用户名: 密码: 验证码:
木本淀粉能源植物栓皮栎与麻栎资源调查及地理种源变异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栓皮栎(Quercus variabilis Blume.)与麻栎(Quercus acuti ssima Carr.)是两个比较古老且地理分布很广的树种,它们地跨暖温带、亚热带和热带,常常是暖温带阔叶林区域和亚热带常绿阔叶林区域北部和中部森林群落的建群树种,资源量十分丰富,也是很有发展前途的非粮木本淀粉能源植物,有望为生物燃料乙醇工业提供稳定、充足和多元化的原料保障。本文以栓皮栎与麻栎为研究对象,通过2009年到2012年对栓皮栎与麻栎全国资源调查的基础上,系统分析了我国栓皮栎与麻栎的资源分布特征,完成了其现有林资源区划;对栓皮栎与麻栎不同产地种子主要经济性状地理种源变异规律进行了分析,选择出了经济性状优良的种源和区域。为栓皮栎与麻栎进一步开发利用奠定了坚实的基础。研究的主要结果如下。
     (1)栓皮栎与麻栎在我国分布区域广阔,其中:
     栓皮栎分布于北纬23°24'~41°07',东经97°29'~126°06'之间,栓皮栎分布区跨温带、亚热带和热带3个气候带,在我国的水平分布轮廓整体上呈东北、西南走向为直线,东部、南部为沿海岸线的“D”字形分布。在行政区域上包括18个省,4个直辖市以及广西、西藏两个自治区的全部或部分地区。其在我国分布西北界为吉林集安-辽宁岫岩-河北山海关-河北青龙-北京门头沟-河北蔚县-山西陵川-临汾-乡宁-陕西黄龙县-甘肃天水-四川省青川县-雅安市-云南德钦-维西-泸水、西藏察隅,南线为云南文山-蒙自-屏边-西双版纳;栓皮栎分布区地形地貌主要以中低山、丘陵为主,主要土壤类型为黄棕壤、棕壤、褐土、黄褐土、黄壤、红壤、紫色土、黄红壤、石灰土、燥红土等。
     麻栎地理分布范围为北纬18.40°24'~40°48',东经97°43'~125°17'之间,麻栎分布区跨温带、亚热带和热带3个气候带,麻栎在我国的水平分布与栓皮栎相似。在行政区域上包括18个省4个直辖市,香港、澳门两个特别行政区以及广西壮族自治区的全部或部分地区。其分布界限为辽宁省宽甸-辽宁省凤城市-海城市-河北承德市-北京密云县;分布的西北线由南到北为:河北省蔚县-河北省石家庄市-山西省晋城市-永济市-陕西省黄龙县-甘肃省天水市-甘肃省文县;分布的西南线为:四川省青川县-雅安市-九龙县-云南腾冲县-盈江县;麻栎分布区地形地貌主要以中低山、丘陵为主,林下主要土壤类型为黄棕壤、棕壤、褐土、黄褐土、黄壤、红壤、紫色土、黄红壤、石灰土、燥红土等。
     (2)栓皮栎与麻栎与地理纬度间的关系均不显著,而与地理经度间的相关性较高,随着地理经度的增加其分布上下限均呈现出逐渐下降的趋势。
     (3)依据不同分布区麻栎与栓皮栎的资源集中程度和资源量不同,将麻栎与栓皮栎资源分布区划分为四种基本类型:集中分布区、次集中分布区、天然散生区和人工零星栽植区。
     栓皮栎天然分布区包括4个集中分布区和7个次集中分布区,其集中分布区为秦巴山地与陇南山地东部、伏牛山山地、桐柏山与大别山山地北部、太行山南段集中分布区;次集中分布区为辽南鲁东山地、黔桂南盘江红水河中低山河谷、鄂西北山地、冀北山地与太行山北段、泰山鲁山山地、皖南山地、江淮丘陵次集中分布区。
     麻栎共包括9个次集中分布区,集中分布区分别为桐柏山与大别山山地、伏牛山山地、辽南鲁东山地、秦巴山地与陇南山地东部、江淮丘陵、黔桂南盘江红水河中低山河谷、鄂西北山地、泰山鲁山立地亚区、皖南山地。
     (4)我国目前栓皮栎集中分布区和次集中分布区资源总面积为136.35×104hm2,麻栎次集中分布区资源总面积约为74.51×104hm2;栓皮栎与麻栎的集中、次集中分布区以中、幼龄林所占比例最大,中、幼龄林面积可占资源总面积的73.34%和88.29%。而近、成熟龄林资源比例较低,仅分别占资源总面积的23.65%和12.11%。另外,在不同分布区,各龄级林分所占比例不同。
     (5)在不考虑社会经济等限制因素的条件下,中国栓皮栎适宜分布区的乙醇总潜力为270.90×104t/a~1204.11×104t/a,最低可满足我国目前E10乙醇汽油42.71%的需求。在保证粮食安全的前提下,栓皮栎最适宜和较适宜地区总潜力为261.37×104t/a。
     适宜种植区未利用地的面积仅占适宜总面积的1.47%,中国未利用地可生产栓皮栎无水乙醇可增加目前中国E10乙醇汽油0.88%左右,估计栓皮栎林实际面积约为133×104hm2~160×104hm2,按栓皮栎生产乙醇的平均产量22900t/a计算,可满足我国目前E10乙醇汽油需求的0.63%,共解决E10乙醇汽油需求的1.51%左右。(6)不同种源间栓皮栎种子的纵径、横径、纵径/横径均差异极显著(p<0.01)。其中种子的横径与单果重间呈极显著正相关关系(p<0.01)。横径与纵径/横径呈极显著负相关(p<0.01)。纵径与单果重呈显著正相关(p<0.05)。纵径/横径与单果重呈极显著负相关关系(p<0.01)。而种子其它性状间相关性均未达显著性水平(p≥0.05)。单果重与经度呈显著正相关(p<0.05),粗蛋白含量与年降水量呈显著负相关(p<0.05),种子性状与原产地地理生态因子间相关性较弱或没有关系(p≥0.05)。通过聚类分析,栓皮栎15个种源可以划分为3个类群,分别是大果高淀粉含量类群、小果低淀粉含量类群和中果中淀粉含量类群,其中陕西太白、湖南郴州、北京平谷、河南泌阳、河南窑店、陕西镇坪种源为品质优良种源。(7)不同种源间麻栎种子的纵径、横径、纵径/横径均差异极显著(p<0.01)。其中横径与单果重间呈极显著正相关关系(p<0.01),纵径与单果重呈极显著正相关(p<0.01)关系,横径与纵径/横径呈极显著负相关(p<0.01),纵径/横径与单果重呈显著负相关关系(p<0.05),种子单宁含量与横径和纵径/横径间呈负相关关系,种子其它性状间相关性均未达显著性水平(p≥0.05)。通过聚类分析,15个麻栎种源可以划分为3大类群,大果高淀粉量类群,小果低淀粉含量类群和中果中淀粉含率类群,其中安徽金寨、北京妙峰山、河南南召和河南西峡4个种源为优良种源。
Quercus variabilis Blume. and Quercus acutissima Carr. are ancient trees who distributefrom warm temperate zone to torrid zone. These two species are dominant species ofcommunity composition in warm temperate zone and subtropical zone in the most cases withabundant resources which makes them promising non-food woody energy plants that can beused as raw material of bioethanol fuel industry. Therefore, Quercus variabilisand Quercusacutissimawere chose as the study objects and were well analysed through resources survey allaround China during2009and2012in this research combining with GIS method.Regionalization of Quercus variabilisand Quercus acutissimawere analysed through themethods discribed above and the distribution pattern of economic characters of their seedswere explored to single out superior provenance and areas. The key results are as follows:
     (1)Quercus variabilisand Quercus acutissimadistributes widely in China:
