用户名: 密码: 验证码:
巨桉凋落叶分解过程中养分和化感物质释放及其对三种草种的化感效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林草复合模式是国家生态建设中重要的生态恢复模式,也是长江上游生态屏障建设中最有效的植被恢复措施之一。在长江上游地区,巨桉是重要的造林树种之一,目前巨桉人工林种植方式多以纯林为主。造林初期,为增加农民收入,常在林下套种或间种牧草、粮食、蔬菜等农作物,在林分近熟或成熟后则多为林下混生多种野草的经营模式。巨桉林凋落叶通过分解能为林下草类的生长提供的一定的养分,但其分解释放的化感物质也会对林下植物的生长造成一定的负面影响。然而,关于巨桉凋落物分解过程中化感物质的产生、降解以及对周围植物的影响效应,人们还知之甚少。因此,研究巨桉凋落叶分解及其化感物质释放动态对作物的影响规律,对巨桉人工林生态系统生物多样性的维护以及可持续经营具有重要的意义。
     本研究以10a生巨桉人工林林下收集的新近凋落叶为试验材料,置于相对含水量分别为40%和80%土壤湿度条件下及野外自然分解,测定其分解过程中养分及化感物质的释放动态(相对含量的动态变化情况),分析其化感作用可能的持续期;通过盆栽试验探讨了凋落叶处理量分别为30g/盆(A1)、60g/盆(A2)和90g/盆(A3)条件下其分解对菊苣、假俭草和狗尾草生长以及生理特性的影响;同时以三个草种种子进行发芽试验,研究了0.5%、1%、10%三个浓度凋落叶水浸提液对种子萌芽的影响。主要研究结果如下:
     1.巨桉凋落叶在土壤相对含水量为80%的状态下分解率最高,自然水分条件次之,40%条件下分解率最低;凋落叶分解具有季节性,在夏季高温高湿条件下,分解速度最快,冬季分解较慢;80%土壤湿度和自然水分条件下的凋落叶干物质残留率在7月后都显著低于40%土壤湿度条件下凋落叶干物质的残留率,且从8月开始,80%土壤湿度条件下的凋落叶干物质残留率也显著低于自然水分条件。
     2.40%和80%土壤湿度处理下,巨桉凋落叶中除N元素含量表现为先上升后下降外,木质素、纤维素以及C、P、K、Mg和Ca的含量均单调的下降;自然水分条件下,凋落叶中纤维素的释放模式为淋溶-积累-释放,木质素和N为富集-释放,C和K为持续释放,而Mg和Ca为先释放后积累,而P则表现为积累。
     3.巨桉凋落叶初始样品中共检测到36种有机化合物,根据各组分的化学性质与结构的不同可分为9大类,其中有萜类物质19种,为主要的化感物质,占总数的52.78%,此外桉叶油醇(19.61%),α-蒎烯(12.48%)的相对含量较高。这类化学组分大多呈现随凋落叶分解而下降的趋势,表现为自然水分条件下分解最快,40%土壤湿度下损失最少;各化学组分在凋落叶分解前期下降速度较快;萜类物质在三种条件下释放率都超过了80%。
     4.巨桉凋落叶在土壤中分解时能抑制菊苣、假俭草和狗尾草的生长以及生物量的积累,随凋落叶添加量的增多,抑制作用越明显;用经过蒸馏浸提后的凋落叶(尽可能去除其中化感物质)处理三个草种,其生长性状表现为,在不同试验组之间的差异均不显著,说明添加的凋落叶对土壤的物理性质(通气透水性以及对根系的物理阻隔)影响不大,表明化感物质是影响草种生长的主要因素。
     5.巨桉凋落叶的分解明显抑制了菊苣、假俭草以及狗尾草叶片中光合色素(叶绿素a、叶绿素b和类胡萝卜素)的合成,随着凋落叶施加量的增加抑制作用增强,具体表现为A3>A2>A1>CK (P<0.05)。3个处理组中草种叶片的光合速率、气孔导度、蒸腾速率及其对环境中光照和CO2浓度改变的适应能力与对照组相比都显著降低(P<0.05),从而减弱了叶片的光合作用,最终抑制草种的生长以及生物量积累。
     6.三种草种叶片的抗性生理指标都受巨桉凋落叶化感作用的影响。在低凋落叶量和短时间处理下,草种叶片中的SOD、CAT和POD活性与对照组差异不显著或有所上升,但随着处理时间推移和处理量加大,3种酶的活性都降低,90d时各处理均显著低于对照组(P<0.05)。土壤中凋落叶含量越高,分解时对草种中MDA含量的影响越显著,30d、60d以及90d时,经90g凋落叶处理的草种叶片中MDA含量都显著高于其它试验组(P<0.05)。叶片中游离脯氨酸和可溶性糖含量随凋落叶施加量增多而上升,可溶性蛋白含量则相反;60g和90g凋落叶处理时,这3个指标在不同时间与对照组之间差异都达到显著水平(P<0.05)。
     7.除0.5%和1%浓度的巨桉凋落叶水浸提液能提高假俭草的发芽势和发芽指数外,狗尾草、假俭草和菊苣种子的发芽率、发芽势、发芽指数、胚根和胚芽的长度以及幼苗的鲜重和干重均受到浸提液中化感物质的抑制,随浸提液的浓度增加,抑制效果增强。10%浓度的浸提液对3个草种种子萌发及幼苗生长的影响程度显著大于1%和0.5%浓度处理组以及对照组(P<0.05)。
     综上,巨桉凋落叶的分解可为林下植物生长提高养分,但其释放的化感物质也会对植物种子萌芽以及生长、发育表现出不同程度的抑制效应。本研究结果可为巨桉人工林生态系统多样性保护和林草复合种植模式的开展提供理论依据,为科学地开发巨桉林+草复合种植模式以及进行合理的经营管理提供理论依据和技术参考,并为科学合理地评价巨桉+作物人工复合种模式的生态经济价值提供参考。
Forest-grass compound is an important ecological restoration mode in the national ecological construction, and is also one of the most effective ways to restoring the vegetation in the construction of ecological defense in the upper reaches of Yangtze River, where Eucalyptus grandis is one of the most important planting tree species, and is usually planted by forest-grass compound. In order to increase the income of farmers, crops like pasture, food, and vegetable are usually intercropped or interplanted in the forest at the early of period of the afforestation. But the intercropping of forest and various grasses are carried out at the near ripe or ripe forest. On one hand, the decomposing leaf litter of E grandis can provide nutrition to the undergrowth, but on the other hand allelochemicals from decomposing leaf litter also negatively affect the growth of grass in the intercropping system of E. grandis plantation and grass. However, there is little knowledge on the produce, degradation, and its allelopathic effect on the peripheral plants under the decomposition of E grandis leaf litter. Hence, the research of influence rule of allelopathy and degradation dynamic of E grandis leaf litter on crop is very meaningful for the restoration of ecosystem diversity and sustainable forest management in the E. grandis plantation.
