用户名: 密码: 验证码:
油桐种仁不同发育时期表达蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油桐是原产我国的世界著名木本油料树种,从其种子中提炼而出的桐油是一种性质优良的干性油,广泛应用于工业中,具有极高的出口价值。
     利用经典蛋白质组学研究方法成功构建出油桐种仁在这一发育过程中的蛋白质表达谱,最终可运用蛋白质表达谱从蛋白质水平对油桐种仁中脂肪酸代谢过程进行阐述。发现油桐种仁中油脂含量与参与脂肪酸代谢的蛋白表达情况密切相关,油脂含量是由一系列参与脂肪酸代谢的蛋白(酶)共同决定的;此外,油体的动态发育过程更加形象化的体现了这一过程。论文为构建油桐种仁蛋白质表达谱从蛋白质水平理解其内油脂合成过程,对种仁蛋白质的提取、双向电泳体系优化、表达谱分析做了大量研究,得出研究结论如下:
     (1)分析了影响油桐种仁蛋白质提纯的关键因素,筛选确定TCA-丙酮结合酚抽法为有效提取油桐种仁蛋白质。实验结果表明种仁中的内含物对油桐种仁蛋白质提纯影响显著,采用TCA-丙酮结合酚抽法能针对油桐种仁中所富含的次生代谢物质如核酸、糖、酚类物质进行有效清除,故能制备出浓度高达8.1μg/μL的蛋白质样品;其次,SDS-PAGE实验表明,TCA-丙酮结合酚抽法对种仁中的高、低分子量蛋白质有较强的提取能力;再次, TCA-丙酮结合酚抽法所制备的蛋白质样品2-DE图谱分辨率高、背景清晰。
     (2)成功构建出具有高稳定性和高重复性的油桐种仁蛋白质双向电泳体系。具体针对能影响油桐种仁蛋白质双向电泳效果的蛋白质裂解液、上样量、等电聚焦时间以及SDS-PAGE电泳的运行条件等因素,进行优化对比实验,确定了各因素的最优条件。成功构建的最优油桐种仁蛋白质双向电泳体系为:以TCA-丙酮结合酚抽法制备样品后经过配方为7mol/L尿素、2mol/L硫脲、4%CHAPS、65mmol/L DTT和2%IPG buffer的裂解液裂解后,等电聚焦上样700μg进行聚焦70000Vh能够得到良好的分离效果。
     (3)研究发现油桐在花后130d~160d为其发育过程中油脂积累的关键时期。通过对油脂含量变化和种壳颜色变化将这一时期划分为3个不同的发育阶段S1(130d)、S2(145d)和S3(160d)。
     (4)在油桐种仁发育的3个不同阶段中共发现有144个蛋白质发生了差异表达,并通过MALDI-TOF/MS/MS成功鉴定出其中76个,将其分为能量代谢(25%)、脂肪酸代谢(15.79%)、抗性(14.47%)、蛋白酶(11.84%)等11个功能类别。
     (5)研究发现能量代谢一直是油桐种仁发育过程中除了脂肪酸代谢之外的最主要的生理代谢活动之一,TAC循环和糖酵解是其主要的代谢途径。S29(Malate dehydrogenase,苹果酸脱氢酶)的表达量随着种仁发育而逐渐增加,表明TAC循环中的草酰乙酸再生速度得到提升,而草酰乙酸的再生过程是维持TAC循环持续进行的关键。S62(3-phosphoglycerate kinase,3-磷酸甘油酸激酶)表达随着种仁发育而增加表明糖酵解代谢随着发育而得到增强。研究发现多数参与脂肪酸代谢的蛋白质在3个时期中的表达变化过程与种仁中油脂的积累速率变化相一致,均是抛物线的变化趋势,峰值出现在S2时期。这一发现有助于成功从蛋白质水平对种仁中油脂积累变化进行阐述。RT-PCR对参与能量代谢、脂肪酸代谢的10个蛋白质的研究结果表明,基因水平上的表达变化趋势与蛋白质水平的表达变化趋势具有较高的相似性,表明质谱鉴定结果具有较高的可靠性;同时,RT-PCR结果也可得出上述(5)(6)的结论。
     (6)在不同的发育阶段,油体有不同的细胞学特征。以此为基础可以将其发育过程分为发育初期、中期以及后期三个阶段。研究发现油体的数量与油脂含量表现出负相关关系;而油体大小与油脂含量则为正相关关系。油体动态发育过程与油桐种仁中脂肪酸积累、脂肪酸代谢相关蛋白表达变化具有密切联系。
Tung trees are original from China and they are famous for tung oil in the world as an oilplant. Tung oils are widely used in industry as a good kind of dry oils.
     In the paper, the protein expression profiles were successfully constructed during thedevelopmental periods by the method of traditional and classical research on proteomics. Itcould help to explain the accumulation process of tung oil in tung seeds from the proteins level.The results indicated that there existed a close relationship between the oils accumulation andthe proteins expression especially for which related to fatty acids metabolism. The oilaccumulation was co-determined by a series of proteins expression and the development of oilbody visualization shows this process. In order to explain the oil biosynthesis from the proteinlevel, many research works were held on and the main results obtianed as follows:
     (1) TCA-acetone combined with phenol method was the most suitable for the protensextraction from tung seeds. This method can effective clear away the nucleic acids, sugars andphenols, thus the contribution of sample arrived at8.1μg/μL. It also found that it had a goodcapability in extracting high and low mass protiens after SDS-PAGE. In addition to, the resultsof2-DE pointed that the sample which prepared by TCA-acetone combined with phenol had aclear background and a good resolution.
     (2) It successfully constructed a2-DE platform for tung seeds with a high stability andrepeatability. Some factors can effects the2-DE process such as lysis solution, loading yield ofproteins, IEF and SDS-PAGE were compared. It indicated that the protein samples whichprepared by TCA-acetone combined with phenol were dissolved by7M urea,2M thiourea,4%CHAPS,65mM DTT and2%IPG buffer, then after IEF for70000Vh with the loadingyield of700μg, we could obtain a good2-DE patterns for tung tree seeds proteome.
     (3) It indicated that after flowering130d~160d was the key periods for the oilsaccumulation. This period can grouped into three stages by the change of oil content and thecolor change of seed coat.
     (4) A total of144proteins were determined as differential expression proteins, and76proteins were successfully identified by MALDI-TOF/MS/MS. They were classified into11classes including energy metabolism (25%), fatty acid metabolism (15.79%), defense-related(14.47%), protease (11.84%) and so on.