     Quercus variabilis locates between23°24'~41°07'N and97°29'~126°06'E across cooltemperate zone, warm temperate zone, north subtropical zone and torrid zone. The horizontaldistribution of Quercus variabilisin China spreading from northeast to westeast as line andshaping as “D” along the coastline including18provinces Guangxi, Tibet and4municipalities.The northwest demarcation line is composited as Jian, Jilin Province-Xiuyan, liaoningProvince-Shanhaiguan, HebeiProvince-Qinglong, HebeiProvince-Mentougou, Beijing-Weixian,HebeiProvince-Lingchuan, ShanxiProvince-Linfen, ShanxiProvince-Xiangning, Shanxi,Huanglong, ShaanxiProvince-Tianshui, GansuProvince-Qingchuan, Sichuan-Ya’an,SichuanProvince-Deqin, Yunnan, Weixi, YunnanProvince-Lushui, YunnanProvince-Chayu,Tibet; and the south demarcation line is composited as Wenshan-Mengzi-Pingbian-Xishuanbanna, YunnanProvince. Quercus variabilisdistributied main in middle and lowermountain ectone and hill zone with yellow brown soil, brown soil, cinnamon soil,yellowcinnamon soil, yellow earth, red earth, purple soil, yellow-red soil, calcareous soil, dry red soil.
     Quercus acutissima locates between18.40°24'~40°48'N and97°43'~125°17'E across warmtemperate zone, north subtropical zone and torrid zone. The horizontal distribution of Quercusacutissima is similar to Quercus variabilis in China including18provinces Guangxi,Hongkong, Macao and4municipalities. The whole demarcation line of Quercus acutissimaisKuandian, Liaoning Province-Fengcheng, Liaoning Province-Haicheng,LiaoningProvince-Chengde, HebeiProvince-Miyun, Beijing; the northwest demarcation line iscomposited as Weixian, Hebei Province-Shijiazhuang, HebeiProvince-Jincheng,ShanxiProvince-Tianshui, GansuProvince-Wenxian, GansuProvince; and thesouthwestdemarcation line is composited as Qingchuan, Ya’an, jiulong, SichuanProvince-Tengchong, YunnanProvince. Quercus acutissimadistributied mainly in middle andlower mountain ectone and hill zone with yellow brown soil, brown soil, cinnamon soil,yellowcinnamon soil, yellow earth, red earth, purple soil, yellow-red soil, calcareous soil, dry red soil.
     (2)The distribution of Quercus variabilisand Quercus acutissimacorrelated significantlywith geographic longitude rather than latitude(no significant relation). The resource decreasedas longitude increased.
     (3)Our research devided the distribution of Quercus variabilis and Quercus acutissimainto four types: original concentrated distribution area, original secondary concentrateddistribution area, original scattered distribution zone, and fragmentary plantation zone.Thereinto, the original distribution of Quercus variabiliscontains4concentrated distributionareas and7secondary concentrated distribution areas and Quercus acutissima contains9secondary concentrated distribution areas.The4concentrated distribution areas of Quercusvariabilis contains mountainous region of Qingba, eastern part of mountainous region ofsouthern Gansu Proince, Qianniu moutain, Tongbai Moutain, North part of Dabie Moutain,South part of Taihang Moutain; and7secondary concentrated distribution areas of Quercusvariabilis are mountainous region of southern Liaoning ProvinceandEastern ShandongProvince, valley of Hongshui River in southern Guizhou Province, mountainous region ofnorthwestern Hubei Province, mountainous region of Hebei Province, North part of Taihangmountain, Mount Tai, mountainous region of southern Anhui Province, hilly region of Yangze river and Huai river watershed. Meanwhile the9secondary concentrated distribution areas ofQuercus acutissimaare Tongbai Moutain, North part of Dabie Moutain, Funiu Mountain,mountainous region of southern Liaoning ProvinceandEastern ShandongProvince,mountainous region of Qingba,mountainous region of estern Southern GansuProince,hilly region of Yangze river and Huai river watershed,valley of Hongshui River insouthern Guizhou Province,mountainous region of northwestern Hubei Province, Mount Tai,and mountainous region of southern Anhui Province.