     Fresh leaf litter were randomly collected from a10-yaer-old E. grandis plantation as experimental materials in this study, and the dynamic change of the relative content of allelochemicals and nutrient in leaf litter were compared under the conditions of40%soil moisture,80%soil moisture, and natural terms. Pot experiment was used to study the effect of decomposing leaf litter with three different contents include30g/pot (A1),60g/pot (A2), and90g/pot (A3) on growth and physiological characteristics of Cichorium intybus, Setaira viridis (L.) Beauv, and Eremochloa ophiuroides. Additionally, the mehod of culture was used to investigate the effect of water extract of fresh failed leves with three concentrations (0.5%,1%, and10%) on the seed germination and seeding growth of the three grasses. The main results are followed:
     1. The decomposition rate of E grandis leaf litter was highest in80%soil moisture,
     lowest in40%soil moisture, and that in natural condition was medium. The decomposition rate in summer was relatively higher, and that in winder was relatively slower. The dry matter remaining rate in80%soil moisture and natural condition was significant lower than that in40%soil moisture after July, and the dry matter remaining rate in80%soil moisture was also lower natural condition from August.
     2. Under the40%and80%soil moisture, the content of Nitogen in E. grandis leaf litter first incrased and then decreasd, and the content of lignose, cellulose, Carbon (C), Phosphorus (P), Potassium (K), Magnesium (Mg), and Calcium (Ca) decreased monotomously. In the natural condition, the release pattern of lignos was leaching-accumulation-release, C and K was continuous release, Mg and Ca released first and then accumulated, and the pattern of P was accumulation.
     3. There were36chemical substances detected in the initial samples of leaf litter of E. grandis, and which can be divided into9categories due to their chemical structures and properties, and nineteen of which were terpenoids, and accouting for52.78percent of them, which are the main allelochemicals. The relative content of alpha-Pipene nd1,8-Cineole were12.48%and19.61%, respectively, and were higher among all the chemical substances. The relative content of total chemical compositions and major allelochemicals decreased over time, and the biggest dorp was found in natural condition, whereas, smallese decrease was observed in40%soil humidity. Furthermore, the rates of decline were faster in early stage of decomposition, and the release rates of terpenoids were more than80%under these three contitions.
     4. The decomposing leaf litter of E. grandis can inhibit the growth and the accumulation of biomass of Cichorium intybus, Setaira viridis (L.) Beauv, and Eremochloa ophiuroides, the inhibition effect went up with the increase of the content of leaf litter. There was no significant difference found in the growth traits among the different experiment groups in the three grasses, when the distilled leaf litter of E. grandis were added in the soil. This shows that no significant influence of leaf litter on the physical properties of soil, and allelochemical was the main factor to influence the grass growth.
     5. The decomposing leaf litter of E. grandissignificantly inhibited the synthesis of photosynthetic pigments (chlorophyll a, chlorophyll b and cartenoids) of C. intybus, S. viridis, and E. ophiuroides. The photosynthetic rate, stomatal conductance, transpiration rate, and the response to CO2concentration and lingt intensity in three treatments were significantly lower than those in control group (P<0.05). The photosynthesis of leaf decreased that unltimately inhibited the the growth and the accumulation of biomass of grasses.
     6. The resistance physiology traits of C. intybus, S. viridis, and E ophiuroides'were influenced by allelopathy from the decomposing leaf litter of E. grandis. There was no significant difference in the activity of SOD, CAT, and POT between CK and treatments. The activity of three enzymes decreased with time and the amoungt of processing. At the day of90, the activity of three enzymes in treatments were significant lower than those in CK (P<0.05). The more leaf litter contained in the soil, the moer significant effect had in the content of MDA. The MDA content in the treatment with90g leaf litter was significant hiher than that in CK at the dat of30,60, and90(P<0.05). The soluble sugar and free proline content went up with the increase of leaf litter content at all time points, while the change of soluble protein contents was opposite. There were significant diffenerces found between CK and treatments with60and90g leaf litter in these three indexes at all tested time points (P<0.05).
     7. Besides, the extracts of fresh leaf litter of E grandis with concentration of0.5%and1%can improve the germination potential and germination index of E. ophiuroides, the germination potential, germination index, germination rate, the length of radicle and germ, and the fresh weight and dry weight of seedling were inhibited by the allelochemicals of extracts, and the inhibitory effect enhanced with the increase of concentration. The effect level of10%concentration was significant greater in germination and seedling growth than those of1%and0.5%concentractions, and CK (P<0.05).
     In conclusion, the decomposing of E. grandis leaf litter can not only provide nutrients to the undergrowth, but allelochemicals had various degrees of inhibitory on the germination, growth and development of grasses at different growth stages. Results of this study could provide scientific theoretical basis for the Forest-grass compound, biodiversity conservation, rational management in the intercropping system of E. grandis plantation and grass, and also provide some reference to evaluate scientifically the ecological value of E. grandis plantation.