     (5) Energy metabolism (TAC cycle and glycolytic pathway) was the main change duringdevelopment besides fatty acids metabolism. The expression change of S29(malatedehydrogenase) and S62(3-phosphoglycerate kinase) during three stages indicated that TACcycle and glycolysis would be stronger along with development. The expression change ofmost proteins which related to fatty acids metabolism was similar to the speed of oilsaccumulation in seeds. It was parabola style, the highest value existed in S2. This result canhelpful for explain the oil accumulation from protein level. RT-PCR results indicated that theprotein which related to energy metabolism and fatty acids metabolism have a similar changeprocess with the MS results, it stands for the MS results owned a high reliability. We also canobtain a similar result as (5) and (6) by RT-PCR.
     (8) The oil bodies owned different cytological characteristics in the differentdevelopmental stages. According to this, the process of oil body development can divide intothree stages as the earlier stages, the middle and the last stages of development. There existed anegative correlation in the number of oil bodies in the endosperm cells and the oil content;existed a positive correlation in the diameter of oil bodies in cells and the oil content in tungseeds. The oil bodies development process owned a close relationship with the oilaccumulation in tun seeds and the proteins expression change which related to fatty acidsmetabolism.
引文
[1]戴益源.我省油桐主栽品种及栽培方式简介[J].云南林业,1999,20(1):20.
    [2]汪阳东,陈益存,姚小华,等.油桐分子生物学研究[M].北京:中国林业出版社,2012, pp:13,17.
    [3]张玲玲,彭俊华.油桐资源价值及其开发利用前景[J].经济林研究,2011,29(2):130-136.
    [4]方嘉兴,何方.中国油桐[M].北京:中国林业出版社,1998, pp:12-13,134,139-140.
    [5]何方,吴建军.低温对油桐种子萌发和幼苗生长的影响[J].经济林研究,1991,9(1):1-10.
    [6]陈炳章.低温对油桐伤害研究初报[J].林业科技通讯,1987,(4):6-8.
    [7]陈炳章.不同物候期油桐各器官生物量[J].林业科学研究,1991,4(4):428-434.
    [8]陈炳章,杨乾洪,郭纯福.海拔高度对油桐生长结实影响的研究[J].林业科学研究,1990,3(2):195-199.
    [9]陈正洪.我国亚热带东部丘陵山区油桐物候特征分析[J].地理科学,1991,11(3):287-294.
    [10]高阳华,高阳兴.油桐含量与气象条件[J].气象,1989,15(6):52-53.
    [11]何方,刘益军,王承南,等.油桐立地分类及评价的研究[J].经济林研究,1994,12(1):1-12.
    [12]何方,王承南,何柏,等.中国油桐林地土壤类型及立地分类与评价的研究[J].经济林研究,1996,14(1):34.
    [13]金星明,张贻次,丁定安,等.油桐林地土壤容重与生产性能相关关系研究[J].经济林研究,1984,(2):38-43.
    [14]黄挺.中国油桐业前景广阔[J].世界农业,2001,(8):18-19.
    [15]谭晓风.油桐的生产现状及其发展建议[J].经济林研究,2006,24(3):62-64.
    [16]黄福长.国内外油桐发展现状[J].佛山科学技术学院学报(自科版),2011,29(3):83-87.
    [17]谭晓风,王义强,傅承业,等.四川省武隆县油桐资源综合考察报告[J].经济林研究,1992,(S1):141-147.
    [18]胡庭兴,江心,李贤伟.四川油桐现状及其在长防林建设中的经营对策[J].四川农业大学学报,1996,14(3):449-452,456.
    [19]谭方友.贵州油桐栽培技术的初步探讨[J].贵州林业科技,1988,(2):26-32.
    [20]邓惠群.贵州油桐生产现状及其发展策略[J].贵州林业科技,1993,21(4):55-58.
    [21]龙秀琴,许杰,姚淑均.贵州油桐生产现状及其发展对策[J].中国林副特产,2003,(1):53-54.
    [22]郭致中,邓龙玲.贵州省油桐良种化[J].贵州林业科技,1988,(2):32-38.
    [23]张慧,宁佐敦,龚群龙.湘西地区油桐林现状及改造治理探讨[J].湖南林业科技,2002,29(2):38-39,78.
    [24]李福生.湖南油桐农家品种资源普查报告[J].湖南林业科技,1981,(3):13-21.
    [25]王春生.湘西地区油桐优树选择初报[J].湖南农业科学,2006,(2):89-91.
    [26]刘金龙,田国政,孙东发,等.湖北金丝油桐和贵桐2号的核型分析[J].经济林研究,2008,26(1):53-57.
    [27]田国政,孙东发,刘金龙,等.来凤油桐资源调查/表型观测及立体因子研究[J].湖北农业科学,2008,47(1):71-74.
    [28]赵志连.开发油桐资源振兴十堰经济[J].经济林研究,1996,14(1):42-43.
    [29]周伟国,欧阳绍湘,安仲,等.湖北省油桐品种资源调查研究报告[J].湖北林业科技,1986,(2):1-8.
    [30]余永楷.安徽油桐地方品种概述及速生丰产栽培技术[J].安徽农学通报,2011,17(5):128-130.
    [31]林刚,黎章矩,夏逍鸿.浙江油桐品种调查与良种选择初报[J].浙江林学院科技通讯,1981,(1):2-14.
    [32] Brack W, Wiek JH. Experiencias Agroforestales en el Paraguay. MAG/GTZ. Proyecto de Planificaciondel Uso de la Tierra. Asunción.1992.
    [33] Carter C, House L, Little R. Tung oil: a revival. Review of agricultural economics.1988,20(2),666-673.
    [34] Rehm S, Espig G. Die Kulturpflanzen der Tropen Und Subtropen. Anbau, Wirtschaftliche bedeutung,Verwertung. Verlag Eugen Ulmer, Sturragrt,1984,2Aufl, pp504.
    [35] FAO. http://apps.fao.org/lim500/wrap.pl?Crops.2001.
    [36] Duke JA. http://www.hort.purdue.edu/newcrop/duke_energy/Aleurites_fordii.html.2011.
    [37] Moscatelli G, Pazos MS. Soils of Argentina: Nature and Use. Presentación oral en: InternationalSymposium on Soil Science: Accomplishments and Changing Paradigm towards the21stCentury andIUSS Extraordinary Council Meeting, Bangkok, Tailandia,2000.
    [38]李军诚.我国桐油发展战略与对策[J].长江流域资源与环境,1998,7(1):91-96.
    [39]李永梅,魏远新,周大林,等.油桐的价值及其发展途径[J].现代农业科技,2008,(16):113.
    [40]朱世永,任庆生.涂料工业中桐油利用的方向[J].中国油脂,1992,(增刊):400-407.
    [41]顾龚平,钱学射,张卫明,等.燃料油植物油桐的利用与栽培[J].中国野生植物资源,2008,27(6):12-15.
    [42]肖千文.生物质能源问题与对策[J].生物质化学工程,2006,40(增刊):108-114.
    [43]晁月文,李竞芸,张广辉.生物柴油原料树种油桐的研究进展[J].贵州农业科学,2009,37(4):26-27.
