊,王玲,等.太白红杉总DNA的提取及鉴定[J].西北大学学报(自然科学版),2001,(1):53-56.
    [163]王孝安,肖娅萍,胡雅琴.太白红杉3种不同材料总DNA的提取[J].西北植物学报,2003,(4):641-644.
    [164]邹喻苹,汪小全,雷一丁,等.几种濒危植物及其近缘类群总DNA的提取与鉴定[J].植物学报,1994,(7):528-533.
    [165] Aoki Y, Koshihara H. Inhibitory effects of acid polysaccharides from sea urchin embryos on RNApolymerase activity[J]. Biochimica et Biophysica Acta,1972,272(1):33-43.
    [166] Furukawa K, Bhavadna V P. Influences of amniotic polysaccharides on DNA synth esis in isolatednuclei and by DNA poly-merase; correlation of observed effects with properties of thepolysaccharides[J]. Biochimica et Biophysica Acta,1983,740(9):466-475.
    [167] Shioda M, Marakami-Muofushi K. Selective inhibition of DNA polymerase by a polysaccharidepurified from slime of Phusarum polycep halum[J]. Biochimica et Biophysica Acta,1987,146(5):61-66.
    [168] Fang G S, Hammar J, Grumet R. A quick and inexpensive method for removing polysaccharidesfrom plant genomic DNA[J]. Biotechniques,1992,13(1):52-56.
    [169] Scott O R, Bendich A J. Plant Molecular Biology Manual[M]. Kluwer Academic Publishers,1994:988-1000.
    [170]丁晓东,吕柳新.从顽拗植物荔枝中提基因组DNA技术的研究[J].应用与环境生物学报,2000,6(2):142-145.
    [171] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat(SSR)anchored polymeras chain reaction amplification[J]. Genomies,1994,20(2):176-183.
    [172] Culley T M, Wolfe A D. Population genetic structure of the cleistogamous plant species Violapubescens Aiton(Violaceae), as indicated by allozyme and ISSR molecular markers [J]. Heredity,2001,86(5):545-556.
    [173]李海生. ISSR分子标记技术及其在植物遗传多样性分析中的应用[J].生物学通报,2004,39(2):19-21.
    [174]肖海峻,孟利前,李玉冰. ISSR分子标记及其在植物遗传育种中的应用[J].内蒙古农业科技,2006,4:31-33.
    [175] Venkateswarlu S, Raje U B, Surendra N, et al. A first genetic linkage map of mulberry(Morusspp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy[J]. TreeGenetics&Genomes,2006,3(1):15-24.
    [176] Shang Y, Zhang W H, Pei K Q, et al. Population genetic structure of a dominant desert tree,Haloxylonam modendron(Chenopodiaceae) in the Southeast Gurbantung gut desert detected byRAPD and ISSR markers [J]. Acta Botanica Sinica,2004,46(6):675-681.
    [177] GemasV JV, Almadanim M C, TenreiroR, et al. Genetic diversity in the olive tree(Olea europaeaL. Sub sp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers [J]. GeneticResources and Crop Evolution,2004,51(5):501-511.
    [178] Joshi S P, GuptaV S, GgarwalR K, etal. Genetic diversity and phylogenetic relationship asrevealed by inter simple sequence repeat(ISSR) polymorphism in the genus Oryza[J]. TAGTheoretical and Applied Genetics,2000,100(8):1311-1320.
    [179]邓辉胜,文胜.油松种子胚乳DNA的提取[J].柳州师专学报,2006,21(3):108-110.
    [180]张冬梅,杨娅,沈熙环,等.油松SSR--PCR引物筛选及反应体系的建立[J].北京林业大学学报,2007,29(2):14-17.
    [181]郝真真,王孟本.油松遗传多样性研究的ISSR-PCR体系优化与初步应用[J].山西大学学报(自然科学版),2009,32(1):119-124.
    [182]王磊,樊军锋,刘永红,等.我国油松主要分布区种质资源遗传多样性[J].东北林业大学学报,2009,37(12):3-7.
    [183]赵飞,樊军锋,杨培华,等.十二个油松种群遗传多样性的RAPD分析[J].北方园艺,2011(11):112-116.
    [184]周飞梅,樊军锋,侯万伟.陕西地区油松天然群体遗传结构的RAPD分析[J].东北林业大学学报,2008,36(12):1-3.
    [185]陈建中,葛水莲,杨明建.太行山东麓油松种子园遗传多样性的RAPD分析[J].北方园艺,2010,7:130-132.
    [186]杨娅.利用微卫星(SSR)分子标记进行油松无性系种子园及其子代群体结构的研究[D].河南农业大学硕士论文,2006.
