用户名: 密码: 验证码:
高寒沙地不同林龄乌柳人工防护林固碳功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被恢复与重建是防治土地荒漠化的有效方式。人工固沙植被具有多种生态服务功能。其中,固碳功能是生态系统的一个非常重要的服务功能。本研究以典型的高寒沙地生态系统为主要研究对象,对乌柳防护林的土壤理化性质、根系分布特征、生物量、生产力以及生态系统碳贮量等方面进行了研究,旨在探讨乌柳防护林的生物和土壤固碳功能及其影响因子,为全面评价高寒沙地生态系统的固碳功能提供科学依据。本研究可以为今后在共和盆地以及其他干旱、半干旱区退化生态系统开展植被恢复与重建,评价生态系统的服务功能提供参考。主要结果如下:
     (1)不同林龄乌柳林的土壤理化性质
     乌柳林土壤有机质含量随恢复时间的增长不断增加。恢复年限对不同林龄土壤有机质有显著影响(P<0.05),且同一林龄不同深度差异不同。土壤全氮含量随恢复时间的增加而增加,具体表现为21a>16a>11a>6a>ck。土壤表层与深层土壤有机质与全氮含量都发生了显著的变化,上层土壤(深度<100cm)高于下层。土壤铵态氮和硝态氮的含量在各林龄之间差异显著,土壤速效磷和土壤速效钾含量随恢复时间的增长逐渐增加,土壤pH值逐渐降低。因此,乌柳林的建设有利于土壤的固定和改良,随恢复时间的增长,植被对土壤的改良作用逐渐增强。
     不同林龄乌柳林林下土壤含水量变化总体差异显著(P<0.05),且同一林龄不同深度之间差异不同。各林龄10~20cm和20~30cm深度土壤含水量优于土壤表层。21a乌柳林生长发育较为成熟,土壤有机质含量较高,土壤孔隙度高,蓄水能力和持水能力较强,土壤水分状况最好。随恢复时间的增加,各林龄土壤容重逐渐减小,土壤孔隙度、土壤毛管孔隙度、土壤毛管持水量与最大持水量逐渐增加。乌柳林土壤结构和孔性得到了有效改善,根系与土壤之间的交互作用导致土壤容重的改变,进而导致土壤有机碳含量的变化。
     (2)不同林龄乌柳林的生物量与生产力
     各林龄乌柳林生物量逐渐增加,6a、11a、16a和21a分别为10.58t hm~(-2)、19.49t hm~(-2)、28.90t hm~(-2)和41.27t hm~(-2)。各组分生物量的分配表现各异,在数值上的大小关系可表示为:树干>树根>树枝>树叶>树皮。采用一元方程模型即以基径(B)为自变量进行生物量的推算是较为合理的方法。
     不同林龄乌柳林根系主要由直径小于5.0mm的中根和细根构成,以直径小于2.0mm的细根所占比例最高。各林龄乌柳根系在0~50cm分布较为集中,6a乌柳林根系分布在0~130cm之间,21a乌柳林根系可达地下200cm,各林龄根系生物量随恢复时间的增长逐渐增加,比根长与根长密度显著增加。随林龄的增加,根系消根系数逐渐增加。乌柳表现出深根性的特点,体现出较强的生态可塑性。植被恢复对深层土壤有机质的变化影响亦显著(P<0.05)。比根长和根长密度的增加导致了土壤容重的变化。土壤有机质的变化与根系生长及分布有着极显著的相关性(P<0.01)。各林龄乌柳防护林平均净生产力依次为1.76、1.78、1.81和1.97t hm~(-2) a~(-1)。草本层生物量占整个生态系统的比例逐渐降低。各组分年平均净生产力大小顺序均为树干>树根>树枝>树叶>树皮。
     (3)不同林龄乌柳林的碳密度和碳贮量
     随着林龄的增加,乌柳各组分碳密度变化规律并不显著。各林龄乌柳根系碳密度之间未达到显著水平。6a乌柳各器官碳密度变化范围为0.4105~0.5087gC g~(-1),11a乌柳各器官碳密度变化范围为0.4523~0.5342gC g~(-1),16a乌柳各器官碳密度变化范围为0.4514~0.5485gC g~(-1),21a乌柳各器官碳密度变化范围为0.4704~0.5992gC g~(-1)。不同林龄乌柳的粗根、中根、细根的碳密度变化规律不一致。各林龄乌柳林碳贮量分别为4.95t hm~(-2)、9.93t hm~(-2)、14.67t hm~(-2)和21.99t hm~(-2)。不同林龄乌柳不同组分碳库的分配比例不一致,树干碳贮量占林分碳贮量的百分比最高。
     同一深度不同林龄乌柳土壤有机碳含量总体差异显著(P<0.05)。土壤碳库随植被恢复时间的增加而增加,较之6a,11a土壤碳库增加26.78%,16a较之11a提高24.16%,21a较16a提高9.82%。土壤有机碳含量与土壤容重之间呈极显著负相关关系(P<0.01),与土壤全氮呈极显著正相关关系(P<0.01)。以土壤有机碳为相应变量,分别建立三维模型以及线性归回方程,模拟土壤有机碳随林龄与容重、深度与容重、全氮与容重的空间变化,为区域甚至大尺度的土壤碳库模型的建立提供了思路。
     不同林龄乌柳防护林的生态系统碳库分别为14.76t hm~(-2)、23.25t hm~(-2)、32.18t hm~(-2)和41.48t hm~(-2)。土壤碳库(0~(-2)00cm)分别为9.54t hm~(-2)、13.03t hm~(-2)、17.18t hm~(-2)和19.05t hm~(-2)。较之恢复前(ck),各林龄碳库分别增加57.05%、36.52%、27.75%和22.42%。植被恢复区乌柳造林总面积为223.2hm~(-2),按照各林龄碳贮量的平均值即12.795t hm~(-2)进行计算,则植被恢复区乌柳林固碳量为2855.844Mg C。建立乌柳林各组分生物量与碳贮量的回归方程,为今后通过实测生物量计算各组分碳贮量提供了依据。各林龄生态系统的净生产力分别为1.76t hm~(-2) a~(-1)、1.78t hm~(-2) a~(-1)、1.81t hm~(-2) a~(-1)和1.97t hm~(-2) a~(-1)。各林龄年均固碳量分别为0.83t hm~(-2) a~(-1)、0.90t hm~(-2) a~(-1)、0.92t hm~(-2) a~(-1)和1.05t hm~(-2) a~(-1)。不同林龄乌柳各器官的固碳量均以树干最高。各林龄乌柳林年净固碳量随林龄的增加逐渐增加。乌柳防护林具有“碳汇”功能。
Revegetation and restoration is the effective measure to prevent and control desertification.Moreover, the sand-fixing vegetaions have multiple ecosystem services and the carbonsequestration is one of the most important ecosystem service. In this research, the typicalhigh-cold sandland ecosystem in the Gonghe Basin, Qinghai Province was used to study thesoil physical and chemical properties, the characteristics of root distribution, the plantationbiomass and productivity, the carbon storage of ecosystem. The aim of this study is to researchthe characteristic of carbon sequestration and its effect factor about the Salix cheilophila shelterbelt, and providing a scientific basis for a comprehensive evaluation of the carbonsequestration in high-cold sand land ecosystem. Besides, it could also be benefits to providereference for the vegetation restoration and protection, revegetation in degraded ecosystem andthe assessment of ecosystem services in sandy land in arid and semi-arid ecosystems in thefuture. The main results are as follows:(1) Soil chemical and physical properties of Salix cheilophila plantation with different age
     The contents of soil organic matter (SOM) showed significantly increment with theextension of restoration time of S. cheilophila plantations (P<0.05). Soil organic matter contentwas affected significantly by restoration time and soil depths (P<0.05). The contents of totalnitrogen (TN) showed significantly increment with the extension of restoration time, thespecific data is21a>16a>11a>6a>ck. SOM and TN changed not only in the subsoil but also inthe deep soil layer. The content of the soil NO3-N, NH4-N, AP (available phosphorus) and AK(available potassium) showed significant differences in different ages of S.cheilophilaplantation (P<0.05). In the same stand age, soil nutrients contents of the upper soil layer(depth<100cm) were higher than deeper soil. The content of AP and AK increased, and soil pHvalues decreased gradually with restoration time. The soil chemical properties and soil fertilitylevels were improved gradually after the establishment of S. cheilophila plantation.