引文
[1]刘庆,尹华军,程新颖,等.中国人工林生态系统的可持续更新问题与对策[J].世界林业研究.2010,23(01):71-75.
    [2]陈少雄,刘杰锋.科学经营,持续改良,巴西桉树领先的法宝——巴西桉树人工林高产经营考察报告[J].桉树科技.2012,29(1):1-12.
    [3]王豁然,桉树生物学概论[M].北京,科学出版社,2010.
    [4]冯茂松,张健,杨万勤.巨桉人工林叶片养分交互效应[J].植物营养与肥料学报.2009,15(5):1160-1169.
    [5]谢贤健.短轮伐期巨桉人工林地上部分生物量与生产力和主要养分元素积累与分配研究[D].四川农业大学.2005.
    [6]Shiva V., Bandyopadhyay J., Ecological audit of Eucalyptus cultivation, Research Foundation for Science and Ecology[M]. Dehradun, Natraj Publishers,1985.
    [7]钱国钦.桉树生态问题及发展思路[J].湖南林业科技.2007,34(2):67-70.
    [8]陈少雄.桉树生态问题的来源与对策[J].热带林业.2006,33(4):26-30.
    [9]郭万祥,李元华.林草结合是长江上游地区保持水土的重要途径[J].四川草原.1999,2(2):12-13.
    [10]樊巍,高喜荣.林草牧复合系统研究进展[J].林业科学研究.2004,17(4):519-524.
    [11]张学文,刘亦学,刘万学.植物化感物质及其释放途径[J].中国农学通报.2007,23(7):295-297.
    [12]吴承祯,姜志林.我国森林凋落物研究进展[J].江西农业大学学报.2000,22(3):405-410.
    [13]周存宇.凋落物在森林生态系统中的作用及其研究进展[J].湖北农学院学报.2003,23(2):140-145.
    [14]刘洋,张健,冯茂松.巨桉人工林凋落物数量,养分归还量及分解动态[J].林业科学.2006,42(7):1-10.
    [15]Park S., Cho K.H. Nutrient leaching from leaf litter of emergent macrophyte (Zizania latifolia) and the effects of water temperature on the leaching process[J]. Korean Journal of Biological Sciences.2003,7(4): 289-294.
    [16]De Deyn G.B., Raaijmakers C.E., Zoomer H.R., et al. Soil invertebrate fauna enhances grassland succession and diversity[J]. Nature.2003,422(6933):711-713.
    [17]Lavelle P., Bignell D., Lepage M., et al. Soil function in a changing world:the role of invertebrate ecosystem engineers[J]. European Journal of Soil Biology.1997,33(4):159-193.
    [18]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学.2006,42(4):93-100.
    [19]向元彬.华西雨屏区不同密度巨桉人工林凋落物分解,养分释放及其土壤呼吸特征[D].四川农业大学.2010.
    [20]王谨,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报.2001,3(3):375-380.
    [21]刘海岗,刘一,黄忠良.森林凋落物研究进展[J].安徽农业科学.2008,36(3):1018-1020.
    [22]Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship[J]. Oikos.1997,439-449.
    [23]Berg B., Berg M., Bottner P., et al. Litter mass loss rates in pine forests of Europe and Eastern United States:some relationships with climate and litter quality[J]. Biogeochemistry.1993,20(3):127-159.
    [24]Taylor B.R., Parkinson D., Parsons W.F.J. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test[J]. Ecology.1989,70(1):97-104.
    [25]Finzi A.C., Schlesinger W.H. Species control variation in litter decomposition in a pine forest exposed to elevated CO2[J]. Global Change Biology.2002,8(12):1217-1229.
    [26]Carson W.P., Peterson C.J. The role of litter in an old-field community:impact of litter quantity in different seasons on plant species richness and abundance[J]. Oecologia.1990,85(1):8-13.
    [27]Facelli J.M., Pickett S.T.A. Plant litter:its dynamics and effects on plant community structure[J]. The Botanical Review.1991,57(1):1-32.
    [28]Facelli J.M. Multiple indirect effects of plant litter affect the establishment of woody seedlings in old fields[J]. Ecology.1994,1727-1735.
    [29]林思祖,杜玲,曹光球.化感作用在林业中的研究进展及应用前景[J].福建林学院学报.2002,22(2):184-188.
    [30]崔磊,赵秀海,张春雨.化感作用研究动态及展望[J].浙江林业科技.2006,26(1):65-70.
    [31]翟明普,贾黎明.森林植物间的他感作用[J].北京林业大学学报.1993,15(3):138-147.
    [32]郭鸿儒.黄花蒿(Artemisia annua. L.)化感物质的分离鉴定及化感物质作用机理研究[D].甘肃农业大学.2007.
    [33]Molisch H., The influence of one plant on another:allelopathy, Scientific Publishers (India),2001. [34] Muller C.H. The role of chemical inhibition (allelopathy) in vegetational composition [J]. Bulletin of the Torrey Botanical Club.1966,332-351.
    [35]阎飞,杨振明,韩丽梅.植物化感作用(Allelopathy)及其作用物的研究方法[J].生态学报.2000,20(4):692-696.
    [36]Rice E.L., Allelopathy, Academic Press[M]. Orlando, Academic Press,1974.
    [37]Rice E.L. Allelopathy:an overview[J]. Allelochemical, role in agriculture and forestry. Washington: American Chemical Society.1987,7-22.
    [38]彭少麟,邵华.化感作用的研究意义及发展前景[J].应用生态学报.2001,12(5):780-786.
    [39]董章杭,林文雄.作物化感作用研究现状及前景展望[J].中国生态农业学报.2001,9(1):80-83.
    [40]林文雄,何华勤,郭玉春,等.水稻化感作用及其生理生化特性的研究[J].应用生态学报.2001,12(6):871-875.