    [42] Shockey JM, Gidda SK, Chapital DC, et al. Tung tree DGAT1and DGAT2have nonredundant functionsin triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum.Plant Cell,2006,18(9):2294-2313.
    [43]龚榜初,蔡金标.油桐育种研究的进展[J].经济林研究,1996,14(1):51-53.
    [44] Dyer JM, Chapital DC, et al. Molecular analysis of a bifunctional fatty acid conjugase/deasturase fromtung. Implications for the evolution of plant fatty acid diversity. Plant Physiol.,2002,130:2027-2038.
    [45] Harrington KJ. Chemical and physical properties of vegetable oil esters and their effect on diesel fuelperformance. Biomass,1986,(9):1-17.
    [46]刘立萍.湘西油桐叶提取物抑菌活性的初步研究[J].食品科技,2009,34(2):210-215.
    [47] Guan YL. Cigarette substitutes with its raw material containing leaves of Chinese parasol tree (Aleuritesfordii)[P]. CN:1233430-A.1999-12-03.
    [48]宋立人.现代中药学大辞典[M].北京:人民卫生出版社,2001,1364-1366.
    [49]廖飞勇,何平. SO2处理对油桐叶片光合能量传递效率的影响[J].广西植物,2004,24(1):86-90.
    [50] Iharashim M, Miyazwa T. Newly recognized cytotoxic effect of conjugated trienoic fatty acidsoncultured human or cells. Cancer Lett.,2000,148(2):173-179.
    [51]王凌晖.林树种栽培养护手册[M].北京:化学工业出版社,2007, pp:266-277.
    [52]姚恒季,汪国华,夏逍鸿.油桐木屑栽培香菇试验报告[J].浙江林业科技,1991,11(1):20-23.
    [53]姚恒季,汪国华.油桐木屑栽培杂交木耳试验[J].食用菌,1991,13(4):22-23.
    [54]何方,谭晓风,王承南,等.中国66个油桐品种资源收集及评比试验研究报告[J].中国林学会经济林学会第二次代表大会论文选,1990,35-54.
    [55]刘翠峰,王彦英,李俊英,等.油桐豫桐1号等3个优良家系的选育[J].经济林研究,1996,14(1):45-46.
    [56]刘金龙,孙东发,尹智亮,等.湖北地方品种“金丝油桐”及其产品“金丝桐油”的特征特性研究[J].科技创业月刊,2007,(11):184-187.
    [57]陈斐.油桐69个无性系的典范相关分析与选优研究[J].林业科学研究,1998,11(5):518-522.
    [58]陈斐.油桐33个家系的因子分析与选优研究[J].浙江林业科技,1998,18(3):18-28.
    [59]何方,谭晓风,王承南,等.油桐优良无性系的选育[J].中南林学院学报,1991,11(2):120-124.
    [60]陈守常,肖育贵.油桐根腐病的研究[J].植物病理学报,1990,20(3):167-170.
    [61]肖育贵,陈守常,陈勇华.油桐根腐病损失状况的研究[J].森林病虫通讯,1990,(3):3-5.
    [62]陈守常,肖育贵.油桐根腐病发生动态和预测研究[J].林业科学,1990,26(3):219-226.
    [63]陈鹏,刘宏屏,王达明,等.云南油桐黑斑病危险性分析[J].林业调查规划,2006,31(2):116-118.
    [64]和波益,白如礼.福贡县油桐林油桐黑斑病的成因及防治措施[J].云南林业科技,1999,(3):45-46.
    [65]郭文硕,郭玉硕.油桐品种抗黑斑病生理生化机制研究-Ⅰ品种抗性与游离氨基酸、多酚类物质、黄酮类化合物含量之关系[J].福建林学院学报,1992,12(1):29-35.
    [66]郭文硕.油桐品种抗黑斑病生理生化机制研究-Ⅱ品种抗性与过氧化物酶之关系[J].福建林学院学报,1993,13(1):46-52.
    [67]郭文硕.油桐品种抗黑斑病生理生化机制研究-Ⅲ品种抗性与多酚氧化酶之关系[J].福建林学院学报,1993,20(4):1-5.
    [68]花锁龙.油桐抗枯萎病株系的选鉴研究[J].林业科学研究,1991,4(2):160-166.
    [69]曹季丹.油桐炭疽病的研究[J].森林病虫通讯,1988,(1):4-5.
    [70]陈惠敏,陈汉章,苏素霞,等.油桐炭疽病的发生及其防治[J].闽西职业大学学报,1999,(3):62-65,73.
    [71]雷邦海.油桐桑天牛的初步研究[J].植物保护,1989,15(6):24-25.
    [72]周世芳.油桐丽盾蝽生物学特性[J].广西植保,1994,(4):12-14.
    [73]郭文丹,李建安,刘丽娜,等.油桐花芽分化期内源激素含量的变化[J].经济林研究,2009,27(2):31-34.
    [74]胡保安,古锦汉.油桐开花座果生物学特性的调查研究[J].经济林研究,1987,5(1):47-51.
    [75]廖飞勇,何平.油桐光系统性状测定的研究[J].经济林研究,2002,20(4):19-22.
    [76]廖飞勇,何平. SO2熏气对油桐叶片细胞膜脂组成和叶绿体超微结构的影响[J].植物生理学通讯,2004,40(1):42-44.
    [77]廖飞勇,何平.长期低浓度SO2对油桐保护系统功能的影响[J].中南林学院学报,2004,24(1):14-17.
    [78]廖飞勇,叶海燕,吕梁.不同浓度NaHSO3对油桐光合特性的影响[J].西南林学院学报,2005,25(3):5-9.
    [79]黄志刚,李锋瑞,曹云,等.南方红壤丘陵区杜仲和油桐人工林水土保持效应的比较[J].林业科学,2007,43(8):8-14.
    [80]杨宗武,肖晖,谢建平,等.营造油桐林对闽西红壤理化性质改良的初步研究[J].福建农业学报,1998,13(S1):76-80.
    [81]黄江红,黄河,谭方友.油桐林地水土流失现状及治理措施研究[J].贵州林业科技,2007,35(2):54-57.
    [82]施立明.遗传多样性及其保存[J].生物科学信息,1990,(2):158-164.
    [83]葛颂.酶电泳资料和系统与进化植物学研究综述[J].武汉植物学研究,1994,12(1):71-84.
    [84] Hamrick JL, Loveless MD. The genetic structure of tropical tree populations: Associations withreproductive biology. In: Bock JH, Linhart YB (eds) plant evolutionary ecology [M]. Westview Press,Boulder Colo,1989, pp:131-146.
    [85]欧阳准,余义彪,柯玉铸,等.营建油桐种质资源基因库的研究[J].福建林业科技,1991,(1):7-13.