     The soil water content exhibited significant difference (P<0.05) among different stand ages in general, and marked differences were also found among different soil depth. The soilwater content in10~20cm and20~30cm were superior to the surface (0~10cm). The soilwater condition was the best in21-years old. S. cheilophila plantation, which showed higherSOM and soil porosity relatively, with better water holding capacity. With longer restorationtime, the soil bulk density decreased gradually; on the contrary, the soil porosity, soil capillaryporosity, soil capillary holding capacity and maximum water holding capacity increased. Thesoil structure and porosity properties of S.cheilophila were improved effectively. Theinteractions between root and soil led to the change of soil bulk density, which caused thechange of soil organic carbon storage.(2) The biomass and productivity of Salix cheilophila plantation with different ages
     The biomass of the S. cheilophila plantation increased gradually with ages. Biomass of6,11,16,21-years-old plantation were10.58,19.49,28.90and41.27t hm~(-2)respectively. Thebiomass allocation of each component was different. On the numerical side, it could beexpressed as: the trunk> root> branches> leaves> bark. The Single-Equation Model was areasonable way to evaluate the biomass and the basal diameter (B) was used as the independentvariable.
     The root system of S. cheilophila with different plantation ages was mainly consist of fineroots and middle roots with diameter less than5.0mm, among which more than50%were fineroots with diameter less than2.0mm. The root system of S.cheilophila plantation wasconcentratedly distributed in soil depth of0~50cm. The root system of6-years-old wasdistributed in0~130cm, and the vertical distribution of21-years-old could reach200cm. Theroot biomass increased gradually with revegetation time. Besides, root specific length and rootlength density also showed significant increment (P<0.05). The root extinction coefficientgradually increased with stand age. S. cheilophila showed the characteristics of deep-root,which reflected excellent ecological plasticity. Revegetation also showed significant influenceto the change of SOM. The increment of root specific length and root length density lead tochange of soil bulk density. There was highly significant correlation between soil organicmatter and root distribution. The net ecosystem productivity of the S. cheilophila of6,11,16, 21years old plantation were1.76,1.78,1.81and1.97t hm~(-2) a~(-1)respectively. The proportion ofbiomass in the herb layer was gradually reduced in the entire ecosystem. And the productivityof each component could be arranged in numerical size, as the trunk> root> branches>foliage> bark.(3) The carbon density and carbon storage of Salix cheilophila plantation with different ages
     There is no significant difference of carbon density variation between each componentwith the increment of restoration time (P>0.05). The carbon density of root did not reach asignificant level in any age of plantation. The range of variation in carbon density in differentorgans was0.4105~0.5087gC g~(-1)for6-years-old plantation,0.4523~0.5342gC g~(-1)for11-years-old plantation,0.4514~0.5485gC g~(-1)for16-years-old plantation, and0.4704~0.5992gC g~(-1)for21-years-old plantation. The variation of carbon density in the coarse root, middleroot and fine root was different in different stand ages. The carbon storage of6,11,16, and21-years-old was10.58,19.49,28.90and41.27t hm~(-2)respectively. The proportion of carbonpools of different components differed in different stand ages. The carbon storage in the trunktook up the highest percentage in all components.
     The soil organic carbon pools showed significant difference in the same depth of differentages (P<0.05). The soil carbon pools increased with the restoration time, the soil carbon poolsof11-year-old plantation increased26.78%compared to the6-years-old, the16-years-oldplantation increased24.16%compared to the11-years, and the21-year increased9.82%compared to the16-years-old. The contents of soil organic carbon and soil bulk density showedhighly significant negative correlation (P<0.01). On the contrary, positive correlation showedbetween the contents of soil organic carbon and the contents of TN. Take soil organic carbon asdependent variables, the three-dimensional model and linear equation were set up to simulatethe changes among the soil organic carbon, soil bulk density, soil depth and total nitrogen withthe extension of the restoration time, respectively. Regression models showed that the soil bulkdensity, soil total nitrogen significantly effect on the soil organic carbon (P<0.01), whichprovided thoughts for the modeling of soil carbon pool in the vegetation restoration area on theregional and even large-scale.
     The ecosystem carbon pools of the S.cheilophila of6,11,16and21-years-old were14.76,23.25,32.18and41.48t hm~(-2)respectively. And the soil carbon pools were9.54,13.03,17.18,19.05t hm~(-2). The carbon pools increased57.05%、36.52%、27.75%and22.42%compared toCK, respectively. The total area of the Salix cheilophila in the restoration area is223.2hm~(-2),calculated with the average of the carbon storage (12.795t hm~(-2)), the carbon sequestration ofthe S. cheilophila in the restoration area reached2855.844Mg C. The establishment ofregression equation of biomass and carbon storage of each component provided basis tomeasure the carbon storage according to biomass in the future. The net primary productivity ofthe S. cheilophila plantation of6,11,16,21-years-old was1.76,1.78,1.81and1.97t hm~(-2), theaverage annual carbon sequestration of each stand was0.83,0.90,0.92and1.05t hm~(-2) a~(-1). Thetrunk has the highest carbon sequestration. The net carbon storage increased with therestoration time. The artificial shelterbelt of S. cheilophila plantation could be considered as a“carbon sink”.
引文
Abanda P A, Compton J S, Hannigan R E. Soil nutrient content, above-ground biomass and litter in asemi-arid shrubland, South Africa. Geoderma,2011,164(3-4):128-137.