    [41]Guenzi W., McCalla T. Phenolic acids in oats, wheat, sorghum, and corn residues and their phytotoxicity[J]. Agronomy Journal.1966,58(3):303-304.
    [42]Peters E.J. Toxicity of tall fescue to rape and birdsfoot trefoil seeds and seedlings[J]. Crop Science.1968, 8(6):650-653.
    [43]Hedge R.S., Miller D. Allelopathy and autotoxicity in alfalfa:Characterization and effects of preceding crops and residue incorporation J]. Crop Science.1990,30(6):1255-1259.
    [44]ZhongYi Z., WenXiong L. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants[J]. Chinese Journal of Eco-Agriculture.2009,17(1):189-196.
    [45]Yu J.Q., Shou S.Y., Qian Y.R., et al. Autotoxic potential of cucurbit crops[J]. Plant and Soil.2000, 223(1):149-153.
    [46]李彦斌,刘建国,谷冬艳.植物化感自毒作用及其在农业中的应用[J].农业环境科学学报.2007,26(B03):347-350.
    [47]Pawlowski L., Bachthaler G. Allelopathic interrelations for weed control on arable land[J]. Angewandte Botanik.1989,63(3-4):293-305.
    [48]Putnam A.R., DeFrank J., Barnes J.P. Exploitation of allelopathy for weed control in annual and perennial cropping systems[J]. Journal of Chemical Ecology.1983,9(8):1001-1010.
    [49]AlSaadawi I.S., Al-Uqaili J.K., Al-Hadithy S.M., et al. Effect of gamma irradiation on allelopathic potential ofSorghum bicolor against weeds and nitrification[J]. Journal of Chemical Ecology.1985,11(12): 1737-1745.
    [50]Einhellig F.A., Leather G.R. Potentials for exploiting allelopathy to enhance crop production[J]. Journal of Chemical Ecology.1988,14(10):1829-1844.
    [51]王大力,祝心如.三裂叶豚草的化感作用研究[J].植物生态学报.1996,20(4):330-337.
    [52]祝心如,王威.三裂叶豚草(Ambrosia trifida)对大豆根系生长及其结瘤的影响[J].生态学报.1997,17(004):407-411.
    [53]Lill R., McWha J., Cole A. The influence of volatile substances from incubated litter of Pinus radiata on seed germination[J]. Annals of Botany.1979,43(1):81-85.
    [54]Lill R., Waid J. Volatile phytotoxic substances formed by litter of pinus radiota[J]. Forestry Science. 1975,5(2):165-170.
    [55]Lodhi M. The influence and comparison of individual forest trees on soil properties and possible inhibition of nitrification due to intact vegetation[J]. American Journal of Botany.1977,260-264.
    [56]Lodhi M. Allelopathic effects of decaying litter of dominant trees and their associated soil in a lowland forest community[J]. American Journal of Botany.1978,340-344.
    [57]Basu P.K., Kapoor K.S., Nath S., et al. Allelopathic influence:an assessment on the response of agricultural crops growing near Eucalyptus tereticornis[J]. Indian Journal of Forest.1988,10(12):267-271.
    [58]Suresh K., Rai R.S.V. Studies on the allelopathic effects of some agroforestry tree crops[J]. International Tree Crops Journal.1987,4(2-3):109-115.
    [59]Moral R., Willis R., Ashton D. Suppression of coastal heath vegetation by Eucalyptus baxteri[J]. Australian Journal of Botany.1978,26(2):203-219.
    [60]Pandey D.K., Kauraw L.P., Bhan V.M. Inhibitory effect of parthenium (Parthenium hysterophorus L.) residue on growth of water hyacinth (Eichhornia crassipes Mart Solms.) I. Effect of leaf residue[J]. Journal of Chemical Ecology.1993,19(11):2651-2662.
    [61]Bogatek R., Gniazdowska A., Zakrzewska W., et al. Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth[J]. Biologia Plantarum.2006,50(1):156-158.
    [62]杜昱光,张宝琛.生化他感效应对土壤氮素影响的研究[J].草业科学.1996,13(5):65-67.
    [63]王乃亮,马瑞君,孙坤,等.5种菊科植物水浸液对黄帚橐吾种子萌发期化感作用的研究[J].兰州大学学报:自然科学版.2006,42(5):56-61.
    [64]Li F.M., Hu H.Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis[J]. Applied and Environmental Microbiology.2005,71(11):6545-6553.
    [65]Romagni J.G., Allen S.N., Dayan F.E. Allelopathic effects of volatile cineoles on two weedy plant species[J]. Journal of chemical ecology.2000,26(1):303-313.
    [66]Holappa L.D., Blum U. Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean[J], Journal of Chemical Ecology.1991,17(5):865-886.
    [67]Bhowmik P., Doll J. Growth analysis of corn and soybean response to allelopathic effects of weed residues at various temperatures and photosynthetic photon flux densities[J]. Journal of Chemical Ecology. 1983,9(8):1263-1280.
    [68]Penuelas J., Ribas-Carbo M., Giles L. Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase[J]. Journal of Chemical Ecology.1996,22(4):801-805.
    [69]Boufalis A., Pellissier F. Allelopathic effects of phenolic mixtures on respiration of two spruce mycorrhizal fungi[J]. Journal of Chemical Ecology.1994,20(9):2283-2289.
    [70]Baziramakenga R., Simard R., Leroux G. Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean[J]. Journal of Chemical Ecology.1994,20(11):2821-2833.
    [71]Hejl A.A.M., Einhellig F.A., Rasmussen J.A. Effects of juglone on growth, photosynthesis, and respiration[J]. Journal of Chemical Ecology.1993,19(3):559-568.
    [72]Shibu J., Andrew R. Allelopathy in black walnut (Juglans regia L.) alley cropping. Ⅱ. Effects of juglone on hydroponically grow corn (Zea may L.) and soybean (Glycine max L. Merr.) growth and physiology [J]. Plant and Soil.1998,203(2):199-205.