     (4)The total of concentrated distribution area and secondary concentrated distributionarea of Quercus variabilisis136.35×104hm2, and secondary concentrated distribution area ofQuercus acutissima is74.51×104hm2.Middle-aged forest and young forest took the most part ofthe above distribution zone (73.34%and88.29%for Quercus variabilis and Quercus acutissimarespectively) while mature and half-mature forest took only23.65%and12.11%of the totalarea for Quercus variabilis and Quercus acutissima respectively.
     (5) The total ethanol potential of the distributed Quercus variabilis can be270.90×104t/a~1204.11×104t/awhich can satisfy42.71%of the total E10gasoline in Chinawithout considering limiting factors such as social and economic conditions. The suitable areafor Quercus variabilis planting took1.47%of tis total distribution area where the ethanolpotential can be0.88%of the tatal E10gasoline in China. The actual area of Quercus variabiliscould be133×104hm2~160×104hm2, where0.63%of the total demand E10ethanol gasolinecan be supplied. In total,1.51%of the total demand E10ethanol gasoline can be supplied
     (6)There were significant difference between vertical diameter,transverse diameter, andvertical diameter/transverse diameterof seeds of different distribution zone(p<0.01).Positivecorrelation relationship was detected between transverse diameter and fruit weight(p<0.01),and vertical diameterand fruit weight(p<0.05), and negative correlation relationship wasdetected betweenvertical diameterand transverse diameter(p<0.01), and verticaldiameter/transverse diameter and fruit weight(p<0.01). Besides, no significant correlationrelationship was detected between other fruit characters (p≥0.05). However, positivecorrelation relationship was detected between longtitude and fruit weight (p<0.05), and negative correlation relationship was detected betweencrude protein content and annualprecipitation (p<0.05), while nosignificant correlation relationship was detected between otherfruit characters and geographic ecological factors (p≥0.05). The15provenances of Quercusvariabilis can be devided into3groups by clustering analysis: big fruit with high starch contentgroup, small fruit with low starch content group, and middle fruit with middle starch contentgroup. The best provenance areas are: Taibai, Shaanxi Province; Binzhou, HunanProvince;Pinggu, Beijing; Miyang, HenanProvince; Yaodian, HenanProvince; and Zhenping,ShaanxiProvince.
     (7)Significant differences was detected betweenvertical diameter,transverse diameter,and vertical diameter/transverse diameterof Quercus acutissimaseeds of differentprovenances(p<0.01). Thereinto, positive correlation relationship was detected betweenvertical diameter/transverse diameter and fruit weight (p<0.01), while negative correlationrelationship was detected betweentransverse diameterand vertical diameter/transversediameter(p<0.01), and vertical diameter/transverse diameter and fruit weight (p<0.05).Thetanning content also had a negative correlation relationship with transverse diameterandvertical diameter/transverse diameter, however nosignificant correlation relationship wasdetected between other fruit characters (p≥0.05).The15provenances of Quercusacutissimacanbe devided into3groups by clustering analysis: big fruit with high starch content group, smallfruit with low starch content group, and middle fruit with middle starch content group. The bestprovenance areas are: Jinzhai, Anhui Province; Nanshao, HenanProvince; Miaofengshan,Beijing; and Xixia, HenanProvince.
引文
Abderrahi MB. Pilot plant studies of biodiesel production using Brassica carinata as raw material.CatalysisToday,2005,106(4):193~1961
    Abrahamson W, James L. Relation of ramet size to acorn production in five oak species of xeric uplandhabitats in south-central Florida. American Journal of Botany,2002,89(1):124~131
    Achten W M J, Verchot L, Franken Y J, et al.Jatropha biodiesel production and use.Biomass and Bioenergy,2008,32(12):1063~1084
    Ajayi O. Assessment of utilization of wind energy resources in Nigeria. Energy policy,2009,37(2):750~753
    Akella A, Saini R, Sharma M.Social, economical and environmental impacts of renewable energy systems.Renewable Energy,2009,34(2):390~396
    Amjid SS, Bilal MQ, Nazir MS,et al.Biogas, renewable energy resource for Pakistan.Renewable andSustainable Energy Reviews,2011,15(6):2833~2837
    Aninidita K, Subrata K, Souti M.,2010. Properties of various plants and animals feedstocks for biodieselproduction. Bioresour. Technol.101(19):7201~7210
    Aravanopoulos F A.Breeding of fast growing forest tree species for biomass production in Greece.Biomassand Bioenergy,2010,34(11):1531~1537
    Augustus G, Jayabalan M, Seiler GJ.Evaluation and bioinduction of energy components of Jatrophacurcas.Biomass and Bioenergy,2002,23(3):161~164
    Balat M, Balat H.2009. Recent trends in global production and utilization of bio-ethanol fuel. AppliedEnergy,86:2273~2282.
    Baroudi JA, Dinavahi V, Knight AM.A review of power converter topologies for wind generators.RenewableEnergy,2007,32(14):2369~2385
    Bassam NE. Energy plant species: their use and impact on environment and development. James&James(Science Publishers) Ltd.,1998
    Bittermann H J. Beating the energy crisis in Germany-making the most of existing resources. World Pumps,2007(485):20(22):24~25
    Bugaje IM. Renewable energy for sustainable development in Africa: a review.Renewable and SustainableEnergy Reviews,2006,10(6):603~612
    Calcerrada J, PardosJ, Gil L, et al. Summer field performance of Quercus petraea (Matt.) Liebl and Quercuspyrenaica Willd seedlings, planted in three sites with contrasting canopy cover cover. New Forests,2007,33:67~80
    Campbell C J, Laherrere J H. The end of cheap oil. Scientific American, Mar.1998:78~83
    Cheng J, Cheng J, Shao H, et al.Soil seed banks and forest succession direction reflect soil quality inziwuling mountain loess plateau china.Clean-Soil,Air,Water,2012,213(2):197.
