用户名: 密码: 验证码:
Worldview-2八波段影像支持下的湿地信息提取与地上生物量估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,湿地资源作为一种与森林、海洋生态系统同样地位的重要自然资源,它的变化和可持续保护利用是地球科学核心内容的重要部分。利用遥感技术在湿地区域进行监测成为越来越重要的手段,可以解决湿地研究中一些科学问题,如湿地类型信息、湿地景观信息、湿地变化特征等。通过这些研究可以推动湿地区域生态资源保护和发展,从而保障政府对湿地保护工程和保护区建设的科学、正确的决策。
     本研究选取湖南省东洞庭湖湿地自然保护区核心区为研究对象,为了准确掌握东洞庭湖湿地核心区域的湿地资源情况,利用高分辨率影像WORLDVIEW-2数据,对湿地类型和湿地植被类型信息进行准确分类,并探索了湿地植被信息参数反演的研究方法,以经验模型和基于植被信息参数的湿地地上生物量估算模型来科学获取整个研究区的湿地资源状况。研究的主要工作如下:
     (1)湿地类型提取研究
     首先建立了研究区湿地类型信息提取分类的系统:河流湿地、湖泊湿地、草滩地(芦苇滩地、苔草滩地、辣蓼滩地、泥蒿滩地)、光滩地共四大类七小类。然后对WORLDVIEW-2数据进行了大气校正和几何精校正,分析该数据特有的光谱特征和波段特征,构建了四个改进遥感特征指数(改进归一化水体指数(NDWI*)、改进归一化植被指数(NDVI*)、改进归一化土壤指数(NDSI*)、非均匀差异指数(NHFD*)),采用这四个改进特征指数对湿地类型进行分层提取。精度验证结果表明湿地主要类型提取的精度达到92.24%,Kappa系数为0.902,比传统植被指数分层提取的结果提高了8%。针对湿地植被区域进行辅以波谱分析的Worldview-2影像面向对象湿地植被类型信息提取研究,利用光谱角阈值进行植被类型的阈值分割,在面向对象信息提取出湿地植被的细分类型,总体精度达到85%以上。
     (2)湿地植被信息反演研究
     对植被指数与叶面积指数(VI-LAI)的相关性进行了分析,然后选择了归一化植被指数(NDVI)、比值植被指数(RVI)、差值植被指数(DVI)、土壤调节植被指数(SAVI)、修正的土壤调节植被指数(MSAVI)、增强型植被指数(EVI)、重归一化植被指数(RDVI)七个植被指数作为VI-LAI的模型因子,然后采用多种回归模型(包括一元线性、二次多项式、三次多项式、指数模型、对数模型、幂函数模型)与LAI实测数据进行拟合分析,选取出这六种回归模型的最优因子,然后利用23组实测数据作为检验样本,最终确立了以NDVI为模型变量的指数模型是用于LAI估测的最优模型,精度达到了74.34%。
     利用WORLDVIEW-2数据特有的八波段光谱特性,以构建的改进归一化植被指数(NDVI*)进行NDVI-VFC植被盖度像元二分模型的构建,通过外业实测的数据得到模型估算精度为87.8%,并计算出研究区植被盖度为64.3%,生成了0-20%、20%-40%、40%-60%、60%-80%、80%-100%5级湿地植被覆盖分级图。实验证明,利用改进归一化植被指数(NDVI*)可以很好的估测湿地植被的盖度特征。
     为了更科学合理的计算湿地植被生物量特征,引入了跟植被生物量密切相关的植株结构参数的概念,包括了湿地植被的植株平均密度、平均高度、叶冠平均半径,选取了十八个遥感因子与植株参数这三个因子进行相关性分析,选取与苔草、辣蓼、芦苇、泥蒿的植株参数相关性较强的前6个因子参与到下一步的多元线性逐步回归过程,使用0.05≥P≥0.01作为阈值选择变量因子,当模型在出现了异方差性,影响了回归方程的准确性时,把该变量因子剔除,并最终得到了各植被类型指数参数的9组多元回归估测模型。数据表明估测总体精度都达到75%以上。构建的9组估测模型的R2和平均相对误差都在比较理想。
     (3)湿地地上生物量估算
     在进行LAI-AGBionmass模型拟建的过程中,分析叶面积指数与地上生物量的相关关系,将实地测量的35组地上生物量数据与LAI实测数据进行拟合,构建形如相对生长的模型形式(Y=aXb)的地上生物量估测模型。最终得到基于相对生长模型特征的LAI-地上生物量估算模型为:AGBiomass48.018LAI1.0278,研究结果表明,湿地植被的叶面积指数(LAI)与地上生物量具有高概率性规律,呈现出很强的稳定性和相关性,可以很好的估算出湿地植被地上生物量。
     在研建植被信息参数参与下的地上生物量估算模型时,将与地上生物量关系最密切的叶面积指数LAI、植被盖度(VFC)、植株平均密度(PD)、平均高度(PH)、叶冠平均半径(PLCR)引入,通过分析植被信息参数与地上生物量之间的相关性分析,建立了典型的苔草、辣蓼、芦苇、泥蒿的植被信息参数与地上生物量估算的最优模型,研究区范围的模型总体精度都达到了70%以上,最好的是芦苇地上生物量估算模型,估测值和实测值的评价模型判定系数达到0.7288,均方根误差为0.5121,平均相对误差为22.54%,即总体估测精度为77.46%。
     将研究的基于相对生长模型特征的LAI-AGBionmass模型地上生物量估算模型和植被信息参数参与下的地上生物量估算模型与运用最广泛的NDVI-Bionmass模型(即归一化植被指数方法)进行了生物量估算结果比较。结果表明,植被信息参数参与的地上生物量估算模型更加接近实测的结果,模型估算得到研究区地上生物量结果为12440.5294吨。