    [73]Baziramakenga R., Leroux G.D., Simard R.R., et al. Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings[J]. Canadian journal of Botany.1997,75(3):445-450.
    [74]Wink M., Latz-Bruning B. Allelopathic properties of alkaloids and other natural products[J]. Allelopathy: Organisms, Processes and Applications.1995,582(117-126.
    [75]李寿田,周健民,王火焰,等.植物化感作用机理的研究进展[J].农村生态环境.2001,17(4):52-55.
    [76]Einhellig F.A., Eckrich P.C. Interactions of temperature and ferulic acid stress on grain sorghum and soybeans[J]. Journal of Chemical Ecology.1984,10(1):161-170.
    [77]Kapulnik Y., Okon Y., Kigel J., et al. Effects of temperature, nitrogen fertilization, and plant age on nitrogen fixation by Setaria italica inoculated with Azospirillum brasilense (strain cd)[J]. Plant physiology. 1981,68(2):340-343.
    [78]Einhellig F.A. Interactions involving allelopathy in cropping systems[J]. Agronomy Journal.1996, 88(6):886-893.
    [79]Einhellig F., Muth M.S., Schon M. Effects of Allelochemicals on Plant-Water Relationships[M]. Washington, ACS Publications,1985.
    [80]Einhellig F. Interactions among allelochemicals and other stress factors of the plant environment[J]. Allelochemicals:role in agriculture and forestry.1987,330(3):343-357.
    [81]Einhellig F. Mode of allelochemical action of phenolic compounds[J]. Allelopathy, chemistry and mode of action of allelochemicals.2004,217-239.
    [82]Luu K., Matches A., Peters E. Allelopathic effects of tall fescue on birdsfoot trefoil as influenced by N fertilization and seasonal changes[J]. Agronomy Journal.1982,74(5):805-808.
    [83]Hall A.B., Blum U., Fites R.C. Stress modification of allelopathy ofHelianthus annuus L. debris on seedling biomass production ofAmaranthus retroflexus L[J]. Journal of Chemical Ecology.1983,9(8): 1213-1222.
    [84]Williamson G.B., Obee E.M., Weidenhamer J.D. Inhibition of Schizachyrium scoparium (poaceae) by the allelochemical hydrocinnamic acid[J]. Journal of Chemical Ecology.1992,18(11):2095-2105.
    [85]Fischer N.H., Williamson G.B., Weidenhamer J.D., et al. In search of allelopathy in the Florida scrub: the role of terpenoids[J]. Journal of Chemical Ecology.1994,20(6):1355-1380.
    [86]Murray A.H., Iason G.R., Stewart C. Effect of simple phenolic compounds of heather (Calluna vulgaris) on rumen microbial activity in vitro[J]. Journal of Chemical Ecology.1996,22(8):1493-1504.
    [87]Patrick Z., Toussoun T., Koch L. Effect of crop-residue decomposition products on plant roots[J]. Annual Review of Phytopathology.1964,2(1):267-292.
    [88]曾任森.化感作用研究中的生物测定方法综述[J].应用生态学报.1999,10(1):123-126.
    [89]杜英君,靳月华.连作大豆植株化感作用的模拟研究[J].应用生态学报.1999,10(2):209-212.
    [90]周志红.植物化感作用的研究方法及影响因素[J].生态科学.1999,18(001):35-38.
    [91]Leather G.R., Einhellig F.A. Bioassays in the study of allelopathy[J]. Plant Ecology.1986,4(4): 133-145.
    [92]张燕军,郑建旭,张爱军,等.植物化感作用研究方法综述[J].安徽农学通报.2008,14(21):66-67.
    [93]施月红,谷文祥.生化他感作用研究中的生物测定方法[J].生态科学.1998,17(001):84-89.
    [94]钦俊德,昆虫与植物的关系:论昆虫与植物的相互作用及其演化[M].北京,科学出版社,1987.
    [95]刘小香.巨尾桉的化感作用研究[D].华南热带农业大学.2005.
    [96]孔垂华,胡飞,植物,植物化感(相生相克)作用及其应用[M].北京,中国农业出版社,2001.
    [97]李绍文,生物化学,生态生物化学[M].北京,北京大学出版社,2001.
    [98]江贵波,曾任森.化感物质及其收集方法综述[J].河南农业科学.2006,6(6):24-27.
    [99]孙文浩,余叔文.相生相克效应及其应用[J].植物生理学通讯.1992,28(2):81-87.
    [100]郑丽,冯玉龙.紫茎泽兰叶片化感作用对10种草本植物种子萌发和幼苗生长的影响[J].生态学报.2005,25(10):2782-2787.
    [101]刘荷芬,樊金献,侯双.香丝草对几种杂草的化感作用研究[J].河南科技学院学报(自然科学版).2008,36(1):14-16.
    [102]耿广东,程智慧,张素勤.不同浓度的辣椒化感物质对莴苣化感效应研究[J].华北农学报.2008,23(002):30-33.
    [103]Perez F.J. Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. Fatua[J]. Phytochemistry.1990,29(3):773-776.
    [104]王璞,赵秀琴.几种化感物质对棉花种子萌发及幼苗生长的影响[J].中国农业大学学报.2001,6(3):26-31.
    [105]Asplund R.O. Monoterpenes:relationship between structure and inhibition of germination[J]. Phytochemistry.1968,7(11):1995-1997.
    [106]Bradow J.M., Connick W.J. Volatile seed germination inhibitors from plant residues[J]. Journal of Chemical Ecology.1990,16(3):645-666.
    [107]谷文祥,段舜山,骆世明.萜类化合物的生态特性及其对植物的化感作用[J].华南农业大学学报.1998,19(4):108-112.
    [108]Blum U. Allelopathic interactions involving phenolic acids[J]. Journal of Nematology.1996,28(3): 259-270.