    [86] Zhan ZY, Wang YD, Shockey J, et al. Breeding status of tung tree (Vernicia sp.) in China, amultipurpose oilseed crop with industrial uses. Silvae Genetica,2012,61(6):265-270.
    [87] Bornet B, Branchard D. Nonanchorecl inter simple sequence repeat (ISSR) markers reproducible andspecific tools for genome fingerprinting. Plant Molecular Biology Reporter,2001,19:209-215.
    [88] Escondon AS, Zelener N, de laTorre MP, et al. Molecular identification of new varieties ofNierembergia linariaefolia (Gmhm), a native Argentinean ornamental plant. J. Appl. Genet.,2007,48(2):115-123.
    [89] Luan S, Chang TY, Gong X. High genetic diversity vs low genetic differentiation in Nouelia insigne(Asteraceae), a narrowly distributed and endemic species in China, revealed by ISSR fingerprinting.Annals of Botany,2006,98:583-589.
    [90] Sankar AA, Moore GA. Evaluation of inter-simple sequence repeat analysis for mapping in citrus andextension of the genetic linkage map. Theoretical and Applied Genetics,2001,102:206-214.
    [91] Li P, Zhang X, Chen Y, et al. Genetic diversity and germplasm resource research on tung tree (Verniciafordii) cultivars, investigated by inter-simple sequence repeats. African Journal of Biotechnology,2008,7(8):1054-1059.
    [92] Xu W, Yang Q, Huai H, et al. Microsatellite marker development in tung trees (Vernica Montana and V.fordii, Euphorbiaceae). American Journal of Botany,2011,98(8):226-228.
    [93] Mckhedov S, Lioruya OM, Ohlrogge J. Toward a functional catalog of the plant genome-A survey ofgenes for lipid biosythesis. Plant Physiology,2000,122:389-401.
    [94]汪阳东,陈益存,姚小华,等.油桐分子生物学研究[M].北京:中国林业出版社,2012, pp:48.
    [95] Sasaki Y, Hakamada K, Suama Y, et al. Chloroplast-encoded protein as a subunit of acetyl-CoAcarboxylase in pea plant. J. Biol. Chem.,1993,268:25118-25123.
    [96] Thelen JJ, Ohlrogge JB. Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng.,2002,4:12-21.
    [97] Jako C, Kumar A, Wei YD, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding adiacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiology,2001,126:861-874.
    [98] Okuley J, Lightner J, Feldmann K, et al. Arabidopsis FAD2gene encodes the enzyme that is essentialfor polyunsaturated lipid synthesis. Plant Cell,1994,6:147-158.
    [99] Marrillia EF, Taylor D. Cloning and nucleotide sequencing of a cDNA encoding a Brassica carinataFAD2(Accession No. AF124360). Plant Physiology,1999,120:339.
    [100] Heppard EP, Kinney AJ, Stecca KL, et al. Development and growth temperature regulation of twodifferent microsomal ω-6desaturase genes in soybeans. Plant Physiology,1996,110:311-319.
    [101] Cahoon EB, Carlson TJ, Ripp KG, et al. Biosynthetic origin of conjugated double bonds: Production offatty acid components of high-value drying oils in transgenic soybean embryos. PNAS,1999,12935-12940.
    [102]汪阳东,李元,李鹏.油桐桐酸合成酶基因克隆和植物表达载体构建[J].浙江林业科技,2007,27(2):1-5.
    [103] Jain R FK, Cofey M, Lai K, et al. Enhancement of seed oil content by expression ofglycerol-3-phosphate acyltransferase genes. Biochem Soc Trans,2000,28:958-961.
    [104] Katavlc V, Frlesen W, Barton DL. Utility of the Arabidopsis FE7and yeast SLCl-1genes forimprovements in erucic acid and oil content in rapeseed. Biochem Soc Trans,2000,8:935-937.
    [105] Perry HJ, Bligny R, Gout E, et al. Changes in kennedy pathway intermediates associated withincreased triacylglycerol synthesis in oil-seed rape. Phytochemistry,1999,52:799-804.
    [106] Cao H, Chapital DC, Shockey JM, et al. Expression of tung tree diacylglycerol acyltransferase1in E.coli. BMC Biotechnology,2011,11:73-87.
    [107] Tzen JTC, Cao Y, Laurent P, et al. Lipids, proteins and structure of seed oil bodies from diversespecies. Plant Physiology,1993,102:267-276.
    [108] Huang AHC, Hsieh K. Endoplasmic reticulum, oleosin, and oils in seeds and tapetum cells. PlantPhysiology,2004,136:3427-3434.
    [109]周冠,汪阳东,陈益存,等.油桐种仁cDNA文库的构建及其油体蛋白Olesion基因的生物信息学分析[J].林业科学研究,2009,22(2):177-181.
    [110] van Rooijen GJ, Moloney MM. Plant seed oil-bodies as carriers for foreign proteins. Biotechnology(N.Y.),1995,13:72-77.
    [111] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gne-product mapping of themollicutes: Mycoplasma gerntalium. Electrophoresis,1995,16(7):1090-1094.
    [112]曹志成,余坚文,梁荣能.蛋白质组学——引领后基因组时代[J].中国生物工程杂志,2005,25(1):33-38.
    [113] Aebersold R. Constellations in a cellular inlverse. Nature,2003,422:115-116.
    [114]高雪,郑俊杰,贺福初.我国蛋白质组学研究现状及展望[J].生命科学,2007,19(3):257-263.
    [115]喻娟娟,戴绍军.植物蛋白质组学研究若干重要进展[J].植物学报,2009,44(4):410-425.
    [116] Canovas FM, Dumas-Gaudot E, Recorbet G, et al. Plant proteome analysis. Proteomics,2004,4:285-298.
    [117] Rossignol M, Peltier JB, Mock HP, et al. Plant proteome analysis: a2004-2006update. Proteomics,2006,6:5529-5548.
    [118] Jorrín JV, Maldonado AM, Castille MA. Plant proteome analysis: a2006update. Proteomics,2007,7:2947-2962.
    [119] Brautigam A, Hoffmann-Benning S, Weber AP. Comparative proteomics of chloroplasts envelopesfrom C3and C4plants reveals specific adaptations of the plastid envelope to C4photosynthesis andcandidate proteins required for maintaining C4metabolite fluxes. Plant Physiology,2008,148:568-579.
    [120] Reumann S, Babujee L, Ma C, et al. Proteome analysis of Arabidopsis leaf peroxisomes reveals noveltargeting peptides, metabolic pathways, and defense mechanisms. Plant Cell,2007,19:3170-3193.
    [121] Arai Y, Hayashi M, Nishimura M. Proteomic analysis of highly purified peroxisomes from etiolatedsoybean cotyledons. Plant Cell Physiology,2008,49:526-539.