    Cheng S F, Hung C I, Yang IC.Exploring biomass energy of microorganisms using data miningmethods.Energy Conversion and Management,2011,52(2):1272~1279
    Curt M D, Sánchez G, Fernández J. The potential of Cynara cardunculus L.for seed oil production in aperennial cultivation system. Biomass and Bioenergy,2002,23(1):33~46
    De Vries BJM, van Vuuren DP, Hoogwijk MM.Renewable energy sources: Their global potential for thefirst-half of the21st century at a global level: An integrated approach.Energy policy,2007,35(4):2590~2610
    de Vries S C, van de Ven G W J, van Ittersum MK, et al.Resource use efficiency and environmentalperformance of nine major biofuel crops, processed by first~generation conversion techniques. Biomassand Bioenergy,2010,34(5):588~601
    Dodic S, Popov S, Dodic J, et al.Bioethanol production from thick juice as intermediate of sugar beetprocessing.Biomass and Bioenergy,2009,33(5):822~827
    Fairless D.2007. Biofuel: The Little Shrub That Could-Maybe. Nature,449(7163):652~655.
    Farrell A E, Plevin R J,Turner B T, et al.2006. Ethanol can contribute to energy and environmental goals.Science,311:506~508.
    Filgueiras A, Silva TMVe.Wind energy in Brazil-present and future.Renewable and Sustainable EnergyReviews,2003,7(5):439~451
    Frederick Jr W J, Lien S J, Courchene CE, et al.Production of ethanol from carbohydrates from loblollypine:A technical and economic assessment.Bioresource Technology,2008,99(11):5051~5057
    Frhlicha, Rice B. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial Cropsand Products,2005,21(1):25~311
    Guo D G, Zhang X Y, Shao H B,et al. Energy plants in the coastal zone of China:Category, distribution anddevelopment.Renewable and Sustainable Energy Reviews,2011,15(4):2014~2020
    Hepbasli A.A key review on exergetic analysis and assessment of renewable energy resources for asustainable future.Renewable and Sustainable Energy Reviews,2008,12(3):593~661
    Hoogwijk M, Graus W.Global potential of renewable energy sources: a literature assessment.Backgroundreport prepared by order of REN21. Ecofys, PECSNL072975,2008
    Hosamani K M, Hiremath V B, Keri R S.Renewable energy sources from Michelia champaca and Garciniaindica seed oils:A rich source of oil.Biomass and Bioenergy,2009,33(2):267~270
    Hossain A, Salleh A, Boyce AN,et al.Biodiesel fuel production from algae as renewable energy.AmericanJournal of Biochemistry and Biotechnology,2008,4(3):250~254
    I z E, Mehmet T K, Saral A, et al.Research on ethanol production and use from sugar beet inTurkey.Biomass and Bioenergy,2009,33(1):1~7
    Jain B.Commercialising biomass gasifiers:Indian experience.Energy for Sustainable Development,2000,4(3):72~82
    Jair G G,Guadalupe W L.2006. Edge effect on acorn removal and oak seedling survival in Mexican lowermontane forest fragments. New Forests,31:487~495.
    Jasinskas A, Zaltauskas A, Kryzeviciene A.The investigation of growing and using of tall perennial grassesas energy crops.Biomass and Bioenergy,2008,32(11):981~987
    Jensen SH, Larsen PH, Mogensen M.Hydrogen and synthetic fuel production from renewable energysources.International Journal of Hydrogen Energy,2007,32(15):3253~3257
    Kadam K L, Forrest LH, Jacobson WA.Rice straw as a lignocellulosic resource:collection, processing,transportation, and environmental aspects.Biomass and Bioenergy,2000,18(5):369~389
    Kibazohi O, Sangwan R S.Vegetable oil production potential from Jatropha curcas, Croton megalocarpus,Aleurites moluccana, Moringa oleifera and Pachira glabra:Assessment of renewable energy resourcesfor bio-energy production in Africa.Biomass and Bioenergy,2011,35(3):1352~1356
    Kline K L, Coleman MD.Woody energy crops in the southeastern United States:Two centuries of practitionerexperience.Biomass and Bioenergy,2010,34(12):1655~1666
    Koh LP, Ghazoul J.Biofuels, biodiversity, and people: Understanding the conflicts and findingopportunities.Biological Conservation,2008,141(10):2450~2460
    Li Z,Li G,Qin P.The prediction of ecological potential for developing salt-tolerant oil plants on coastal salineland in Sheyang Saltern,China.Ecological Engineering,2010,36(1):27~35