    [109]孔垂华,徐涛,胡飞.胜红蓟化感作用研究Ⅱ.主要化感物质的释放途径和活性[J].应用生态学报.1998,9(3):257-260.
    [110]林群慧,何华勤,林文雄.水稻化感物质作用特性的研究[J].中国生态农业学报.2001,9(1):84-85.
    [111]Pue K., Blum U., Gerig T., et al. Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity ofp-coumaric acid on morning-glory seedling biomass accumulation[J]. Journal of Chemical Ecology.1995,21(6):833-847.
    [112]Blum U., Gerig T., Worsham A., et al. Modification of allelopathic effects ofp-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate[J]. Journal of Chemical Ecology.1993, 19(12):2791-2811.
    [113]Harborne J. Plant phenolics[J]. Encyclopedia of Plant Physiology. New Series. Volume 8. Secondary plant products [Bell, AE; Charlwood, BV (Editors)].1980,329-402.
    [114]曹潘荣,骆世明.柠檬桉的他感作用研究[J].华南农业大学学报.1996,17(2):7-11.
    [115]Muller C.H., Muller W.H., Haines B.L. Volatile growth inhibitors produced by aromatic shrubs[J]. Science (New York, NY).1964,143(3605):471-473.
    [116]Roshchina V. Volatile and water-soluble metabolites of woody species leaves[J]. Physiologically biochemical base of interactions between plants in phytocenosis.1974,5(12):36-40.
    [117]Friedman J. Allelopathy in desert ecosystems [J]. Allelochemicals:role in agriculture and forestry. American Chemical Society, Washington, DC, USA.1987,118-128.
    [118]冯建永,陶晡晡,庞民好,等.黄顶菊化感物质释放途径的初步研究[J].河北农业大学学报.2009,32(1):72-77.
    [119]马雪华,王翌.在杉木林和马尾松林中雨水的养分淋溶作用[J].生态学报.1989,9(1):15-20.
    [120]陈丽,姜惠武,张红光.植物根系分泌物的研究进展[J].林业勘查设计.2009,3(71-72.
    [121]Yu J.Q., Ye S.F., Zhang M.F., et al. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber[J]. Biochemical Systematics and Ecology.2003,31(2):129-139.
    [122]Wu H., Haig T., Pratley J., et al. Allelochemicals in wheat (Triticum aestivum L.):production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one[J]. Journal of Chemical Ecology.2001,27(8): 1691-1700.
    [123]Wu H., Haig T., Pratley J., et al. Allelochemicals in wheat (Triticum aestivum L.):Variation of phenolic acids in shoot tissues[J]. Journal of Chemical Ecology.2001,27(1):125-135.
    [124]Wu H., Haig T., Pratley J., et al. Allelochemicals in wheat (Triticum aestivum L.):cultivar difference in the exudation of phenolic acids[J]. Journal of agricultural and food chemistry.2001,49(8):3742-3745.
    [125]Perez F.J., Ormeno-Nunez J. Root exudates of wild oats:allelopathic effect on spring wheat[J]. Phytochemistry.1991,30(7):2199-2202.
    [126]Tang C.S., Young C.C. Collection and identification of allelopathic compounds from the undisturbed root system of bigalta limpograss (Hemarthria altissima)[J]. Plant Physiology.1982,69(1):155-160.
    [127]杨瑞吉.油菜根系分泌物对不同作物幼苗生长的化感效应[J].生态环境.2006,15(5):1062-1066.
    [128]Tang C.S., Zhang B., Putnam A. Qualitative and quantitative determination of the allelochemical sphere of germinating mung bean[J]. The science of allelopathy.1986,229-242.
    [129]梁文举,张晓珂,姜勇,等.根分泌的化感物质及其对土壤生物产生的影响[J].地球科学进展.2005,20(3):330-337.
    [130]黄高宝,柴强.植物化感作用表现形式及其开发应用研究[J].中国生态农业学报.2003,11(3):45-48.
    [131]宋君.植物间的他感作用[J].生态学杂志.1990,9(6):43-47.
    [132]Shaver T., Lingren P., Marshall H. Nighttime Variation in Volatile Content of Flowers of the Night Blooming PlantGaura drummondii[J]. Journal of Chemical Ecology.1997,23(12):2673-2682.
    [133]孙爱东,葛毅强,蔡同一.天然植物次生代谢产物的提取[J].生物学杂志.1998,15(5):4-7.
    [134]程彬,付晓霞,谢朋,等.植物挥发物的收集方法[J].吉林林业科技.2009,38(004):32-35.
    [135]汪茂田,谢培山,王忠东.天然有机化合物提取分离与结构鉴定[M].北京,化学工业出版社,2004.
    [136]刘艳华,邓业成,邓志勇.天然有机化合物提取与分离技术的研究和应用进展[J].化学与生物工程.2008,24(8):5-8.
    [137]汪秋安,孙朝旭.天然有机化合物提取新方法[J].北京日化.2000,2(1):23-25.
    [138]谭d伟.d然产物分离新技术[J].化工进展.2003,22(7):665-668.
    [139]韦琦,曾强.胜红蓟地上部化感作用物的分离与鉴定[J].植物生态学报.1997,21(4):360-366.
    [140]杨西岳.膜分离技术[J].天然产物分离.2007,1(2):19-20.
    [141]工国栋,李玲.高速离心法替代醇沉法制备流浸膏研究[J].新疆中医药.2001,19(004):10-11.
    [142]Bulen W., Varner J., Burrell R. Separation of organic acids from plant tissues[J]. Analytical Chemistry. 1952,24(1):187-190.
    [143]孙金才,杨泽敏,姚素梅,等.水稻化感作用的研究现状与展望[J].江苏农业科学.2004,5(1):4-7.
    [144]王大力.豚草属植物化感作用研究综述[J].生态学杂志.1995,14(4):48-53.