    [122] Kang SG, Matin MN, Bae H, et al. Proteome analysis and characterization of phenotypes of lesionmimic mutant spotted leaf6in rice. Proteomics,2007,7:2447-2458.
    [123] Bryna ED, Robin DM, Patricia A, et al. The wheat (triticum aestivum) leaf proteome. Proteomics,2005,5:1624-1633.
    [124] Mooney BP, Miernyk JA, Greenlief CM, et al. Using quantitative proteomics of Arabidopsis roots andleaves to predict metabolic activity. Physiol Plantarum,2006,128:237-250.
    [125]王文军,景新民.种子蛋白质与蛋白质组的研究[J].植物学通报,2005,22(3):257-266.
    [126] Miernyk JA, Hajduch M. Seed proteomics. Proteomics,2011,74:389-400.
    [127] Repetto O, Rogniaux H, Firnhaber C, et al. Exploring the nuclear proteome of Medicago truncatula atthe switch towards seed filling. Plant Journal,2008,56:398-410.
    [128] Finnie C, Svensson B. Feasibility study of a tissue-specific approach to barley proteome analysis:aleurone layer, endosperm, embryo and single seeds. J. Cer. Sci.,2003,38:217-227.
    [129] Lee CS, Chien CT, Lin CH, et al. Protein changes between dormant and dormancy broken seeds ofPrunus campanulata Maxim. Proteomics,2006,6:4147-4154.
    [130] Heazlewood JL, Howell KA, Whelan JA. Towards an analysis of the rice mitochondrial proteome.Plant Physiology,2003,132:230-242.
    [131] Macherel D, Benamar A, Avelange-Macherel MH, et al. Function and stress tolerance of seedmitochondria. Physiology Plant,2007,129:233-241.
    [132] Dunkley TP, Hester S, Shadforth IP, et al. Mapping the Arabidopsis organelle proteome. Proc NatlAcad Sci USA,2006,103:6518-6523.
    [133] van Noorden GE, Kerim T, Goffard N, et al. Overlap of proteome changes in Medicago truncatula inresponse to auxin and Sinorhizobium meliloti. Plant Physiology,2007,144:1115-1131.
    [134] Ramagopal S. Salinity stress induces tissue-specific proteins in barley seedlings. Plant Physiol.,1987,84:324-331.
    [135] Katz A, Waridel P, Shevchenko A, et al. Salt-induced changes in the plasma membrane proteome ofthe halotolerantalga Dunaliella salina as revealed by blue native gel electrophoresis andnano-LC-MS/MS analysis. Mol. Cell Proteomics,2007,6:1459-1472.
    [136] Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, et al. Proteomics reveals new salt responsiveproteins associated with rice plasma membrane. Biosci Biotechnol Biochem,2007,71:2144-2154.
    [137] Salekdeh GH, Siopongco J, Wade LJ, et al. A proteomic approach to analyzing drought and saltresponsiveness in rice. Field Grop Res.,2002,76:199-219.
    [138] Kav NNV, Srivastava S, Goonewardene L, et al. Proteome-level changes in the roots of Pisum sativumin response to salinity. Ann. Appl. Biol.,2004,145:217-230.
    [139] Yan SP, Tang ZC, Su WA, et al. Proteomic analysis of salt stress-responsive proteins in rice root.Proteomics,2005,5:235-244.
    [140] Pandey A, Chakraborty S, Datta A, et al. Proteomics approach to identify dehydration responsivenuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics,2008,7:88-107.
    [141] Bogeat-Triboulot MB, Brosche M, Renaut J, et al. Gradual soil water depletion results in reversiblechanges of gene expression, protein profiles, ecophysiology, and growth performance in Populuseuphratica, a poplar growing in arid regions. Plant Physiol.,2007,143:876-892.
    [142] Zhu JM, Alvarez S, March EL, et al. Cell wall proteome in the maize primary root elongation zone. II.Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. PlantPhysiol.,2007,145:1533-1548.
    [143] Alam I, Sharmin SA, Kim KH, et al. Proteome analysis of soybean roots subjected to short-termdrought stress. Plant Soil,2010,333:491-505.
    [144] Benschop JJ, Mohammed S, O’Flaherty M, et al. Quantitative phosphoproteomics of early elicitorsignaling in Arabidopsis. Mol Cell Proteomics,2007,6:1198-1214.
    [145] Chen F, Yuan Y, Li Q, et al. Proteomic analysis of rice plasma membrane reveals proteins involved inearly defense response to bacterial blight. Proteomics,2007,7:1529-1539.
    [146] Lanquar V, Kuhn L, Lelievre F, et al.15N-metabolic labeling for comparative plasma membraneproteomics in Arabidopsis cells. Proteomics,2007,7:750-754.
    [147] Wang Y, Yang L, Xu H, et al. Differential proteomic analysis of proteins in wheat spiks induced byFusarium graminearum. Proteomics,2005,5:4496-4503.
    [148] Chen F, Yuan Y, Li Q, et al. Proteomic analysis of rice plasma membrane reveals proteins involved inearly defense response to bacterial blight. Proteomics,2007,7:1529-1539.
    [149] Ahsan N, Lee DG, Lee SH, et al. Excess copper induced physiological and proteomic changes ingerminating rice seeds. Chemosphere,2007,67:1182-1193.
    [150] Führs H, Hartwig M, Molina LE, et al. Early manganese-toxicity response in Vigna unguiculata L.-aproteomic and transcriptomic study. Proteomics,2008,8:149-159.
    [151] Li BL, Foley ME. Genetic and molecular control of seed dormancy. Trends in Plant Science,1997,10:384-389.
    [152] Pawlowski TA. Proteomics of European beech (Fagussylvatica L.) seed dormancy breaking: influenceof abscisic and gibberellic acids. Proteomics,2007,7:2246-2257.
    [153] Müller K, Job C, Belghazi M, et al. Proteomics reveal tissue-specific features of the cress (Lepidiumsativum L.) endosperm cap proteome and itshormone-induced changes during seed germination.Proteomics,2010,10:406-416.
    [154] Lu T, Meng L, Yang C, Liu G, Liu G, Ma W, et al. A shotgunphosphoproteomics analysis of embryos ingerminated maize seeds. Planta,2008,228:1029-1041.
    [155] Gallardo K, Job C, Groots SPC, et al. Proteomic analysis of Arabidopsis seed germination and priming.Plant Physiology,2001,126:835-848.
    [156] Fu Q, Wang BC, Jin X, et al. Proteomic analysis and extensive protein identification from dry,germinating Arabidopsis seeds and young seedlings. Biochem Mol Biol.,2005,38:835-848.
    [157] Finnie C, Melchior S, Roepstorff P, et al. Proteome analysis of grain filling and seed maturation inbarley. Plant Physiol.,2002,129:1308-1319.