    [187]李敏俐,郑彩霞.油松雌性不育系(28号无性系)的RAPD分析[J].北京林业大学学报,2002,24(4):35-38.
    [188]包秀兰.常规育种结合RAPD技术对油松种子园遗传改良的研究[D].内蒙古农业大学硕士学位论文,2005.
    [189]刘占林,杨雪.5种松树的遗传多样性和遗传分化研究[J].西北植物学报,2007,27(12):2385-2392.
    [190] Wang M B, Gao F Q. Genetic variation in Chinese Pine (Pinus tabulaeformis), a woody speciesendemic to China[J]. Biochem Genet,2009,47(1):154-164.
    [191] Chen K M, Abbott R J, Milne R I, et al. Phylogeography of Pinus tabulaeformis Carr.(Pinaceae),a dominant species of coniferous forest in northern China[J]. Molecular Ecology,2008,17(19):4276-4288.
    [192] Eckert C G, Samis K E, Lougheed S C. Genetic variation across species’ geographical ranges: thecentral-marginal hypothesis and beyond[J]. Molecular Ecology,2008,17(5):1170-1188.
    [193] Neale D B, Kremer A. Forest tree genomics: growing resources and applications[J]. NatureReviews Genetics,2011,12(2):111-122.
    [194]金则新,李钧敏.浙江天台山不同海拔高度七子花种群遗传多样性及其与环境因子的相关性分析[J].浙江大学学报(理学版),2005,32(4):452-458.
    [195]何正文,刘运生,陈立华,等.正交设计直观分析法优化PCR条件[J].湖南医科大大学学报,1998,23(4):403-404.
    [196]白锦军,魏安智,王佳,等.仁用杏ISSR分析体系的正交优化[J].分子植物育种,2009,7(6):1237-1224.
    [197]林萍,张含国,谢运海.正交设计优化落叶松ISSR-PCR反应体系[J].生物技术,2005,15(5):34-37.
    [198]吴根土,师桂英,徐秉良,等.裸仁美洲南瓜ISSR-PCR反应体系的正交优化[J].西北农业学报,2010,19(4):155-159.
    [199]郭凌飞,邹明宏,曾辉,等.澳洲坚果ISSR-PCR反应体系的建立与优化[J].林业科学,2008,44(5):160-164.
    [200]刘威生,冯晨静,杨建明,等.杏ISSR反应体系的优化和指纹图谱的构建[J].果树学报,2005,22(6):626-629.
    [201]姜静,杨传平,刘桂丰,等.桦树ISSR-PCR反应体系的优化[J].生态学杂志,2003,22(3):91-93.
    [202]冯富娟,王凤友,刘彤.红松ISSR-PCR实验系统影响因素[J].植物学通报,2004,21(3):326-331.
    [203]刘娜,王昌命,普晓兰.云南松胚乳DNA提取与ISSR-PCR反应体系的建立[J].西南林学院学报,2009,29(2):27-30.
    [204]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001.
    [205]贺佳,丁小余,褚必海,等.泽泻ISSR反应体系的建立与优化[J].南京师大学报,2006,29(3):86-90.
    [206] Wright S. The genetic structure of populations[J]. Annals of Eugenics,1951,15(1):323-354.
    [207]马炜梁.高等植物及其多样性[M].高等教育出版社,北京,1998.
    [208]赵念席,高玉葆,王金龙,等.内蒙古中东部草原大针茅的种群遗传分化[J].生态学报,2004,24(10):2178-2185.
    [209]黎中宝,林鹏.桐花树种群遗传变异与环境变量的关系[J].生态学报,2002,22(11):1912-1916.
    [210] Turpeinen T, Tenhola T, Manninen O, et al. Microsatellite diversity associated with ecologicalfactors in Hordeum spontaneum populations in Israel[J]. Molecular Ecology,2001,10(6):1577-1591.
    [211] Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific geneticdiversity in plants[J]. Molecular Ecology,2004,13(5):1143-1155·
    [212]谢一青,李志真,黄儒珠,等.武夷山不同海拔光皮桦种群遗传多样性及其与生态因子的相关性[J].林业科学,2008,44(3):50-55.
    [213]谢一青,黄儒珠,李志真,等.福建光皮桦野生种群遗传变异及其与生境的关系[J].林业科学,2009,45(9):60-65.
    [214] Howe G T, Aitken S N, Neale D B, et al. From genotype to phenotype: unraveling thecomplexities of cold adaptation in forest trees[J]. Canadian Journal of Botany,2003,81(12),1247-1266.