    Allington G, Valone T. Reversal of desertification: the role of physical and chemical soil properties. Journalof Arid Environments,2010,74(8):973-977.
    Ajtay J M, Ketner P, Duvigneaud P. Terrestial primary production and phytomass, In The Global CarbonCycle, SCOPE13. John. Wiley.123-181,1979.
    Apps M J, Kurz W. Assessing the role of Canadian forests and forest sector activities in the global carbonbalance. World Resource Review,1991,3(4):333-343.
    Barcza Z, Haszpra L, et al. Carbon exchange of grass in Hungary. Tullus B,2003,55(2):187-196.
    Batjes N H, Pollution D N R P o G A, Change C. Management options for reducing CO2-concentrations inthe atmosphere by increasing carbon sequestration in the soil: National Institute of Public Health and theEnvironment,1999.
    Beare M, Hendrix P, Cabrera M, et al. Aggregate-protected and unprotected organic matter pools inconventional-and no-tillage soils. Soil Science Society of America Journal,1994,58(3):787-795.
    Bell K L, Hiatt H D, Niles W. Seasonal changes in biomass allocation in eight winter annuals of the MojaveDesert. The Journal of Ecology,1979,3(67):781-787.
    Blanken P, Black T, Yang P, et al. Energy balance and canopy conductance of a boreal aspen forest:partitioning overstory and understory components. JOURNAL OF GEOPHYSICAL RESEARCH ALLSERIES,1997,103:28-28.
    Bloom A J, Chapin III F S, Mooney H A. Resource limitation in plants--an economic analogy. Annual reviewof Ecology and Systematics,1985:363-392.
    Bohn H L. Estimate of organic carbon in world soils. Soil Science Society of America Journal,1976,40(3):468-470.
    Brady N C, Weil R R. The nature and properties of soils: Prentice-Hall Inc.,1996.
    Buringh P. Original carbon in soils of the world. The Role of Terrestrial Vegetation in the Global CarbonCycle. John Wiley&Sons,1984,23:247
    Cao C, Jiang D, Teng X, et al. Soil chemical and microbiological properties along a chronosequence ofCaragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Applied SoilEcology,2008,40(1):78-85.
    Cao C, Jiang S, Ying Z, et al. Spatial variability of soil nutrients and microbiological properties after theestablishment of leguminous shrub Caragana microphylla Lam. plantation on sand dune in the HorqinSandy Land of Northeast China. Ecological Engineering,2011,37(10):1467-1475.
    Chang R, Fu B, Liu G, et al. The effects of afforestation on soil organic and inorganic carbon: A case study ofthe Loess Plateau of China. CATENA,2012,95:145-152.
    Chang R, Fu B, Liu G, et al. Effects of soil physicochemical properties and stand age on fine root biomassand vertical distribution of plantation forests in the Loess Plateau of China. Ecological Research,2012,27(4):827-836.
    Chen F.S, Zeng D.H, Fahey T J, et al. Organic carbon in soil physical fractions under different-agedplantations of Mongolian pine in semi-arid region of Northeast China. Applied Soil Ecology,2010,44(1):42-48.
    Ci L Yang X. Desertification and its control in China: Springer,2010.
    Comeau P G, Kimmins J P. Above-and below-ground biomass and production of lodgepole pine on sites withdiffering soil moisture regimes. Canadian Journal of Forest Research,1989,19(4):447-454.
    Connin S L, Virginia R, Chamberlain C. Carbon isotopes reveal soil organic matter dynamics following aridland shrub expansion. Oecologia,1997,110(3):374-386.
    Corbera E, Kosoy N, Martínez Tuna M. Equity implications of marketing ecosystem services in protectedareas and rural communities: Case studies from Meso-America. Global Environmental Change,2007,17(3):365-380.
    Costanza R, Wilson M, Troy A, et al. The value of New Jersey’s ecosystem services and natural capital. TheGund Institute of Ecological Economics, Burlington, VT and The New Jersey Department ofEnvironmental Protection, Trenton, New Jersey,2007,
    Coursolle C, Margolis H A, Giasson M A, et al. Influence of stand age on the magnitude and seasonality ofcarbon fluxes in Canadian forests. Agricultural and Forest Meteorology,2012,165:136-148.
    Daily G C, Alexander S, Ehrlich P R, et al. Ecosystem services: benefits supplied to human societies bynatural ecosystems: Ecological Society of America Washington (DC),1997.
    Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climatechange. Nature,2006,440(7081):165-173.
    Dixon R K, Brown S, Houghton R, et al. Carbon pools and flux of global forest ecosystems.Science(Washington),1994,263(5144):185-189.
    Dong G, Gao S, Jin J. The desertification and its control in the Gonghe Basin, Qinghai Province. ScientificPress, Beijing,1993,2:5-30.
    Dregne H E. Land degradation in the drylands. Arid land research and management,2002,16(2):99-132.
    Eissenstat D, Yanai R. The ecology of root lifespan. Advances in ecological research,1997,27:1-60.
    Eissenstat D M. On the relationship between specific root length and the rate of root proliferation: a fieldstudy using citrus rootstocks. New Phytologist,1991,118(1):63-68.
    Elliott E. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. SoilScience Society of America Journal,1986,50(3):627-633.
    Ericsson K, Nilsson L J. Assessment of the potential biomass supply in Europe using a resource-focusedapproach. Biomass and Bioenergy,2006,30(1):1-15.
    Eswaran H, Lal R, Reich P. Land degradation: an overview. Responses to Land degradation,2001:20-35.
    Fahey T J, Hughes J W. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard BrookExperimental Forest, NH. Journal of Ecology,1994,82(3):533-548.
    Fang J, Wang G, Liu G, et al. Forest biomass of China: an estimate based on the biomass-volume relationship.Ecological Applications,1998,8(4):1084-1091.
    Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between1949and1998.Science,2001,292(5525):2320-2322.
    Fang J, Guo Z, Piao S, et al. Terrestrial vegetation carbon sinks in China,1981–2000. Science in ChinaSeries D: Earth Sciences,2007,50(9):1341-1350.
    Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China,1981–2000. Science inChina Series D: Earth Sciences,2007,50(9):1341-1350.
    Feng Q, Endo K, Guodong C. Soil carbon in desertified land in relation to site characteristics. Geoderma,2002,106(1):21-43.
    Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrialand oceanic components. Science,1998,281(5374):237-240.
    Forde B, Lorenzo H. The nutritional control of root development. Plant and Soil,2001,232(1-2):51-68.
    Fu W, Huang M, Gallichand J, et al. Optimization of plant coverage in relation to water balance in the LoessPlateau of China. Geoderma,2012,173:134-144.
    Gale M, Grigal D. Vertical root distributions of northern tree species in relation to successional status.Canadian Journal of Forest Research,1987,17(8):829-834.
    Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems. New Phytologist,2000,147(1):13-31.
    Goh K M. Carbon sequestration and stabilization in soils: Implications for soil productivity and climatechange. Soil Science and Plant Nutrition,2004,50(4):467-476.