    [158] Santoni V, Bellini C, Caboche M. Use of two-dimensional protein pattern analysis for thecharacterization of Arabidopsis thaliana mutants. Planta,1994,192:557-566.
    [159] Gottlieb LD, de Vienne D. Assessment of pleiotropic effects of a gene substitution in pea bytwo-dimensional polyacrylamide gel electrophoresis. Genetics,1988,119:705-710.
    [160] Gallardo K, Signor CL, Vandekerckhove J, et al. Proteomics of Medicago truncatula seed developmentestablishes the time frame of diverse metabolic processes related to reserve accumulation. PlantPhysiol.,2003,133:664-682.
    [161] Hajduch M, Gapathy A, Stein JW, et al. A systematic proteomic study of seed filling in soybean.Establishment of high-resolution two-dimensional reference maps, expression profiles, and aninteractive proteome database. Plant Physiol.,2005,137:1397-1419.
    [162] Maltman DJ, Gadd SM, Smon WJ, et al. Differential proteomic analysis of the endoplasmic reticulumfrom developing and germinating seeds of castor identifies seed protein precursors as significantcomponents of the endoplasmic reticulum. Proteomics,2007,7:1513-1528.
    [163] Gao LY, Wang AL. Wheat quality related differential expressions of albumins and globulins revealedby two-dimensional difference gel electrophoresis (2D-DIGE). Proteomics,2006,8:4506-4513.
    [164] Amme S, Matros A, Schlesier B, et al. Proteome analysis of cold stress response in Arabidopsisthaliana using DIGE-technology. Exp. Bot.,2006,57:1537-1546.
    [165] Opiteck GJ, Ramirez SM, Jorgenson JW, et al. Comprehensive two-dimensional high-performanceliquid chromatography for the isolation of overexpressed proteins and proteome mapping. Anal.Biochem.,1998,258:349-361.
    [166] Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of largebiomolecules. Science,1989,246:64-71.
    [167] Welham KJ, Domin MA, Scannell DE, et al. The characterization of microorganisms bymatrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun MassSpectrom,1998,12:176-180.
    [168] Wu F, Wang M. Extraction of proteins for sodium dodecyl sulfate polyacrylamide gel electrophoresisfrom protease-rich plant tissues. Anal. Biochem.,1984,139,100-103.
    [169] Wang W, Scali M, Vignani R, et al. Protein extraction for two-dimensional electrophoresis from oliveleaf, a plant tissue containing high levels of interfering compounds. Electrophoresis,2003,24:2369-2375.
    [170] Saravanan RS, Rose JK. A critical evaluation of sample extraction techniques for enhanced proteomicanalysis of recalcitrant plant tissues. Proteomics,2004,4:2522-2532.
    [171] Geddes J, Eudes A, Laroche A, et al. Differential expression of proteins in response to the interactionbetween the pathogen Fusarium graminerarum and its host, Hodeum vulgare. Proteomics,2008,8:545-554.
    [172] Noir S, Brautigam A, Colby T, et al. A reference map of the Arabidopsis thaliana mature pollenproteome. Biochem Biophys Res Commun,2005,337:1257-1266.
    [173] Granier F. Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis,1988,9:712-718.
    [174] Damerval C, Zivy M, Granier F, et al. Two-dimensional electrophoresis in plant biology. Adv.Electrophoresis,1988,2:263-340.
    [175] Hurkman WJ, Tanaka CK. Solubilisation of plant membrane proteins for analysis by two-dimensionalgel electrophoresis. Plant Physiol.,1986,81:802-806.
    [176] Mihr C, Braun HP. Proteomics in plant biology, in Handbook of Proteomics (Conn, P., ed.), HumanaPress, Totowa, NJ, pp.409-416.
    [177] Mijnsbrugge KV, Meyermans H, Van Montagu, et al. Wood formation in poplar: identification,characterization, and seasonal variation of xylem proteins. Proteomics,2000,210:589-598.
    [178] Xie CJ, Wang D, Yang XY. Protein extraction methods compatible with proteomic analysis for thecotton seedling. Crop Sci.,2009,49:395-402.
    [179] Xie H, Pan SL, Liu SF, et al. A novel method of protein extraction from perennial Bupleurum root for2-DE. Electrophoresis,2007,28:871-875.
    [180] Magni C, Scarafoni A, Herndl A, et al. Combined2D electrophoretic approaches for the study of whitelupin mature seed storage proteome. Phytochemistry,2007,68:997-1007.
    [181] Wang XQ, Yang PF, Zhang X F, et al. Proteomic analysis of the cold stress response in the moss,Physcomitrella patens.Proteomics,2009,9:4529-4538.
    [182] Han F, Chen H, Li XJ, et al. A comparative proteomic analysis of rice seedlings under varioushigh-temperature stress. Biochimica et Biophysica Acta,2009,1794:1625-1634.
    [183] Liu H, Liu YJ, Yang MF, et al. A comparative analysis of embryo and endosperm proteome from seedsof Jatropha curcas. Journal of Integrative Plant Biology,2009,51:850-857.
    [184] Giavalisco P, Nordhoff E, Lehrach H, et al. Extraction of proteins from plant tissues fortwo-dimensional electrophoresis analysis. Electrophoresis,2003,24:207-216.
    [185] Xiang X L, Ning S J, Jiang X, et al. Protein extraction methods for two-dimensional electrophoresisfrom Baphicacanthus cusia (Nees) Bremek leaves-A medicinal plant with high contents of interferingcompounds. Agricultural Sciences in China,2010,9:1530-1537.
    [186] Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. TrendsBiotechnol,1999,17:121-127.
    [187] Rabilloud T, Link AJ. Solubilization of proteins in2D electrophoresis: an outline. Methods Mol Biol,2D Proteome Analysis Protocols,1999,112:9-19.
    [188] Giavalisco P, Nordhoff E, Lehrach H, et al. Extraction of proteins from plant tissues fortwo-dimensional electrophoresis analysis. Electrophoresis,2003,24:207-216.
    [189]李德军,邓治,陈春柳,等.植物组织双向电泳样品制备方法研究进展[J].中国农学通报,2009,25(24):78-82.
    [190] Liu H, Yang ZL, Yang MF, et al. The differential proteome of endosperm and embryo from matureseed of Jatropha curcas. Plant Science,2011,181:660-666.
    [191]Jellouli N, Salem AB, Ghorbel A, et al. Evaluation of protein extraction methods for Vitis vinifera leafand root proteome analysis by two-dimensional electrophoresis. Journal of Integrative Plant Biology,2010,52(10):933-940.
    [192]郑天慧,宋波,姜自芹,等.大豆花瓣蛋白双向电泳分析技术体系的优化[J].哈尔滨师范大学学报(自科版),2010,26(6):75-80.
    [193]丁承强,马丹,王绍华,等.水稻蛋白质组双向电泳优化流程及方法[J].植物学报,2011,46(1):67-73.