    [145]Sasikumar K., Vijayalakshmi C., Parthiban K. Allelopathic effects of four Eucalyptus species on redgram (Cajanus cajan L.)[J]. Journal of Tropical Agriculture.2001,39(2):134-138.
    [146]任海,蔡锡安,饶兴权,等.植物群落的演替理论[J].生态科学.2009,1(4):59-67.
    [147]韩有志,王政权.森林更新与空间异质性[J].应用生态学报.2002,13(5):615-619.
    [148]董广平.日本的天然林管理和天然林更新[J].世界林业研究.2001,14(004):57-64.
    [149]王贺新,李根柱,于冬梅,等.枯枝落叶层对森林天然更新的障碍[J].生态学杂志.2008,27(1):83-88.
    [150]曾东,李行斌,于恒.阿尔泰林区新疆落叶松,新疆云杉天然更新规律及效果[J].西北林学院学报.2001,16(1):17-21.
    [151]Gallet C. Allelopathic potential in bilberry-spruce forests:influence of phenolic compounds on spruce seedlings[J]. Journal of Chemical Ecology.1994,20(5):1009-1024.
    [152]Fisher R.F. Allelopathy:a potential cause of regeneration failure[J]. Journal of Forestry.1980,78(6): 346-350.
    [153]何光训.杉木化感物质香草醛的产生机理探讨[J].浙江林学院学报.2006,22(4):454-457.
    [154]沈国舫,翟明普,混交林研究:全国混交林与树种间关系学术讨论会文集[C].中国林业出版社,1997.
    [155]Lodhi M.A. Role of allelopathy as expressed by dominating trees in a lowland forest in controlling the productivity and pattern of herbaceous growth[J]. American Journal of Botany.1976,1-8.
    [156]陈圣宾,李振基.外来植物入侵的化感作用机制探讨[J].生态科学.2005,24(1):123-125.
    [157]李浩然,泽桑梓,刘宏屏,等.植物的化感作用及其在林业经营中的运用[J].西部林业科学.2006,35(1):121-124.
    [158]Nuzzo V.A. Experimental control of garlic mustard [Alliaria petiolata (Bieb.) Cavara & Grande] in northern Illinois using fire, herbicide, and cutting[J]. Natural Areas Journal.1991,11(3):158-167.
    [159]Gentle C., Duggin* J. Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities[J]. Plant Ecology.1997,132(1):85-95.
    [160]Swift M.J., Heal O.W., Anderson J.M., Decomposition in terrestrial ecosystems, Univ of California Press,1979.
    [161]郭忠玲,郑金萍,马元丹,等.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报.2006,26(4):1037-1046.
    [162]杨期和,叶万辉,廖富林,等.植物化感物质对种子萌发的影响[J].生态学杂志.2005,24(12):1459-1465.
    [163]潘辉.三种相思树人工林凋落物养分归还功能及碳平衡研究[D].福建农林大学.2008.
    [164]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志.2004,23(6):77-83.
    [165]Olson JS. Energy stroage and the balance of producers and decomposers in ecological systems[J]. Ecology.1963,44:332-331.
    [166]吴勇刚,张建,何慧琴.巨桉纸浆原料林土壤养分与林木生长研究[J].四川林业科技.2004,2:42-45.
    [167]Findlay S.E., Arsuffi T.L. Microbial growth and detritus transformations during decomposition of leaf litter in a stream[J]. Freshwater Biology.1989,21(2):261-269.
    [168]康萍芝,沈瑞清,张丽荣,等.湿度对新垦地土壤微生物区系影响初探[J].内蒙古农业科技.2004,004):17-18.
    [169]邱尔发,陈卓梅,郑郁善,等.麻竹山地笋用林凋落物发生,分解及养分归还动态[J].应用生态学报.2005,16(5):811-814.
    [170]冯健,张健一.巨桉人工林地土壤微生物类群的生态分布规[J].应用生态学报.2005,16(8).
    [171]Austin A.T., Ballare" C.L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems [J]. Proceedings of the National Academy of Sciences.2010,107(10):4618-4622.
    [172]史学军,潘剑君,陈锦盈,等.不同类型凋落物对土壤有机碳矿化的影响[J].环境科学.2009,30(6):1832-1837.
    [173]江淼华,程徐冰,杨建忠,等.杉木与楠木凋落叶混合分解及其P,K动态[J].亚热带资源与环境学报.2012,7(3):14-19.
    [174]刘文飞,樊后保,沈芳芳,等.连续年龄序列桉树人工林凋落物分解的研究[J].水土保持学报.2011,6):132-136.
    [175]Fujii Y., Shibuya T., Nakatani K., et al. Assessment method for allelopathic effect from leaf litter leachates[J]. Weed Biology and Management.2004,4(1):19-23.
    [176]王晗光,张健,杨婉身,等.巨桉根系和根系土壤化感物质的研究[J].四川师范大学学报(自然科学版).2006,29(3):368-371.
    [177]高丹,胡庭兴,万雪,等.巨桉枯落物化感物质的研究[J].浙江林学院学报.2008,25(002):191-194.
    [178]戚建华,梁银丽,梁宗锁.农业生态系统中化感作用研究综述[J].西北农业学报.2004,13(2):115-118.
    [179]彭少麟,南蓬,钟扬.高等植物中的萜类化合物及其在生态系统中的作用[J].生态学杂志.2002,21(3):33-38.
    [180]张秋菊,张爱华,孙晶波,等.植物体中萜类物质化感作用的研究进展[J].生态环境学报.2012,21(1):187-193.
    [181]Bradow J.M., Connick Jr W.J. Volatile seed germination inhibitors from plant residues [J]. Journal of chemical ecology.1990,16(3):645-666.
    [182]Nishida N., Tamotsu S., Nagata N., et al. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla:inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings[J]. Journal of chemical ecology.2005,31(5):1187-1203.