    Grünzweig J, Lin T, Rotenberg E, et al. Carbon sequestration in arid‐land forest. Global Change Biology,2003,9(5):791-799.
    Grace J, Yadvinder M. The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rainforest. Global Change Biology,1996,2(3):209-217.
    Gregorich E, Kachanoski R, Voroney R. Carbon mineralization in soil size fractions after various amounts ofaggregate disruption. Journal of Soil Science,1989,40(3):649-659.
    Grubb M, Vrolijk C, Brack D, et al. The Kyoto Protocol: a guide and assessment: Royal Institute ofInternational Affairs London,1999.
    Guo D, Li H, Mitchell R J, et al. Fine root heterogeneity by branch order: exploring the discrepancy in rootturnover estimates between minirhizotron and carbon isotopic methods. New Phytologist,2008,177(2):443-456.
    Guo D, Mitchell R J, Withington J M, et al. Endogenous and exogenous controls of root life span, mortalityand nitrogen flux in a longleaf pine forest: root branch order predominates. Journal of Ecology,2008,96(4):737-745.
    Guo D L, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sinkmanipulations in a longleaf pine forest. Oecologia,2004,140(3):450-457.
    Gupta V, Germida J. Distribution of microbial biomass and its activity in different soil aggregate size classesas affected by cultivation. Soil Biology and Biochemistry,1988,20(6):777-786.
    Han F, Hu W, Zheng J, et al. Estimating soil organic carbon storage and distribution in a catchment of LoessPlateau, China. Geoderma,2010,154(3-4):261-266.
    He N, Zhang Y, Dai J, et al. Losses in carbon and nitrogen stocks in soil particle-size fractions alongcultivation chronosequences in Inner Mongolian grasslands. Journal of Environmental Quality,2012,41(5):1507-1516.
    Houghton R, Hackler J, Lawrence K. The US carbon budget: contributions from land-use change. Science,1999,285(5427):574-578.
    Houghton R, Hobbie J, Melillo J M, et al. Changes in the carbon content of terrestrial biota and soilsbetween1860and1980: A net release of CO2to the atmosphere. Ecological monographs,1983,53(3):235-262.
    Houghton R A, Lefkowitz D S, Skole D L. Changes in the landscape of Latin America between1850and1985I. Progressive loss of forests. Forest Ecology and Management,1991,38(3):143-172.
    Hou Xin-chun, Rileqiqige G, Hua J. Studies on Biomass Model with Different Allocation Model in Salixpsammophila. Inner Mongolia Forestry Investigation and Design,2011(1):39-41.
    Hu Y, Zeng D, Fan Z, et al. Changes in ecosystem carbon stocks following grassland afforestation ofsemiarid sandy soil in the southeastern Keerqin Sandy Lands, China. Journal of Arid Environments,2008,72(12):2193-2200.
    Huang G, Zhao X, Su Y, et al. Vertical distribution, biomass, production and turnover of fine roots along atopographical gradient in a sandy shrubland. Plant and Soil,2008,308(1):201-212.
    IPCC. Climate Change2007. Mitigation of Climate Change. Intergovernmental Panel of Climate Change.Special Report. Cambridge University Press. UK.2007:10-11.
    IPCC. Land use, land use change and forest.2000:1-2.
    Jackson R, Canadell J, Ehleringer J, et al. A global analysis of root distributions for terrestrial biomes.Oecologia,1996,108(3):389-411.
    Jastrow J, Miller R. Soil aggregate stabilization and carbon sequestration: feedbacks through organomineralassociations. Soil processes and the carbon cycle,1998:207-223.
    Jenkinson D, Hart P, Rayner J, et al. Modelling the turnover of organic matter in long-term experiments atRothamsted.1987,
    Jia Z, Zhu Y, Liu L. Different water use strategies of juvenile and adult Caragana intermedia plantations inthe Gonghe Basin, Tibet Plateau. PloS one,2012,7(9): e45902.
    Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate andvegetation. Ecological applications,2000,10(2):423-436.
    John B, Pandey H N, Tripathi R S. Vertical distribution and seasonal changes of fine and coarse root mass inPinus kesiya Royle Ex. Gordon forest of three different ages. Acta Oecologica,2001,22(5):293-300.
    Ketterings Q M, Coe R, van Noordwijk M, et al. Reducing uncertainty in the use of allometric biomassequations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology andManagement,2001,146(1):199-209.
    Krankina O, Dixon R. Forest management options to conserve and sequester terrestrial carbon in the RussianFederation. World Resources Review,1994,6(1):88-101.
    Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests innorthwest Patagonia. Forest Ecology and Management,2003,180(1):317-333.
    Lal R. Carbon sequestration in dryland ecosystems. Environmental Management,2004,33(4):528-544.
    Lal R. Potential of desertification control to sequester carbon and mitigate the greenhouse effect. ClimaticChange,2001,51(1):35-72.
    Lal R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect byCO2-enrichment. Soil and Tillage Research,1997,43(1):81-107.
    Lal R. Sequestering carbon in soils of arid ecosystems. Land Degradation and Development,2009,20(4):441-454.
    Lal R, Kimble J. Conservation tillage for carbon sequestration. Nutrient cycling in agroecosystems,1997,49(1-3):243-253.
    Li S, Zhao A, Chang X. Several problems about vegetation succession of Horqin Sandy Land. Journal ofDesert Research,1997,17(Suppl1):25-32.
    Li Y, Shao M. Change of soil physical properties under long-term natural vegetation restoration in the LoessPlateau of China. Journal of Arid Environments,2006,64(1):77-96.
    Li Y Q, Awada T, Zhou X H, et al. Mongolian pine plantations enhance soil physico-chemical properties andcarbon and nitrogen capacities in semi-arid degraded sandy land in China. Applied Soil Ecology,2012,56:1-9.
    Lieth H. Primary production of the major vegetation units of the world. Primary productivity of thebiosphere, Springer.1975:203-215.
    Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns inpostfire lodgepole pine. Ecological Applications,2004,14(2):460-475.
    Luo T, Shi P, Luo J, et al. Distribution patterns of aboveground biomass in Tibetan alpine vegetationtransects. Acta Phytoecologica Sinica,2002,26(6):668-676.
    Macedo M, Resende A, Garcia P, et al. Changes in soil C and N stocks and nutrient dynamics13years afterrecovery of degraded land using leguminous nitrogen-fixing trees. Forest Ecology and Management,2008,255(5):1516-1524.
    Monserud R A, Huang S, Yang Y. Biomass and biomass change in lodgepole pine stands in Alberta. Treephysiology,2006,26(6):819-831.
    Montagnini F, Nair P. Carbon sequestration: an underexploited environmental benefit of agroforestrysystems. New Vistas in Agroforestry, Springer.2004:281-295.