    [194]杜保伟,李成斌,熊明国,等.桃叶片总蛋白双向电泳技术的研究[J].果树学报,2009,26(5):752-755.
    [195]李勤,黄建安,刘硕谦,等.茶树蛋白质双向电泳样品制备技术研究[J].茶叶科学,2011,31(3):173-178.
    [196]付忠军,丁冬,进茜宁,等.玉米花丝蛋白质组双向电泳条件的优化[J].植物生理学通讯,2009,45(12):1215-1220.
    [197]陈蕊红,张改生,刘卫,等.小麦花药蛋白质组双向电泳技术体系的优化[J].核农学报,2008,22(4):404-409.
    [198]于松,高庆荣,袁凯,等.小麦幼穗蛋白质双向电泳条件的优化[J].基因组学与应用生物学,2012,31(1):84-89.
    [199]曾维英,杨守萍,喻德跃,等.大豆质核互作雄性不育系NJCMS2A及其保持系的花药蛋白质组比较研究[J].作物学报,2007,33(10):1637-1643.
    [200]钱小红,贺福初.蛋白质组学:理论与方法[M].北京:科学出版社,2003:48-63.
    [201]郝强,葛秀秀,张睿鹂,等.北方常绿阔叶木本植物叶片蛋白质双向电泳技术体系优化[J].西北植物学报,2010,30(9):1906-1912.
    [202]张燕,何文锦,叶冰莹,等.甘蔗叶片蛋白质组双向电泳技术优化[J].福建师范大学学报(自科版),2011,27(1):80-84.
    [203]李奇松,陈军,林世圣,等.水稻籽粒蛋白双向电泳条件的优化及其蛋白组学方法的比较[J].作物学报,2012,38(5):921-927.
    [204]康俊梅,熊军波,孙彦,等.利用双向电泳技术分离野牛草叶片蛋白的方法研究[J].西北农业学报,2010,19(2):29-34.
    [205]林文芳,陈林姣,彭浩,等.不同生态型芦苇叶片蛋白质双向电泳系统的筛选和优化[J].生物化学与生物物理进展,2008,35(10):1209-1214.
    [206]马朋涛,孙立伟,麻锐,等.富含高丰度蛋白的人参果实双向电泳图谱的建立[J].华中师范大学学报(自科版),2012,46(2):198-203.
    [207] Herman EM, Helm RM, Jung R, Kinney AJ. Genetic modification removes an immunodominantallergen from soybean. Plant Physiol,2003,132:36-43.
    [208] Cho JH, Hwang H, Cho MH, et al. The effect of DTT in protein preparations for proteomic analysis:removal of a highly abundant plant enzyme, ribulose bisphosphate carboxylase/oxygenase. Plant Biol.,2008,51:297-301.
    [209] Natarajan SS, Krishnan HB, Lakshman S, et al. An efficient extraction method to enhance analysis oflow abundant proteins from soybean seed. Anal Biochem,2009,394:259-268.
    [210] Corthals GL, Wasinger VC, Hochstrasser DF, et al. The dynamic range of protein expression achallenge for proteomic research. Electrophoresis,2000,21:1104-1115.
    [211] Kim ST, Cho KS, Jang YS, et al. Two-dimensional electrophoretic analysis of rice proteins bypolyethylene glycol fractionation for protein arrays. Electrophoresis,2001,22:2103-2109.
    [212]钟俐,马成梅,梁永增,等.甜瓜叶片中Rubisco的去除及双向电泳体系的优化[J].植物生理学报,2012,48(3):303-309.
    [213]任丽萍,范海延,王珊珊,等.黄瓜叶片蛋白质双向电泳样品分级优化[J].西北植物学报,2011,31(8):1706-1710.
    [214]张根连,范术丽,宋美珍,等.植物蛋白质组学技术研究进展[J].生物技术通讯,2011,11(7):26-30.
    [215] Aggarwal K, Lee KH. Functional genomic and proteomics as a foundation for systems biology. BriefFunct Genomic Proteomic,2003,2:175-184.
    [216] Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet,2003,33(Suppl.):311-323.
    [217] Schmid MB. Structural proteomics: the potential of high-throughput structure determination. TrendsMicrobiol,2002,10:27-31.
    [218]许丽璇,蔡建秀.水稻种子萌发过程中胚蛋白质差异表达分析[J].中国农学通报,2010,26(6):10-16.
    [219] Guy CL, Haskel LD. Induction of freezing tolerance in spinach is associated with the synthesis of coldacclimation induced proteins. Plant Physiol.,1987,84:872-878.
    [220] Sarhan F. Accumulation of a high molecular weight protein during cold hardening of wheat (Triticumaestivum L.). Plant Cell Physiol.,1987,28:1173-1179.
    [221] Gatschet MJ. Cold acclimation and alternations in protein synthesis in Bermudagrass crowns. J AmerSoc Hortsci.,1994,119:477-480.
    [222] Karimzadeh G, Darvishzadeh R, Jalali-Javaran M, et al. Cold-induced accumulation of protein in theleaves of spring and winter barley cultivars. Acta Biol Hung,2005,56:83-96.
    [223] Lius MB, Alberd M, Raynal M. Changes in protein synthesis in rape seed seedlings during a lowtemperature treatment. Plant Physiol.,1986,82:733-738.
    [224] Gilmour S, Hajela PK, Thomashow MF. Cold acclimation in Arabidopsis thaliana. Plant Physiol.,1988,78:745-750.
    [225]李淑芬,孙富从,肖理慧.植物对非生物胁迫应答的转录因子及调控机制[J].西北植物学报,2006,26(6):1295-1300.
    [226]杨玉珍,彭方仁.低温胁迫对香椿幼苗蛋白质含量及特异蛋白表达的影响[J].中国农学通报,2010,26(7):115-119.
    [237] Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV. Proteomic analysis of the development andgermination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics,2009,9:2543-2554.
    [238] Miernyk J.A., Hajduch M. Seed proteomics. Proteomics,2011,74:389-400.
    [229] Huang H, M ller IM, Song SQ. Proteomics of desiccation tolerance during development andgermination of maize embryos. Proteomics,2012,75:1247-1262.
    [230] Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J. Proteome reference maps ofvegetative tissues in Pea. An investigation of nitrogen mobilization from leaves during seed filling.Plant Physiol.,2004,135:2241-2260.
    [231] Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P. Proteomic analysis of seed dormancy inArabidopsis. Plant Physiol.,2006,142:1493-1510.
    [232] Sheoran IS, Olson DJH, Ross ARS, Sawhney VK. Proteome analysis of mbryo and endosperm fromgermination tomato seeds. Proteomics,2005,5:3752-3764.
    [233] Yang P, Li X, Wang X, Chen H, Chen F, Shen S. Proteomic analysis of rice (Oryza sativa) seeds duringgermination. Proteomics,2007,7:3358-3368.