    [215]王楠,康俊梅,杨青川,等.植物低温胁迫蛋白质组学研究进展[J].草业科学,2008,25(12):93-98.
    [216] Eckert A J, Heerwaarden J, Wegrzyn J L, et al. Patterns of population structure and Environmentalassociations to aridity across the range of loblolly Pine (Pinus taeda L Pinaceae)[J]. Genetics,2010,185(3):969-982.
    [217]徐化成,郭广荣,冯林,等.油松天然林的生长与地理-气候因素的关系[J].北京林学院学报,1981,4:9-13.
    [218]徐化成,唐谦.油松地理变异的初步研究[J].北京林学院学报,1984,2:57-72.
    [219] Grivet D, Sebastiani F, Gonzalez-Martinez S C, et al. Patterns of polymorphism resulting fromlong-range colonization in the Mediterranean conifer Aleppo pine[J]. New Phytologist,2009,184(4):1016–1028.
    [220] Eckert A J, Bower A D, Gonzalez-Martinez S C, et al. Back to nature: ecological genomics ofloblolly pine (Pinus taeda Pinaceae)[J]. Molecular Ecology,2010,19(17):3789–3805.
    [221] Cunningham B A. Peroxidase activity in nerarisogenic height lines of tritiale[J]. Journal ofheredity,1975,66:151-154.
    [222] Schertz K F. Peroxidase regulation by the32dwarf locus in sorghum [J]. Journal of heredity,1971,62:235-238.
    [223]梁建萍,刘咏梅,牛远,等.高温和CO2浓度倍增对华北落叶松幼苗抗氧化酶及脂质过氧化的影响[J].中国生态农业学报,2007,15(3):100-103.
    [224] Singh N K. Protein associated with adaptation of culture tobacco cells to NaCl [J]. Plant Physiol,1987,84(2):324-331.
    [225]朱政,蒋家月,江昌俊,等.低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响[J].安徽农业大学学报,2011,38(1):24-26.
    [226]戴怡龄,安黎哲,陈拓,等.不同海拔高度上两种蒿属植物叶表皮结构比较研究[J].西北植物学报,2004,24(3):495-503.
    [227]于海秋,彭新湘,曹敏建.缺磷对不同磷效率基因型大豆光合日变化的影响[J].沈阳农业大学学报,2005,36(5):519-522.
    [228]王變.生命科学中的微量元素(下)[M]中国计量出版社.1989:129-130.
    [229]李志辉,陈艺,张冬林,等.广西马尾松天然林古蓬和浪水种源群体遗传多样性ISSR分析[J].中国农学通报,2009,25(16):116-119.
    [230]冯富娟,王凤友,李长松.长白山不同海拔条件下红松的遗传分化[J].东北林业大学学报,2004,32(3):1-3.
    [231]金则新,李钧敏.浙江天台山不同海拔高度七子花种群遗传多样性及其与环境因子的相关性分析[J].浙江大学学报(理学版),2005,32(4):452-458.
    [232] Volis S, Yakubov B, Shulgina I, et al. Tests for adaptive RAPD variation in population geneticstructure of wild barley, Hordeum spontaneum Koch[J]. Biological Journal of Linnean Society,2001,74(3):289-303.
    [233] Schaal B A, Hayworth D A, Olsen K M, et al. Phylogeographic studies in plants: problems andprospects[J]. Molecular Ecology,1998,7(4):465-474.
    [234] Kimura M. Evolutionary rate at the molecular level[J]. Nature,1968,217(5129):624-626
    [235]刘登义,沈浩,杨月红,等.黄山花楸种群遗传多样性研究[J].应用生态学报,2003,14(12):2141-2144.
    [236]黎继岚,陈善娜.低温胁迫对高原水稻幼苗叶片超氧化物歧化酶活性的影响[J].云南大学学报,1996,18(2):163-166.
    [237]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6-11.
    [238] Güsewell S. High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth ofwetland sedges[J]. New Phytologist,2005,166(2):537-550.
    [239] Verhoeven J T A, Koerselman W, Meuleman A F M. Nitrogen-or phosphorus-limited growth inherbaceous, wet vegetation: relations with atmospheric inputs and management regimes[J]. Tree,1996,11(12):494-497.
    [240]郭淑青,齐威,王玉林,等.青藏高原东缘海拔对植物种子大小的影响[J].草业学报,2010,19(1):50-58.
    [241] Gross K L. Effects of seed size and growth form on seedling establishment of six monocarpicplants[J]. Journal Ecology,1984.72(2):369-387.
    [242] Baker H G. Seed weight in relationto environmental conditions in California[J]. Ecology,1972.53(6):997-1010.