    Nadelhoffer K J, Aber J D, Melillo J M. Fine roots, net primary production, and soil nitrogen availability: anew hypothesis. Ecology,1985,66(4):1377-1390.
    Ni J. Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and theirresponses to climate change. Climatic Change,2001,49(3):339-358.
    Noh N J, Son Y, Lee S K, et al. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands inKorea. Science China Life Sciences,2010,53(7):822-830.
    Nosetto M, Jobbágy E, Paruelo J. Carbon sequestration in semi-arid rangelands: Comparison of Pinusponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments,2006,67(1):142-156.
    Novara A, La Mantia T, Barbera V, et al. Paired-site approach for studying soil organic carbon dynamics in aMediterranean semiarid environment. CATENA,2012,89(1):1-7.
    O'Neill B C, Oppenheimer M. Climate change: dangerous climate impacts and the Kyoto Protocol. Science,2002,296(5575):1971-1972.
    O’grady A, Worledge D, Battaglia M. Temporal and spatial changes in fine root distributions in a youngEucalyptus globulus stand in southern Tasmania. Forest Ecology and Management,2005,214(1):373-383.
    Ojima D S, Dirks B O, Glenn E P, et al. Assessment of C budget for grasslands and drylands of the world.Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2, Springer.1993:95-109.
    Ojima D S, Parton W J, Schimel D S, et al. Modeling the effects of climatic and CO2changes on grasslandstorage of soil C. Water, Air, and Soil Pollution,1993,70(1-4):643-657.
    Ostfeld R S, LoGiudice K. Community disassembly, biodiversity loss, and the erosion of an ecosystemservice. Ecology,2003,84(6):1421-1427.
    Parton W, Cole C, Stewart J, et al. Simulating regional patterns of soil C, N, and P dynamics in the UScentral grasslands region. Ecology of Arable Land—Perspectives and Challenges, Springer.1989:99-108.
    Paustian K, Cole C V, Sauerbeck D, et al. CO2mitigation by agriculture: an overview. Climatic Change,1998,40(1):135-162.
    Peichl M, Arain M A. Allometry and partitioning of above-and belowground tree biomass in anage-sequence of white pine forests. Forest Ecology and Management,2007,253(1):68-80.
    Persson H, Von Fircks Y, Majdi H, et al. Root distribution in a Norway spruce (Picea abies (L.) Karst.) standsubjected to drought and ammonium-sulphate application. Plant and Soil,1995,168(1):161-165.
    Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature,2009,458(7241):1009-1013.
    Piao S, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climatevariability and to CO2trends. Global Change Biology,2013,19:2117-2132..
    Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: a process model based onglobal satellite and surface data. Global Biogeochemical Cycles,1993,7(4):811-841.
    Preger A, K sters R, Du Preez C, et al. Carbon sequestration in secondary pasture soils: a chronosequencestudy in the South African Highveld. European Journal of Soil Science,2010,61(4):551-562.
    Pregitzer K S, Zak D R, Burton A J, et al. Chronic nitrate additions dramatically increase the export ofcarbon and nitrogen from northern hardwood ecosystems. Biogeochemistry,2004,68(2):179-197.
    Pritchard S G, Rogers H H, Davis M A, et al. The influence of elevated atmospheric CO2on fine rootdynamics in an intact temperate forest. Global Change Biology,2001,7(7):829-837.
    Protocol Kyoto. United Nations framework convention on climate change. Kyoto Protocol, Kyoto.1997.
    Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global BiogeochemicalCycles,1995,9(1):23-36.
    Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification: building a science for drylanddevelopment. Science,2007,316(5826):847-851.
    Rodgers H L, Day F P, Atkinson R. Root dynamics in restored and naturally regenerated Atlantic white cedarwetlands. Restoration Ecology,2004,12(3):401-411.
    Rosenschein A, Tietema T, Hall D. Biomass measurement and monitoring of trees and shrubs in a semi-aridregion of central Kenya. Journal of Arid Environments,1999,42(2):97-116.
    Ruimy A, Saugier B, Dedieu G. Methodology for the estimation of terrestrial net primary production fromremotely sensed data. Journal of Geophysical research,1994,99(D3):5263-5283.
    Scharpenseel H, Becker-Heidmann P, Neue H, et al. Bomb-carbon,14C-dating and13C—Measurements astracers of organic matter dynamics as well as of morphogenetic and turbation processes. Science of theTotal Environment,1989,81:99-110.
    Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology,1995,1(1):77-91.
    Schlesinger W H, Reynolds J, Cunningham G L, et al. Biological feedbacks in global desertification. Science,1990,247(4946):1043-1048.
    Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property.Nature,2011,478(7367):49-56.
    Schroeder P, Ladd L. Slowing the increase of atmospheric carbon dioxide: a biological approach. ClimaticChange,1991,19(3):283-290.
    Sellers P. Canopy reflectance, photosynthesis, and transpiration, II. The role of biophysics in the linearity oftheir interdependence. Remote sensing of Environment,1987,21(2):143-183.
    Shi L, Zhang Z, Zhang C, et al. Effects of sand burial on survival, growth, gas exchange and biomassallocation of Ulmus pumila seedlings in the Hunshandak Sandland, China. Annals of botany,2004,94(4):553-560.
    Shoshany M. The rational model of shrubland biomass, pattern and precipitation relationships alongsemi-arid climatic gradients. Journal of Arid Environments,2012,78(0):179-182.
    Squires V. Carbon sequestration in Mediterranean basin drylands Desertification Control Bull.,1999,35:14-20.
    State Forestry Administration P R C. A Bulletin of Status Quo of Desertification and Sandification in China.Peking.2011:1-2.
    Storer D A. A simple high sample volume ashing procedure for determination of soil organic matter.Communications in Soil Science and Plant Analysis,1984,15(7):759-772.
    Stutter M I, Shand C A, George T S, et al. Recovering Phosphorus from Soil: A Root Solution?Environmental Science and Technology-Columbus,2012,46(4):1977.
    Su Y Z, Zhang T H, Li Y L, et al. Changes in soil properties after establishment of Artemisia halodendronand Caragana microphylla on shifting sand dunes in semiarid Horqin Sandy Land, Northern China.Environmental Management,2005,36(2):272-281.
    Sundquist E T. The global carbon dioxide budget. Science-New York TheN Washington,1993,259:934-934.
    Swift M, Seward P, Frost P, et al. Long-term experiments in Africa: developing a database for sustainableland use under global change. Long-term experiments in agricultural and ecological sciences,1994:229-251.
    Swinbank W. The measurement of vertical transfer of heat and water vapor by eddies in the loweratmosphere. Journal of Atmospheric Sciences,1951,8:135-145.
    Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2budget,1990.
    Tennant D. A test of a modified line intersect method of estimating root length. The Journal of Ecology,1975:995-1001.
    Throop H, Archer S, Monger H C, et al. When bulk density methods matter: Implications for estimating soilorganic carbon pools in rocky soils. Journal of Arid Environments,2012,77:66-71.