    [234] Yang M, Liu YJ, Liu Y, Chen H, Chen F, Shen SH. Proteomic analysis of oil mobilization in seedgermination and postgermination development of Jatropha curcas. Proteome Res.,2009,8:1441-1451.
    [235] Wong PF, Abubakar S. Post-germination changes in Hevea brasiliensis seeds proteome. Plant Science,2005,169:303-311.
    [236] Finnie C, Melchior S, Roepstorff P, Svensson B. Proteome analysis of grain filling and seed maturationin barly. Plant Physiol.,2002,129:1308-1319.
    [237] Liu H, Yang Z, Yang M, Shen S. The differential proteome of endosperm and embryo from matureseed of Jatropha curcas. Plant Science,2011,181:660-666.
    [238] Nouri MZ, Komatsu S. Comparative analysis of soybean plasma membrane proteins under osmoticstress using gel-based and LC MS/MS-based proteomics approaches. Proteomics,2010,10:1930-1945.
    [239] Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ. Proteomic analysis of seedfilling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolutiontwo-dimensional gel electrophoresis. Plant Physiol.,2006,141:32-46.
    [240] Cao H, Chapital DC, Shockey JM, Klasson KT. Expression of tung tree diacylglycerol acyltransferase1in E. coli. BMC Biotechnology,2011,11:73-85.
    [241] Dyer JM, Chapital DC, Kuan JCW, Mullen RT, Turner C, McKeon TA, Pepperman AB. Molecularanalysis of a bifunctional fatty acid conjugase/desaturase from Tung. implications for the evolution ofplant fatty acid diversity. Plant Physiol.,2002,130:2027-2038.
    [242] Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, DyerJM. Tung tree DGAT1and DGAT2have nonredundant functions in triacylglycerol biosynthesis and arelocalized to different subdomains of the endoplasmic reticulum. Plant Cell,2006,18:2294-2313.
    [243] Turchetto-Zolet AC, Maraschin FS, de Morais GL, Cagliari A, Andrade C MB, Margis-Pinheiro M,Margis R. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme inneutral lipid biosynthesis. BMC Evolutionary Biology,2011,11:263-276.
    [244] Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH. Abscisic acid pretreatment enhances salt toleranceof rice seedings: Proteomic evidence. Biochimica et Biophysica Acta,2010,1804:929-940.
    [245] Moon H, Lee B, Choi G, et al. NDP kinase2interacts with two oxidative stress-activated MAPKs toregulate cellular redox state and enhances multiple stress tolerance in transgenic plants. PNAS,2003,100:358-363.
    [246] Tang L, Kim MD, Yang KS, et al. Enhanced tolerance of transgenic potato plants overexpressingnucleoside diphosphate kinase2against multiple environmental stresses. Transgenic Research,2008,17:705-715.
    [247] Kim YO, Kim JS, Kang H. Cold-inducible zinc finger-containing glycine-rich RNA-binding proteincontributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant Journal,2005,42:890-900.
    [248] Kim J.Y., Park S.J., Jang B., et al. Functional characterization of a glycine-rich RNA-binding protein2in Arabidopsis thaliana under abiotic stress conditions. Plant Journal,2007,50:439-451.
    [249] Han F, Chen H, Li XJ, Yang MF, Liu GS, Shen SH. A comparative proteomic analysis of rice seedlingsunder various high-temperature stresses. Biochimica et Biophysica Acta,2009,1794:1625-1634.
    [250] Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stressin plants. J. Exp. Bot.,2002,53:1331-1341.
    [251] Kwon SI, An CS. Cloning and expression of mitochondrial MnSOD from the small radish (Raphanussativus L.). Mol. Cells,2003,16:194-200.
    [252] Bewley JD. Seed germination and dormancy. Plant Cell,1997,9:1055-1066.
    [253] Nguyen HM, Baudet M, Cuine S, Adriano J, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, FerroM, Li-Beisson Y. Proteomic profiling of oil bodies isolated from the unicellular gr een microalgaChlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics,2011,11:4266-4273.
    [254] Murphy DJ. Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog.Lipid Res.,1993,32:247-280.
    [255] Huang AHC. Oil bodies and oleosins in seeds. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1992,43:177-200.
    [256] Tnani H, López I, Jouenne T, Vicient CM. Protein composition analysis of oil bodies from maizeembryos during germination. Plant Physiol.,2011,168:510-513.
    [257] Poxleitner M, Rogers SW, Lacey Samuels A, Browse J, Rogers JC. A role for caleosin in degradationof oil-body storage lipid during seed germination. Plant J.,2006,47:917-933.
    [258] Yang MF, Liu YJ, Liu Y, Chen H, Chen F, Shen SH. Proteomic analysis of oil mobilization in seedgermination and postgermination development of Jatropha curcas. Proteome Res.,2009,8:1441-1451.
    [259] Leprince O, Van AC, Pritchard HW, et al. Oleosins prevent oil-body coalescence during seedinhibition as suggested by a low-temperature scanning electronmicroscope study of desiccation-tolerantand–sensitive oilseeds. Planta,1997,204:109-119.
    [260]程红焱,宋松泉.种子的贮油细胞器:油体及其蛋白[J].植物学通报,2006,23(4):418-430.
    [261] Chen ECF, Tai SSK, Peng CC, et al. Identification of there novel proteins in seed oil bodies of sesame.Plant Cell Physiol.,1998,39:935-941.
    [262]韦存虚,钦风凌,李爱民,等.油菜种子油体的观察和大小分析[J].中国油料作物学报,2009,31(4):445-448.
    [263] Heneen WK, Karlsson G, Brismar K, et al. Fusion of oil bodies in endosperm of oat grains. Planta,2008,228:589-599.
    [264] Hu Z, Wang X, Zhan G, et al. Unusually large oilbodies are highly correlated with lower oil content inBrassica napus. Plant Cell Rep.,2009,28:541-549.
    [265]高劲松,石东乔,高建芹,等.甘蓝型油菜油体数量及面积之和与含油量的相关性[J].植物学报,2009,44(1):79-85.
    [266] Siloto RMP, Findlay K, Lopez-Villalobos A, et al. The accumulation of oleosins determines the size ofseed oil bodies in Arabidopsis. Plant Cell,2006,18:1961-1974.
    [267] Frey-Wyssling A, Grieshaber E, Muhlethaler K. Origin of spherosomes in plant cells. J Ultrastruct Res,1963,8:506-516.
    [268] Murphy DJ. Storage lipid bodies in plants and other organisms. Prog Lipid Res,1990,29:299-324.
    [269] Sonntag NOV. Composition and characteristics of individual fats and oils. In Bailey’s Industrial Oiland Fat Products,1979,1:289-477.
    [270]王晓茹,刘文哲.黄连木果实中油体的发育[J].植物学报,2011,46(6):665-674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700