    Lowthe T S C, Slater FM, Randerson PF.Reducing the establishment costs of short rotation willow coppice(SRC) A trial of a novel layflat planting system at an upland site in mid~Wales.Biomass and Bioenergy,2010,34(5):677~686
    Lund H, Mathiesen BV.Energy system analysis of100%renewable energy systems-The case of Denmark inyears2030and2050. Energy,2009,34(5):524~531
    Lund H.Renewable energy strategies for sustainable development. Energy,2007,32(6):912~919
    Matías J, González J, Royano L, et al.Analysis of sugars by liquid chromatography-mass spectrometry inJerusalem artichoke tubers for bioethanol production optimization.Biomass and Bioenergy,2011,35(5),2006~2012
    McAlpine G.Wind and the US power crisis: Experiences of a wind power developer in the USA.Refocus,2001,2(5):14~17
    Meher Kotay S, Das D.Biohydrogen as a renewable energy resource-Prospects and potentials.InternationalJournal of Hydrogen Energy,2008,33(1):258~263
    Meng X, Yang J, Xu X,et al.Biodiesel production from oleaginous microorganisms.Renewable Energy,2009,34(1):1~5
    MIECHAEL D. Developing the bioenergy industry[J]. Biocycle international,2004,4:75~781
    Nilsson D, Bernesson S, Hansson P A.Pellet production from agricultural raw materials-A systemsstudy.Biomass and Bioenergy,2011,35(1):679~689
    Nuttall WJ, Manz DL.A new energy security paradigm for the twenty-first century. TechnologicalForecasting and Social Change,2008,75(8):1247~1259
    Okoro OI, Madueme TC.Solar energy investments in a developing economy.Renewable Energy,2004,29(9):1599~1610
    Openshaw K.A review of Jatropha curcas: an oil plant of unfulfilled promise.Biomass and Bioenergy,2000,19(1):1~15
    Rofiqul Islam M, Rabiul Islam M, Rafiqul Alam Beg M.Renewable energy resources and technologiespractice in Bangladesh.Renewable and Sustainable Energy Reviews,2008,12(2):299~343
    Rosenqvist H, Roos A, Ling E, et al.Willow growers in Sweden.Biomass and Bioenergy,2000,18(2):137~145
    Sage R F, Coiner H A, Way D A, et al.Kudzu [Pueraria montana (Lour.) Merr.Variety lobata]:A new sourceof carbohydrate for bioethanol production.Biomass and Bioenergy,2009,33(1):57~61
    Shao H, Chu L.Resource evaluation of typical energy plants and possible functional zone planning inChina.Biomass and Bioenergy,2008,32(4):283~88
    Sumathi S, Chai S, Mohamed A.Utilization of oil palm as a source of renewable energy inMalaysia.Renewable and Sustainable Energy Reviews,2008,12(9):2404~2421
    Tian Y, Zhao L, Meng H, et al.2009. Estimation of un-used land potential for biofuels development in China.Applied Energy,86: S77~S85
    Vande W I, Van C N, Van de C L, et al. Short rotation forestry of birch, maple, poplar and willow in Flanders(Belgium) I Biomass production after4years of tree growth. Biomass and Bioenergy,2007,31(5):267~275
    Vande W I, Van C N, Van de C L, et al.Short~rotation forestry of birch, maple, poplar and willow in Flanders(Belgium) I Biomass production after4years of tree growth. Biomass and Bioenergy,2007,31(5):267~275
    Visser E M, Filho D O, Martins MA, et al.Bioethanol production potential from Brazilian biodieselco~products.Biomass and Bioenergy,2011,35(1):489~494
    Wang S, Yuan P, Li D,et al.An overview of ocean renewable energy in China.Renewable and SustainableEnergy Reviews,2011,15(1):91~111
    Wright L, Turhollow A.Switchgrass selection as a "model" bioenergy crop:A history of the process.Biomassand Bioenergy,2010,34(6):851~868
    Yamada H,Tanaka R,Sulaiman O,et al.Old oil palm trunk:A promising source of sugars for bioethanolproduction.Biomass and Bioenergy,2010,34(11):1608~1613
    Yanbin L, Qingzhuang W, Xiaojie C.Power Crisis and the Corresponding Strategies.Energy Procedia,2011,5:1153~1157
    Yang B, Lu Y.The promise of cellulosic ethanol production in China.Journal of Chemical Technology&Biotechnology,2007,82(1):6~10
    Yang Y, Yi X. Partial acorn consumption by small rodents: implication for regene ratio of whiteoak,Quercusmongolica. Plant Ecology,2012:1~9.
    Yin W, Yin M,Zhao L,et al.Research on the Measurement of Carbon Storage in Plantation Tree Trunks Basedon the Carbon Storage Dynamic Analysis Method.International Journal of Forestry Research,2012:1~10.doi:10.1155/2012/626149.