    [243] Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search forphysiological causes and ecological consequences[J]. Advances in Ecological Research,1992,23(8):188-242.
    [244] Grime J P, Thompson K, Hunt R, et al. Integrated screening validates primary axes ofspecialization in plants[J]. Oikos,1997,79(2):259-281.
    [245] Wilson P, Thompson K, Hodgson J. Specific leaf area and leaf dry matter content as alternativepredictors of plant strategies[J]. New Phytologist,1999,143:155-162.
    [246]刘占林,杨雪.5种松树的遗传多样性和遗传分化研究[J].西北植物学报,2007,27(12):2385-2392.
    [247] Lerceteau E, Szmidt A E. Properties of AFLP markers in inheritance and genetic diversity studiesof Pinus sylvestris (L.)[J]. Heredity,1999,82(3):252-260.
    [248] Szmidt A E, Wang X R, Lu M Z. Empirical assessment of allozyme and RAPD variation in Pinuslvestris(L.) using haploid tissue analysis[J]. Heredity,1996(4),76:412-420.
    [249] Hamrick J L. Plant population genetics and evolution[J]. American Journal of Botany,1983,69(10):1685-693.
    [250]钱韦,葛颂.居群遗传结构研究中显性标记数据分析方法初探[J].遗传学报,2001,28(3):244-255.
    [251]王铁娟,杨持,马静,等.籽蒿的地理分布与遗传分化[J].植物生态学报,2005,29(1):122-127.
    [252]张恒庆,安利佳,祖元刚.凉水国家自然保护区天然红松林遗传变异的RAPD分析[J].植物研究,2000,20(2):201-206.
    [253]李斌,顾万春.白皮松保育遗传学—天然群体遗传多样性评价与保护策略[J].林业科学,2005,41(1):57-64.
    [254]王玲,卓丽环,杨传平,等.兴安落叶松等位酶水平的遗传多样性[J].林业科学,2009,45(8):170-174.
    [255]张含国,孙立夫,韩继凤,等.红皮云杉群体遗传多样的研究[J].植物研究,2003,23(2):224-229.
    [256] Hamrick J L. Gene flow and distribution of genetic variation in plant populations[A]. Urbanska K.Differentiation patterns in higher plants[C]. New York: Academic Press,1987.53-67.
    [257]朱军涛,李向义,张希明,等.昆仑山北坡前山带塔里木沙拐枣对不同海拔生境的生理生态响应[J].生态学报2010,30(3):602-609.
    [258]冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业科学,2004,30(2):117-122.
    [259]冯建灿,张玉洁,杨天柱,等.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响[J].林业科学研究,2002,15(2):197-202.
    [260] Foolad M R, Winicov I. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) usingtrait-based marker analysis [J]. Theoretical and Applied Genetics,1993,87(1-2):184-192.
    [261] Winicov I. Newmolecular approaches to improving salt tolerance in crop plants[J]. Annals ofBotany,1998,82(6):703-710.
    [262] Leoplidac, Niedergang-kamienj. Exper-rmental modification of plant senescence[J]. Plant Physiol,1959,(34):570-573.
    [263] Meziane D, Shipley B. Interacting determinants of specific leaf area in22herbaceous species:effects of irradiance and nutrient availability[J]. Plant, Cell, Environments,1999,22(5):447-459.
    [264] Poorter H, Jong R. A comparison of specific leaf area, chemical composition and leaf constructioncosts of field plants from15habitats differing in productivity[J]. New Phytologist,1999,143(1):163-176.
    [265] Garnier E, Shipley B, Roumet C, et al. standardized protocol for the determination of specific leafarea and leaf dry matter content[J]. Functional Ecology,2001,15(5):688-695.
    [266]罗新义,冯昌军,李红.低温胁迫下肇东苜蓿SOD、脯氨酸活性变化初报[J].中国草地,2004,26(26):79-81.
    [267] Kaitaniemi P, Ruohomaèki K, Ossipov V, et al. Delayedinduced changes in the biochemicalcomposition of host plant leavesduring an insect outbreak[J]. Oecologia,1998,116(1-2):182-190.
    [268] West C. Factors underlying the late seasonal appearance of the lepi-dopterous leaf-mining guildon oak[J]. Ecological Entomology,1985,10(1):111-120.
    [269] Haukioja E. Induction of defenses in trees[J]. Annual Review Entomology,1991,36:25-42.
    [270]刘祖祺,张石诚.植物抗性生理学[M].北京:中国农业出版社.1994.
    [271]余叔文,汤章成.植物生理与分子生物学[M].北京:科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700