    Tierney G L, Fahey T J. Fine root turnover in a northern hardwood forest: a direct comparison of theradiocarbon and minirhizotron methods. Canadian Journal of Forest Research,2002,32(9):1692-1697.
    Uchijima Z. Agroclimatic evaluation of net primary productivity of natural vegetations. Journal ofAgricultural Meteorogy,1985,40(4):343-352.
    UNEP. Millennium Ecosystem Assessment Ecosystem and Human Well-being: Desertification Synthesis.Insititute W R. Washington DC.2005.
    V gen T G, Lal R, Singh B. Soil carbon sequestration in sub‐Saharan Africa: a review. Land Degradation&Development,2005,16(1):53-71.
    Van Veen J, Ladd J, Amato M. Turnover of carbon and nitrogen through the microbial biomass in a sandyloam and a clay soil incubated with [14C (U)] glucose and [15N](NH4)2SO4under different moistureregimes. Soil Biology and Biochemistry,1985,17(6):747-756.
    von Oheimb G, Friedel A, Meyer H, et al. Relationship between pH-values and nutrient availability in forestsoils-the consequences for the use of ecograms in forest ecology. Flora-Morphology, Distribution,Functional Ecology of Plants,2004,199(2):134-142.
    Vourlitis G L, Priante-Filho N, Hayashi M M, et al. Seasonal variations in the evapotranspiration of atransitional tropical forest of Mato Grosso, Brazil. Water Resources Research,2002,38(6):30-31.
    Wallace A, Bamberg S, Cha J. Quantitative studies of roots of perennial plants in the Mojave Desert.Ecology,1974:1160-1162.
    Wang Q, Zhang L, Li L, et al. Changes in carbon and nitrogen of Chernozem soil along a cultivationchronosequence in a semi-arid grassland. European Journal of Soil Science,2009,60(6):916-923.
    Wang Z, Guo D, Wang X, et al. Fine root architecture, morphology, and biomass of different branch ordersof two Chinese temperate tree species. Plant and Soil,2006,288(1-2):155-171.
    Whittaker R H. Estimation of net primary production of forest and shrub communities. Ecology,1961,42(1):177-180.
    Williams M A, Rice C W, Owensby C E. Carbon dynamics and microbial activity in tallgrass prairie exposedto elevated CO2for8years. Plant and Soil,2000,227(1-2):127-137.
    Woodwell G M, Whitaker R, Reiners W, et al. Biota and the world carbon budget. Science;(United States),1978,199(4325).
    Yang Y, Fang J, Tang Y, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands.Global Change Biology,2008,14(7):1592-1599.
    Young I M, Crawford J W. Interactions and self-Organization in the soil-microbe complex. Science,2004,304:1634-1637.
    Yunusa I A M, Newton P J. Plants for amelioration of subsoil constraints and hydrological control: theprimer-plant concept. Plant and Soil,2003,257(2):261-281.
    Zhang C, Liu G, Xue S, et al. Soil organic carbon and total nitrogen storage as affected by land use in a smallwatershed of the Loess Plateau, China. European Journal of Soil Biology,2013,54(0):16-24.
    Zhang J, Pan X, Gao Z, et al. Carbon uptake and change in net primary productivity of oasis-desertecosystem in arid western China with remote sensing technique. Journal of Geographical Sciences,2006,16(3):315-325.
    Zhang J, Zhao H, Zhang T, et al. Community succession along a chronosequence of vegetation restoration onsand dunes in Horqin Sandy Land. Journal of Arid Environments,2005,62(4):555-566.
    Zhang Y, Duan B, Xian J, et al. Links between plant diversity, carbon stocks and environmental factors alonga successional gradient in a subalpine coniferous forest in Southwest China. Forest Ecology andManagement,2011,262(3):361-369.
    Zhang Y Q, Tang Y H, Jiang J, et al. Characterizing the dynamics of soil organic carbon in grasslands on theQinghai-Tibetan Plateau. Science in China Series D: Earth Sciences,2007,50(1):113-120.
    Zhang Z S, Li X R, Liu L C, et al. Distribution, biomass, and dynamics of roots in a revegetated stand ofCaragana korshinskii in the Tengger Desert, northwestern China. Journal of plant research,2009,122(1):109-119.
    Zhao H L, Guo Y R, Zhou R L, et al. Biological soil crust and surface soil properties in different vegetationtypes of Horqin Sand Land, China. CATENA,2010,82(2):70-76.
    Zhao H L, Guo Y R, Zhou R L, et al. The effects of plantation development on biological soil crust andtopsoil properties in a desert in northern China. Geoderma,2011,160(3–4):367-372.
    Zhao H L, He Y H, Zhou R L, et al. Effects of desertification on soil organic C and N content in sandyfarmland and grassland of Inner Mongolia. CATENA,2009,77(3):187-191.
    Zhao H L, Zhou R L, Su Y Z, et al. Shrub facilitation of desert land restoration in the Horqin Sand Land ofInner Mongolia. Ecological Engineering,2007,31(1):1-8.
    Zhou Z Y, Li F R, Chen S K, et al. Dynamics of vegetation and soil carbon and nitrogen accumulation over26years under controlled grazing in a desert shrubland. Plant and Soil,2011,341(1):257-268.
    Zuo X, Zhao H, Zhao X, et al. Vegetation pattern variation, soil degradation and their relationship along agrassland desertification gradient in Horqin Sandy Land, northern China. Environmental geology,2009,58(6):1227-1237.
    丁文广,魏银丽,杨军梅,等.甘肃省中部干旱区植被恢复对土壤养分变化的影响研究.干旱区资源与环境,2012,1(26):159-162.
    丁金枝,来利明,赵学春,等.荒漠化对毛乌素沙地土壤呼吸及生态系统碳固持的影响.生态学报,2011,31(6):1594-1603.
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497-508.
    王宗明.植被净第一生产力模型研究进展.干旱地区农业研究,2002,2(20):104-107.
    王春林,周国逸,王旭,等.复杂地形条件下涡度相关法通量测定修正方法分析.中国农业气象,2008,28(3):233-240.
    王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义.冰川冻土,2002,24(6):693-700.
    王庆锁,李博.鄂尔多斯沙地油蒿群落生物量初步研究.植物生态学报,1994,18(4):347-353.
    王庆锁,董学军,陈旭东.油蒿群落不同演替阶段某些群落特征的研究.植物生态学报,1997,21(6):531-538.
    王涛.中国沙漠与沙漠化.2003,河北科学技术出版社.
    王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析.应用生态学报,2003,14(5):797-802.
    王长庭,王根绪,刘伟,等.植被根系及其土壤理化特征在高寒小嵩草草甸退化演替过程中的变化.生态环境学报,2012,21(3):409-416.
    占布拉,卫智军,黄伟华,等.科尔沁草原不同类型沙地土壤养分研究.干旱区资源与环境,2010,24(011):135-138.