    Zhu Y, Kang H, Xie Q et al. Pattern of leaf vein density and climate relationship of Quercus variabilispopulations remain sun changed with environmental changes. Trees-Structure and Function,2012,26(2):597~607
    Ziska L H, Runion G B, Tomecek M, et al.An evaluation of cassava, sweet potato and field corn as potentialcarbohydrate sources for bioethanol production in Alabama and Maryland.Biomass and Bioenergy,2009,33(11):1503~1508
    Zoulias E, Lymberopoulos N.Techno-economic analysis of the integration of hydrogen energy technologiesin renewable energy-based stand-alone power systems. Renewable Energy,2007,32(4):680~696
    卜兆君,王升忠,郎惠卿等.黄泥河自然保护区老白山南坡植被垂直带谱及其特点.山地学报,2003,21(01):80~84
    蔡苏英.麻栎壳天然色素棉织物的轧染工艺.印染,2010,23:22~24
    蔡志全,阮宏华,叶镜中.栓皮栎林对城郊重金属元素的吸收和积累.南京林业大学报,2001,25(1):18~22
    常吉梅,刘春霞.栓皮栎糖浆治疗恶性肿瘤的临床及实验研究.中国中医药科技,1999,6(4):211~212
    陈素传,肖正东,金笑龙,等.不同种源栓皮栎种子形态和营养成分差异分析.林业科技开发,2012,(1):17~21
    陈孝毓.闽北36年生栓皮栎人工造林效果调查.河北林果研究,1998(3):147~151
    陈友民.园林树木学.北京:中国林业出版社,1990:320~322
    程瑾瑞,肖治术,张知彬.包衣、埋藏的栓皮栎和枹栎种子在鼠类捕食下的存留.生态学杂志,2007,26(5):668~672
    程瑞梅,肖文发.河南宝天曼栓皮栎林群落特征及物种多样性.植物资源与环境,1998,7(4):8~13
    程序.能源牧草堪当未来生物能源之大任.草业学报,2008,17(03):1~5
    杜连起,李香艳.橡子的综合开发利用.林业科技开发,1996,(1):28~29
    杜连起.利用橡子酿制白酒.酿酒科技,1992,(4):3
    端木炘.我国栎属资源的综合利用.河北林学院学报,1994,9(2):177~181
    段宝利.不同种源栓皮栎水分生理生态特征及其对干旱胁迫适应.西北农林科技大学,2003,硕士论文
    费世民,张旭东,杨灌英.国内外能源植物资源及其开发利用现状.四川林业科技,2005,26(03):20~26
    傅焕光,于光明.栓皮栎栽培与利用.北京:中国林业出版社,1978,7~10
    傅坤俊.黄土高原植物志.科学技术文献出版社,1989
    高根虎,卢从祥.陕西省软木工业发展的优势及对策.陕西林业科技,2002(1):63~65
    高俊峰,张芸香.关帝山次生林区典型植物群落物种多样性垂直分布研究(英文).Journal of ForestryResearch,2006,17(02):111~115,172
    高志涛,吴晓春.蒙古栎地理分布规律的探讨.防护林科技,2005(02):75~84
    谷战英.林木生物质能源发展现状与前景的研究.经济林研究,2007,25(2):88~91
    郭圣茂,赖晓莲,彭仁,等.麻栎叶B2胡萝卜素提取工艺研究.食品与机械,2006,22(4):42~45
    郭武备.米醋酿造技术.农业科技与信息,1997,(5):39
    郭向昕,张洁,张成福等.区域和立地条件对麻栎生长的影响.吉林林业科技,2003,32(3):11~14
    韩全忠,孙玉峰,王淑云.仙人洞自然保护区植被的研究.辽宁师范大学学报:自然科学版,1992,15(02):139~149
    何瑞国,熊统安,汪康民等.野生经济植物资源橡籽仁可利用价值的研究.应用生态学报2000,11(2):196~198
    贺士元,邢其华,尹祖棠.北京植物志.北京出版社,1993
    侯颖,王继伟.以橡实为原料酿制保健白酒.酿酒,1996,(4):13
    华北树木志编写组.华北树木志.中国林业出版社,1980:204~205
    黄利群,陈四发,刘艳萍.橡子研究概况.氨基酸和生物资源,1998,(1):51~55
    黄诗铿.我国粮食供求态势与燃料乙醇原料选择.中国食物与营养,2006(04):36~38
    江泽平.麻栎(Quercus acutissima)、栓皮栎(Q.variabilis)及小叶栎(Q.chenii)的生态地理学.中国林业科学研究院,1991
    焦慧芳.历山保护区栓皮栎育苗及造林技术.安徽农学通报,2009,15(20):102~103
    雷静品,熊定鹏,刘建锋等.生境变化对栓皮栎幼苗营养元素含量的影响.应用生态学报,2012,23(06):1441~1446
    雷明德.陕西植被.科学出版社,1999:163~164
    李安平,谢碧霞,田玉峰等.橡实淀粉生料发酵生产燃料酒精工艺研究.中国粮油学报,2011,3:91~94
    李昌珠.生物柴油发展战略研究.湖南林业科技,2005,32(6):6~8
    李登武,刘国彬,张文辉.秦巴山地栓皮栎所在群落主要乔木树种种间联结性的研究.西北植物学报,2003,23(6):901~905
    李国雷,祝燕,蒋乐等.指数施肥对栓皮栎容器苗生长和氮积累的影响.东北林业大学学报,2012,40(11):6~9
    李健,邱治霖.山东省栎属植物资源与分布.山东林业科技,2000,(03):23~25
    李晋明,赵小敏,乐丽红.基于GIS和NFM的都阳湖地区经济林地的适宜性评价.林业科学,2012,48(3):154~159
    李军,吴平治,李美茹等.能源植物的研究进展及其发展趋势.自然杂志,2007,29(01):241~251
    李康球.栓皮及其应用.中国木材,1996,(4):40~42
    李蓉.麻栎内生真菌抗菌活性的研究.辽宁中医药大掌学报,2007,9(1):56~58
    李绍泉,郭长泰.辽宁老秃顶子国家级自然保护区植被研究.河北林果研究,2003,18(02):131~35
    厉月桥,汪泽军,吴志庄等.不同种源辽东栎种子表型性状与淀粉含量变异分析.安徽农业科学,2011,39(26):16170~16173
    刘彩云.栓皮栎种群结构与动态规律研究.南京林业大学,2008.
    刘春江.北京西山地区人工油松栓皮栎混交林生物量和营养元素循环的研究.北京林业大学学报,1987,9(1):1~9
    刘国华,方精云.我国栗属物种(Castaneamillissima)地理分布及其空间特征分析.生态学报,2001,21(1):164~170
    刘英杰,王亚丽,杨红明.栓皮栎控根育苗方法对苗木生长的影响研究.林业调查规划,2010,3(35)137~139
    刘玉萃,吴明作,郭宗民等.宝天曼自然保护区栓皮栎林生物量和净生产力研究.应用生态学报,1998,9(6):569~574
    刘昱君.发展林业生物质能源保障我国能源安全-访国家林业局植树造林司司长、国家林业局林业生物质能源办公室主任魏殿生.今日国土,2007,(05):8~14
    刘志龙,虞木奎,马跃等.不同种源麻栎种子和苗木性状地理变异趋势面分析.生态学报,2011,31(22):6796~6804
    卢正茂,吴耀先,于远斌等.麻栎不同更新方式栽后的生长表现.吉林林业科技,2003,32(5):18~20
    罗伟祥,郝怀晓,薛安平.橡树资源——优质林木生物质能源发展战略研究.生物质化学工程,2006,(S1):147~52
    罗伟祥,张文辉,黄一钊等.中国栓皮栎.北京:中国林业出版社,2009
    马莉薇,张文辉,薛瑶芹等.秦岭北坡不同生境栓皮栎实生苗生长及其影响因素.生态学报,2010,30(23):6512~6520
    漆民楷,陈红.栓皮栎薪炭林研究.四川林业科技,1992,13(1)72~76
    齐学军,孙岳胤,王书凯.东北地区以栎类资源培育燃料乙醇原料林发展途径的探讨.防护林科技,2011,(05):92~93
    千高峰.河南肿瘤学杂志.1990,3(2):1
    曲式曾,张文辉,李景侠.陕西南部栎林资源特征调查.西北林学院学报,1990,5(1):75~81
    全璟,辛霞,景新明.分子运动性预测麻栎种子离体胚轴适宜贮藏条件初探.生物物理学报,2006,22(4):290~296
    任莹,陈炳卿,刘颖等.橡子面拮抗铅毒性的作用及对微量元素的影响.中国食品卫生杂志,1996,(3):48~49
    邵泽坦.刺槐栓皮栎混交林调查报告.山东林业科技,1992,(3):33~35.