    [183]Yang G., Wan F., Liu W., et al. Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA and ZR contents in roots of upland rice seedlings[J]. Allelopathy Journal.2008,21(2): 253-262.
    [184]郭兰萍,黄璐琦,蒋有绪,等.苍术根茎及根际土水提物生物活性研究及化感物质的鉴定[J].生态学报.2006,26(2):528-535.
    [185]曾任森,曾强.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定[J].生态学报.1996,16(1):20-27.
    [186]彭少麟,向言词.植物外来种入侵及其对生态系统的影响[J].生态学报.1999,19(4):560-568.
    [187]温远光,刘世荣,陈放,等.桉树工业人工林植物物种多样性及动态研究[J].北京林业大学学报.2006,27(4):17-22.
    [188]徐大平,张宁南.桉树人工林生态效应研究进展[J].广西林业科学.2007,35(4):179-187.
    [189]Knox J., Morris J., Hess T. Identifying future risks to UK agricultural crop production:Putting climate change in context[J]. Outlook on AGRICULTURE.2010,39(4):249-256.
    [190]Cheng Y.C., Fleming G.R. Dynamics of light harvesting in photosynthesis [J]. Annual review of physical chemistry.2009,1(60):241-262.
    [191]应小芳,刘鹏.铝胁迫对大豆叶片光合特性的影响[J].应用生态学报.2005,16(1):166-170.
    [192]Lichtenthaler H.K. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[J]. Methods in enzymology.1987,148(12):350-382.
    [193]郁继华,张韵,牛彩霞,等.两种化感物质对茄子幼苗光合作用及叶绿素荧光参数的影响[J].应用生态学报.2006,17(9):1629-1632.
    [194]陈良华,弓平,杨万勤,等.巨桉凋落叶分解初期对小白菜光合生理特性的影响[J].四川农业大 学学报.2012,30(2):174-180.
    [195]Wong S., Cowan I., Farquhar G. Stomatal conductance correlates with photosynthetic capacity[Jj. Nature.1979,22(282):424-426.
    [196]Mersie W., Singh M. Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf[J]. Journal of chemical ecology.1993,19(7):1293-1301.
    [197]吴秀华,胡庭兴.巨桉凋落叶分解对菊苣生长及光合特性的影响[J].应用生态学报.2012,23(1):1-8.
    [198]陈洪,胡庭兴,杨万勤,等.巨桉凋落叶分解初期对老芒麦幼苗生长和抗性生理的影响[J].草业学报.2011,20(5):57-65.
    [199]王晶懋,张楚涵,闫庆伟,等.植物抗旱的生理渗透调节及保护酶活性研究进展[J].黑龙江生态工程职业学院学报.2012,2):31-33.
    [200]曾凡明.巨桉凋落叶分解初期对鸭茅生长的影响[D].四川农业大学.2012.
    [201]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报.2001,18(4):459-465.
    [202]崔震海,王艳芳,樊金娟,等.植物渗透调节的研究进展[J].玉米科学.2008,15(6):140-143.
    [203]Kishor P.K., Sangam S., Amrutha R., et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance[J]. Curr Sci.2005, 88(3):424-438.
    [204]朱慧,马瑞君,陈树思,等.高寒草场主要草种对黄帚橐吾水浸液化感胁迫的生理响应[J].草业学报.2007,16(005):102-106.
    [205]陈秋波.桉树人工林生物多样性研究进展[J].热带作物学报.2001,22(4):82-90.
    [206]余叔文,植物学,汤章城,等.植物生理与分子生物学[M].北京,科学出版社,1998.
    [207]Liu D.L., Lovett J. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals[J]. Journal of chemical ecology.1993,19(10):2231-2244.
    [208]Wink M., Latz-Bruning B. Allelopathic properties of alkaloids and other natural products[J]. Allelopathy:Organisms, Processes and Applications.1995,582(2):117-126.
    [209]邓明华,文锦芬,邹学,等.辣椒植株水浸提液对生菜和大白菜化感作用的初步研究术[J].云南农业大学学报.2007,22(3):452-455.
    [210]毛丹鹃,谢俊芳,全国明,等.三叶鬼针草水浸提液对两种草种种子萌发与幼苗生长的影响[J].佛山科学技术学院学报:自然科学版.2010,10(5):7-11.
    [211]廖建良,宋冠华,曾令达.巨尾桉叶片水提液对小麦幼苗生长的影响[J].惠州大学学报.2000,20(4):50-52.
    [212]赵绍文,王凌晖.巨尾桉枝叶水浸提液对3种作物种子萌发的影响[J].广西科学院学报.2000,16(1):14-17.
    [213]廖俊俊.加拿大一枝黄花叶水提取物化感作用初步研究[D].浙江大学.2010.
    [214]王开金,陈列忠,俞晓平.加拿大一枝黄花化感作用的初步研究[J].浙江农业学报.2006,18(5):299-303.
    [215]周凯,郭维明.加拿大一枝黄花根系和根际土壤水浸液对萝卜和白菜种子萌发及幼苗生长的影响[J].西北植物学报.2005,25(1):174-178.
    [216]梁倩倩,白尚斌,周国模,等.毛竹浸提液对高羊茅种子萌发及幼苗生长的影响[J].浙江农业学报.2012,24(3):434-439.
    [217]周新伟,沈明星,吴进兴,等.水葫芦水浸提液及压榨液对几种蔬菜幼苗的化感作用[J].江苏农业科学.2012,40(2):123-124.
    [218]白丽荣,时丽冉,徐振华,等.火炬树浸提液对几种农作物的化感作用[J].种子.2010,006):91-93.
    [219]张斌斌,蔡志翔,马瑞娟,等.桃树根系浸提液对毛桃幼苗生长的化感效应[J].中国农学通报.2012,28(28):260-264.
    [220]赵利,牛俊义,李长江,等.地肤水浸提液对胡麻化感效应的研究[J].草业学报.2010,19(2):190-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700