    白黎娜,李增元,高志海,等.青海省共和县土地沙化与土地覆盖变化遥感监测研究.水土保持学报,2006,20(1):131-134.
    曲浩,赵学勇,赵哈林,等.科尔沁沙地3种灌木凋落物分解速率及其与关键气象因子的关系.中国沙漠,2010,30(4):844-849.
    曲卫东,陈云明,王琳琳,等.黄土丘陵区柠条人工林土壤有机碳动态及其影响因子.中国水土保持科学,2011,9(4):72-77.
    朴世龙.利用CASA模型估算我国植被净第一性生产力.植物生态学报,2001,25(5):603-608.
    朴世龙,方精云.1982—1999年青藏高原植被净第一性生产力及其时空变化.自然资源学报,2002,17(3):373-380.
    朱志辉.自然植被净第一性生产力估计模型.科学通报,1993,38(15):1422-1426.
    朱雪林,黄清麟,张超,等.西藏乌柳群落特征.山地学报,2011,29(1):116-122.
    米志英,高永,弓彩霞,等.库布齐沙漠沙柳林复壮更新技术措施研究.干旱区资源与环境,2008,22(6):186-189.
    米志英,张宏俊,高永.沙柳有性繁殖与关键环境因素的关系研究.中国沙漠,2011,31(5):1238-1241.
    宋涛.三江平原生态系统CO2通量长期观测研究南京信息工程大学2007.
    何玉惠,赵哈林,刘新平,等.不同类型沙地狗尾草的生长特征及生物量分配半.生态学杂志,2008,27(4):504-508.
    伯姆,薛德榕,谭协麟.根系研究法.科学出版社,1985.
    宋云民,李吉跃,周泽福.水分胁迫对毛乌素地区4树种幼苗生理特性的影响.林业科学研究,2006,19(3):358-363.
    李文华,李飞.中国森林资源研究.中国林业出版社,1996.
    李永华,王学全,罗天祥,等.青海共和盆地草地叶面积指数与生物量随海拔梯度变化的规律.安徽农业科学,2010,(025):13989-13992.
    李玉琴.川西山地小流域土壤有机碳空间分布特征研究.四川农业大学2008,
    李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学D辑,2003,33(1):72-80.
    李英年,王勤学,古松,等.高寒植被类型及其植物生产力的监测.地理学报,2004,59(1):40-48.
    李根前,黄宝龙,唐德瑞,等.毛乌素沙地中国沙棘无性系生长格局与生物量分配.西北农林科技大学学报:自然科学版,2001,29(2):51-55.
    李清河,江泽平,张景波,等.灌木的生态特性与生态效能的研究与进展.干旱区资源与环境,2006,20(2):159-164.
    李雪华,李晓兰,蒋德明,等.科尔沁沙地70种草本植物个体和构件生物量比较研究.干旱区研究,2009,26(2):200-205.
    李刚,李永庚,刘美珍,等.浑善达克沙地稀树疏林草地植被生物量及净初级生产力.科技导报,2011,29(25):31-37.
    李晓兰,蒋德明,李雪华,等.沙地黄柳生物量分配和组织含水量的关系.辽宁工程技术大学学报,2006,6(25):947-950.
    李红丽,董智,王林和,等.浑善达克沙地榆树根系分布特征及生物量研究.干旱区资源与环境,2002,16(4):99-105.
    李维向,刘朝霞,闫伟,等.沙柳优良品系选育的研究.中国沙漠,2008,28(004):679-684.
    周广胜.自然植被净第一性生产力模型初探.植物生态学报,1995,19(3):193-200.
    季志平,苏印泉,贺亮.黄土丘陵区人工林土壤有机碳的垂直分布特征.西北林学院学报,2006,21(6):54-57.
    林大仪.土壤学实验指导.中国林业出版社,2004.
    阿尤普木巴热克,陈亚宁,李卫红,等.极端干旱环境下的胡杨细根分布与土壤特征.中国沙漠,2011,31(6):1449-1458.
    姚月锋,满秀玲,刘畅,等.封育对沙地油蒿群落生物量及其土壤水分影响.东北林业大学学报,2007,35(1):37-38.
    姚德良,范平,沈振西,等.高寒草甸地区陆面过程耦合模式与辐射研究.中央民族大学学报,2005,2(14):101-106.
    封建民,李晓华.近15年来共和盆地土地沙质荒漠化动态变化及原因分析.水土保持研究,2010,17(5):129-133.
    段争虎,刘新明.中国土地沙漠化对大气CO2含量的影响.干旱区资源与环境,1996,10(2):89-94.
    范少辉,刘广路,张群,等.华北沙地小黑杨林生物量及其与树冠关系的研究.林业科学研究,2010,(1):71-76.
    苗纯萍,李雪华,蒋德明.半干旱风沙区黄柳幼苗生长发育对沙埋的响应.干旱区研究,2012,29(2):208-212.
    徐德应.气候变化对中国森林影响研究.中国科学技术出版社,1997.
    秦艳,王林和,张国盛,等.毛乌素沙地天然臭柏,油蒿群落细根分解及影响因子分析.干旱区资源与环境,2008,22(6):181-185.
    翁永玲,戚浩平,方洪宾,等.基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演.土壤学报,2010,(006):1255-1263.
    崔秀萍,刘果厚.浑善达克沙地黄柳更新特点与规律研究.中国沙漠,2012,32(1):60-64.
    曹雪峰.砂地柏植物种质资源地理分布,群落学特征与生物量的研究.西北农林科技大学硕士学位论文2006.
    曹广民,李英年,张金霞,等.高寒草甸不同土地利用格局土壤CO2的释放量.环境科学,2001,22(6):14-19.
    郭大立,范萍萍.关于氮有效性影响细根生产量和周转率的四个假说.应用生态学报,2007,18(10):2354-2360.
    彭少麟.退化生态系统恢复与恢复生态学.中国基础科学,2001,(3):18-24.
    曾凡江,郭海峰,刘波,等.多枝柽柳和疏叶骆驼刺幼苗生物量分配及根系分布特征.干旱区地理,2010,33(1):59-64.
    舒乃辉.乌柳育苗与造林技术.现代农业科技,2011,(001):236-236.
    董光荣.青海共和盆地土地沙漠化与防治途径.科学出版社,1993.
    董建芳,李春红,刘果厚,等.内蒙古6种沙生柳树叶片解剖结构的抗旱性分析.中国沙漠,2009,29(3):480-484.
    雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究.生态学杂志,2004,23(4):25-30.
    潘维俦,田大伦,雷志星,等.杉木人工林养分循环的研究:(二)丘陵区速生杉木林的养分含量,积累速率和生物循环.中南林学院学报,1983,3(1):1-17.
    蔡体久,琚存勇,姚月峰.基于RS和GIS的毛乌素沙地植被盖度定量估测.应用生态学报,2005,16(12):2301-2305.
    严平,董光荣,董治宝,等.青海共和盆地达连海湖积物137Cs示踪的初步结果.地球化学,2000,29(5):469-473.