    沈琛琛,雷相东,王福有等.金苍林场蒙古栎天然中龄林竞争关系研究.林业科学研究,2012,25(03):339~345
    石元春.发展生物质产业.科技日报,2005
    石元春.中国生物质资源与产业化战略研究.中国工程院咨询项目报告,2006
    石元春.中国生物质资源与产业化战略研究.中国工程院咨询项目报告,2006
    史作民,刘世荣,程瑞梅.宝天曼地区栓皮栎林恢复过程中高等植物物种多样性变化.植物生态学报,1998,22(5):415~421
    树木学(南方本)编写委员会.树木学.北京:中国林业出版社,1994
    宋军,李伟,王军等.白石砬子山南北坡森林植被垂直分布的研究.辽宁林业科技,2005,(04):18~21,49
    宋绍军,王承义,郭树平.黑龙江省森工林区蒙古栎林资源分布特征.林业科技,2011,36(03):51~53
    宋轩,李树人,姜凤岐.长江中游栓皮栎林水文生态效益研究.水土保持学报,2001,15(2):76~79
    苏龙高娃,敖特根,萨仁高娃等.赛罕乌拉植物群落垂直分布研究.内蒙古草业,2009,21(04):13~16
    孙祥钟,王微勤,李清义.中国植物志(第8卷).北京:科学出版社,1992
    唐罗忠,虞木奎,严春风等.立地条件及抚育措施对麻栎人工林生长的影响福建林学院学报,2008,28(2):130~135
    唐宇丹.辽东栎和栓皮栎种子采后处理技术研究.第三届世界植物园大会论文集,2007
    田立功.麻栎种子小型冷库贮藏技术研究.河南林业科技,2007,27(2):19~20
    万泉.能源植物的开发和利用.福建林业科技,2005,32(02):1~5
    王标,虞木奎,王臣等.不同种源麻栎苗期生长性状差异及聚类分析.植物资源与环境学报,2008,17(4):1~8
    王继伟.橡子饼干的研制.食品工业科技,2002,(1):81~82
    王继伟.橡子挂面的研制.食品科学,2002,(3):95~96
    王金照,张文辉.不同生境下栓皮栎叶形态解剖的研究.西北林学院学报,2004,1(2):44~46
    王婧,王少波,康宏樟等.东亚地区栓皮栎的地理分布格局及其气候特征.上海交通大学学报:农业科学版,2009,27(03):235~241
    王娟,陈云明,曹扬等.子午岭辽东栎林不同组分碳含量与碳储量.生态学杂志,2012,31(12):3058~3063
    王俊河,李艳彩.唐山山区自然植物群落调查研究.北方园艺,2010(12):113~114
    王良民,任宪威,刘一樵.我国落叶栎的地理分布.北京林学院学报,1985,2(2):57~69
    王明庥.林木遗传育种学.北京:中国林业出版社,2001,125~170
    王涛.中国主要生物质燃料油木本能源植物资源概况与展望.科技导报,2005,23(5):12~14
    吴国江,刘杰,娄治平等.能源植物的研究现状及发展建议.中国科学院院刊,2006,21(1):532~571
    吴明作,姜志林,刘玉萃.栓皮栎种群年龄动态和稳定性关系研究.河南科学,1999,17(1):69~73
    吴明作,姜志林.栓皮栎种群的生命进程与稳定性研究.南京林业大学学报,1999,23(5):55~59
    吴明作,刘玉萃,姜志林.栓皮栎种群生殖生态与稳定性机制研究.生态学报,2001,21(2):225~230
    吴明作,刘玉萃.栓皮栎种群数量动态的谱分析与稳定性.生态学杂志,2000,19(4):23~26
    吴明作,杨玉珍.河南省栓皮栎林主要种群的生态位研究.西北植物学报,1999,19(3):511~518
    吴明作.栓皮栎研究进展.陕西林业科技,1998,4:65~69
    吴征镒.中国植被.北京:科学出版社,1980,261~262
    武康生.栓皮栎苗木的水分关系.北京林业大学学报,1990,12(3):26~33
    谢碧霞,陈训,张东林等.中国木本淀粉植物.北京:科学出版社,2008
    谢碧霞,谢涛.我国橡实资源的开发利用.中南林学院学报,2002,22(03):37~41
    谢会成,姜志林.栓皮栎蒸腾速率的日变化、季节动态及其对遮荫的响应.山东林业科技,2010,4:70~82
    谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响.山东林业科技,2004(2):6~7
    辛霞,景新明,孙红梅等.富含多酚的麻栎种子中蛋白质提取的探讨.林业科学,2007,43(2):27~30
    辛霞,林坚,景新明.壳斗科几种种子脱水和低温敏感性初探.种子,2007,26(3):10~13
    熊子书.橡子生长特征和酿酒研究的回顾.酿酒科技,1999,(6):21~23
    徐飞,郭卫华,徐伟红等.不同光环境对麻栎和刺槐幼苗生长和光合特征的影响.生态学报,2010,30(12):3098~3107
    徐秀梅.宁夏六盘山辽东栎林群落特征分析.宁夏农林科技,1997,(02):17~20
    严陆光.发展大规模非水能可再生能源积极构建我国能源可持续发展体系.中国软科学,2008,2:1~6
    颜启传.种子学.北京:中国农业出版社,2001:370~374
    杨保林,张文辉,周建云.秦岭北坡不同干扰条件下栓皮栎无性繁殖在其种群更新中的作用.东北林业大学学报,2010,10(38):27~29
    杨红旗,段群迷,黄桂等.矿区废弃地栓皮栎生长规律研究.河南科学,2002,20(2):157~160
    杨善友,李建军.生物质能产业创新的趋势和特点.中国科技论坛,2009,(04):133~36
    杨自立,马履一,贾忠奎等.栓皮栎播种苗年生长动态.东北林业大学学报,2012,40(05):9~12
    叶荣启,周仁禄,冯精华.闽北栓皮栎人工林土壤肥力与水源涵养功能的研究.福建林学院学报,1995,15(4):353~356
    叶永忠,王遂义,田朝阳等.河南栎林的研究.河南农业大学学报,1993,27(02):187~195.
    殷鸣放,刘清田,崔文山等.辽宁栎林资源状况及其保护利用构想.林业资源管理,2003,(06):19~22
    殷晓洁,周广胜,隋兴华等.蒙古栎地理分布的主导气候因子及其阈值.生态学报,2013,33(01):103~109
    尹长安,孙占朋,韩映辉.橡子对滩羊日粮消化率的影响.经济动物学报,1989,(1):12~15
    于成琦,侯昆,赵庆喜等.不同立地因子与麻栎生长的相关分析.吉林林业科技,2003,34(3):22~29
    曾麟,王革华.中国能源农林业的现状、意义及发展战略.农业工程学报,2006,S1(22):20~24
    《中国森林》编辑委员会.中国森林(第三卷)(阔叶林).北京:中国林业出版社,2003
    《中国森林立地类型》编写组.中国森林立地类型.北京:中国林业出版社.1991
    张彩霞,谢高地,李士美等.中国能源作物甜高粱的空间适宜分布及乙醇生产潜力.生态学报,2010,30(17):4765~4770
    张存旭,宋敏,赵忠.栓皮栎茎段离体培养的研究.西北植物学报,2004,24(7):1260~1265
    张存旭,宋敏,赵忠.植物生长调节物质对栓皮栎茎芽增殖和生长的影响.西北林学院学报,2004,19(2):64~66
    张存旭,姚增玉,赵忠.栓皮栎体胚诱导关键影响因素研究.林业科学,2005,41(2):174~178
    张存旭,张瑞娥,张文辉等.不同群体栓皮栎栓皮性状变异分析.西北林学院学报,2003,18(3):34~36
    张慧坚,谢龙莲.世界主要热带能源作物产销及科研概况.中国热带农业,2007,(05):27~29
    张金屯,孟东平.芦芽山油松-辽东栎林优势树种空间分布格局研究.西北植物学报,2006,26(08):1682~1685
    张理宏.栓皮栎扣杯直播造林技术.林业实用技术,1992,(4):26~27
    张丽丛,雷亚芳,常宇婷.栓皮栎软木主要化学成分的分析.西北林学院学报,2009,24(4):163~165
    张树杰,李登武,温仲明等.黄土高原地区辽东栎群落区系研究.水土保持研究,2005,12(01):22~25
    张文东.提高栓皮栎林分经营效益的技术实践.山西林业,2000,(5):22
    张文辉,段宝利,周建云等.不同种源栓皮栎幼苗水分适应及耐旱特性比较研究.西北植物学报,2003,23(5):728~734
    张文辉,段宝利,周建云等.不同种源栓皮栎幼苗叶片水分关系和保护酶活性对干旱胁迫的响应.植物生态学报,2004,28(4):483~490
    张文辉,李景侠.安康汉中地区栎林资源利用现状及分析.林业科技通讯,1989,(10):11~13
    张文辉,卢志军,李景侠等.陕西不同林区栓皮栎种群空间分布格局及动态的比较研究.西北植物学报,2002,22(3):476~483
    张文辉,卢志军.栓皮栎种群的生物学生态学特性和地理分布研究.西北植物学报,2002,22(05):1093~1101
    张文辉.陕西壳斗科植物研究(二).西北林学院学报,1989,4(01):1~9
    张艳芳.小陇山林区栓皮栎的育苗及造林技术.特种经济动植物,2009:131~132
    张仰渠.陕西森林.西安:陕西科学技术出版社,1989,235~240
    张耀甲.甘肃省壳斗科植物的分类与分布.西北民族学院学报:自然科学版,1999,20(02):23~30
    张永亮,王晓军,张文恒.中条山栓皮栎材种出材率表的编制与应用.山西林业科技,1997,(2):10~13
    张志国,史本林.我国能源植物发展现状及建议.现代农业科技,2009,(12):92~93
    赵丹,诸葛强,唐罗忠等.麻栎的组织培养与快速繁殖.中国农学通报,2010,26(15):168~171
    赵戈,段新芳,官恬等.世界软木加工利用现状和我国软木工业发展对策.世界林业研究,2004,17(5):47~55
    赵娟,宋媛,毛子军.蒙古栎幼苗光合作用以及叶绿素荧光对温度和降水交互作用的响应.北京林业大学学报,2013,(01):64~71
    郑均宝,于力,王德艺.影响栓皮栎等造林成活因素的研究.河北林果研究,1990,5(1):33~36
    郑万钧.中国树木志(第二卷).北京:中国林业出版社,1985.2198~2354
    郑志锋.软木资源开发及其利用.云南林业,2005,26(3):23
    中电新闻网.年我国生物质能产业发展年度报告.生物质化学工程,2011,46(3),58~59
    中国科学院中国植物志委员会.中国植物志第二十二卷.北京:科学出版社,1998
    钟昔阳,张景强.橡子凉粉的研制.食品科技,2002,(12):26~27
    周建云,郭军战,杨祖山.栓皮栎天然群体过氧化物酶同工酶遗传变异分析.西北林学院学报,2003,18(2):33~36
    周建云,李荣,张文辉等.不同间伐强度下辽东栎种群结构特征与空间分布格局.林业科学,2012,48(04):149~155
    周建云,杨祖山,郭军战等.栓皮栎优树选择标准和方法的初步研究.西北农林科技大学学报:自然科学版,2003,31(3):151~154
    周立红,孙启时,乔丽川.栓皮栎叶抗炎活性部位中化学成分的初步研究.沈阳药科大学学报,2000,17(3):179~181
    周立红.栓皮栎的生药学研究.沈阳:沈阳药科大学,2000
    周伟,夏念和.我国壳斗科植物资源—尚待开发的宝库.林业资源管理,2011,(2):93~96
    朱万泽,王金锡,罗成荣等.森林萌生更新研究进展.林业科学,2007,43(9):74~82
    朱志诚.秦岭北麓的栎林.陕西林业科技,1979,4:1~5
    朱志诚.陕北黄土高原上森林草原的范围.植物生态学与地植物学丛刊,1983,7(02):122~131
    祝业平,史本利,王颖等.老秃顶子植被垂直分布形成的原因初探.黑龙江生态工程职业学院学报,2008,21(05):36~38
    邹灵清.橡实替代日粮玉米喂猪试验研究.河南科技大学学报(农学版),1992,(1):33~36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700