    冯宗炜,陈楚莹,张家武,等.不同自然地带杉木林的生物生产力.植物生态学与地植物学丛刊,1984,8(2):93-100.
    冯益明,卢琦,王学全,等.30a来共和盆地贵南县草地时空变化分析.中国沙漠,2008,28(2):212-217.
    刘海涛,贾志清,朱雅娟,等.高寒沙地不同林龄乌柳的水分生理特性及叶性状.应用生态学报,2012,23(9):2370-2376.
    刘海涛高寒沙地乌柳林生理生态特性及植被恢复过程研究中国林业科学研究院2012
    刘健,贺晓,包海龙,等.毛乌素沙地沙柳细根分布规律及与土壤水分分布的关系.中国沙漠,2010,30(6):1362-1366.
    刘丽颖,贾志清,朱雅娟,等.共和盆地中间锦鸡儿人工林根系的分布特征.中国沙漠,2012,32(6):1626-1631.
    刘丽颖,贾志清,朱雅娟,等.高寒沙地不同林龄中间锦鸡儿的水分利用策略.干旱区资源与环境,2012,5(26):119-125.
    刘丽颖共和盆地两种人工灌木林水分利用策略和生长适应性研究中国林业科学研究院2011
    刘国华,傅伯杰,吴钢,等.环渤海地区土壤有机碳库及其空间分布格局的研究.应用生态学报,2003,14(9):1489-1493.
    单立山,李毅,董秋莲,等.红砂根系构型对干旱的生态适应.中国沙漠,2012,32(005):1283-1290.
    叶功富,张立华,侯杰,等.滨海沙地木麻黄人工林细根生物量及其动态研究.应用与环境生物学报,2007,13(4):481-485.
    孙建光,李保国,卢琦.青海共和盆地草地生产力模拟及其影响因素分析.资源科学,2005,27(4):44-51.
    孙启忠,韩建国,桂荣,等.科尔沁沙地达乌里胡枝子生物量研究.中国草地,2001,23(4):21-26.
    孙祯元.不同树种固沙效益的比较.林业实用技术,1984,(4):21-23.
    孙向阳.土壤学.中国林业出版社,2003.
    张小全,吴可红, Murach D.树木细根生产与周转研究方法评述.生态学报,2000,20(5):875-883.
    张宇清,朱清科,齐实,等.梯田生物埂几种灌木根系的垂直分布特征.北京林业大学学报,2006,28(2):34-38.
    张宇清,齐实,孙立达,等.两种立地条件梯田埂坎红柳根系特征研究.北京林业大学学报,2002,24(2):44-47.
    张克斌,李瑞,侯瑞萍,等.宁夏盐池县不同荒漠化治理措施植物多样性研究.中国水土保持科学,2004,2(4):66-72.
    张清海,叶功富,林益明.海岸退化沙地木麻黄人工林能量的研究.林业科学,2006,8(42):1-4.
    张莉,吴斌,丁国栋,等.毛乌素沙地沙柳与柠条根系分布特征对比.干旱区资源与环境,2010,24(3):158-161.
    张登山.沙珠玉高寒荒漠区治沙示范区的建设.防护林科技,1999,(1):57-60.
    张登山.青海共和盆地土地沙漠化影响因子的定量分析.中国沙漠,2000,20(1):59-62.
    张登山,高尚玉.青海高原沙漠化研究进展.中国沙漠,2007,27(3):367-372.
    张瑞,张景波,曹良图.干旱区土地利用和土壤改良及植被恢复方式对沙地养分的恢复效应.水土保持研究,2010,17(4):153-157.
    张瑞麟,刘果厚,崔秀萍.浑善达克沙地黄柳活沙障防风固沙效益的研究.中国沙漠,2006,26(5):717-721.
    张东杰.共和盆地近50年来草地荒漠化驱动因素定量研究.水土保持研究,2010,17(4):166-169.
    杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略.植物生态学报,2008,32(6):1268-1276.
    杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地几种植物根系分形特征.干旱区地理,2009,32(2):249-254.
    杨世琦,高旺盛,隋鹏,等.共和盆地土地沙漠化因素定量研究.生态学报,2005,25(12):3181-3187.
    杨洪晓,卢琦,吴波,等.青海共和盆地沙化土地生态修复效果的研究.中国水土保持科学,2006,4(2):7-12.
    杨晓晖,王葆芳,江泽平.乌兰布和沙漠东北缘三种豆科绿肥植物生物量和养分含量及其对土壤肥力的影响.生态学杂志,2005,24(10):1134-1138.
    欧阳志云,王效科.中国陆地生态系统服务功能及其生态经济价值的初步研究.生态学报,1999,19(5):607-613.
    罗天祥,李文华,罗辑,等.青藏高原主要植被类型生物生产量的比较研究.生态学报,1999,19(6):823-831.
    蒋德明,李明,押田敏雄,等.封育对科尔沁沙地小叶锦鸡儿群落植被特征及空间异质性的影响.生态学杂志,2009,28(11):2159-2164.
    蒋德明,唐毅,李晓兰,等.科尔沁沙地灌丛改造的工程措施及效果.辽宁工程技术大学学报:自然科学版,2009,(001):131-133.
    蒋德明,曹成有,李雪华,等.科尔沁沙地植被恢复及其对土壤的改良效应.生态环境,2008,17(3):1135-1139.
    许鹏.新疆北疆平原荒漠生态特征,问题与对策.草业学报,1997,6(4):6-10.
    赵成义,宋郁东,王玉潮,等.几种荒漠植物地上生物量估算的初步研究.应用生态学报,2004,15(1):49-52.
    赵忠,成向荣,薛文鹏,等.黄土高原不同水分生态区刺槐细根垂直分布的差异.林业科学,2006,11(42):1-7.
    赵哈林,苏永中,张华,等.灌丛对流动沙地土壤特性和草本植物的影响.中国沙漠,2007,27(3):385-390.
    钟玲,孙瑛.净第一性生产力模型在环青海湖牧区共和盆地草原区的应用分析.中国草食动物,2010,(002):44-46.
    马玉凤,严平,时云莹,等.三维激光扫描仪在土壤侵蚀监测中的应用——以青海省共和盆地威连滩冲沟监测为例.水土保持通报,2010,30(2):177-179.
    黄勇,郭玉海.人工梭梭林根系的分布特征.草地学报,2009,17(1):84-87.
    黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展.生态学报,1999,19(2):270-277.
    黄刚,赵学勇,张铜会,等.科尔沁沙地3种灌木根际土壤pH值及其养分状况.林业科学,2007,8(43):137-141.
    黄刚,赵学勇,赵玉萍,等.科尔沁沙地两种典型灌木独生和混交的根系分布规律.中国沙漠,2007,27(2):239-243.
    齐雁冰,常庆瑞.高寒地区荒漠化动态监测技术构想.水土保持通报,2004,24(4):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700