     通过上述研究,技术方法的创新点主要在以下几个方面体现:(1)构建了四种改进的遥感指数(NDWI*、NDVI*、NDSI*、NHFD*),实现了湿地类型有效区分,其结果比利用传统分类方法获取的结果精度大大提高。(2)提出了多指数特征和光谱特性为基础的多特征植株结构(PD、PH、PLCR)参数反演思路,采用了多元逐步线性回归分析法将十八个的特征因子进行模型拟合,确立了典型植被类型(苔草、辣蓼、芦苇、泥蒿)覆盖下的植株结构参数反演的敏感因子和最优模型。(3)构建了与生物量机理相关的相对生长模型形式(Y=aXb)的地上生物量估算模型。将与生物量关系最为密切的植被信息参数叶面积指数LAI、植被盖度(VFC)、植株平均密度(PD)、平均高度(PH)、叶冠平均半径(PLCR)引入到地上生物量估算中,构建了典型湿地植被信息参数参与的地上生物量估算模型。综上,利用WORLDVIEW-2高空间分辨率卫星影像对湿地区域进行类型信息提取、植被信息参数反演和生物量估算是可行的、准确的。通过研究得到的技术方法很好的拓宽了湿地遥感研究的内容。
Currently wetland resource is considered to be important the same as forest and marineecosystems and thus its dynamics and sustainable protection and utilization is of a majorconcern. Using remote sensing technology to monitor wetlands has become a more and morepowerful tool, which can solve some scientific problems we are facing in wetland research,such as wetland classification, wetland landscape mapping, wetland change detection and so on.Without doubt, the wetland study will promote the development of wetland ecological resourceprotection and therefore provide useful information for government's scientific and correctdecision making in wetlant protection and reservation development.
     This research selected a core area of the wetland nature reserve of Dongting Lake inHunan provice as the study area. In order to accurately obtain wetland resource information ofthe core wetland region, accurate and detailed wetland type and vegetation classification wasconducted using high resolution image WORLDVIEW-2images. Moreover, the methods toextract wetland vegetation biophysical parameters were explored. An empirical model and avegetation structure parameter based above-ground wetland biomass estimation model weredeveloped to obtain the information of the wetland resources. The important finding were asfollows:
     (1)Wetland lassification
     In this study, a refined wetland classification system was first developed, consisting offour classes at the first level and eight classes at the second level. At the first level, thewetlands were classified into river, lake, grassland, and mudflat. At the secodn level, thegrassland was divided into Reed, Sedge, Polygonum hydropiper l and Mud artemisia. Afteratmospheric and geometric corrections, the spectral and wavelength reflectance characteristicsof WORLDVIEW-2images were then analyzed and four modified spectral indices includingmodified NDWI, modified NDVI, modified NDSI and NHFD were developed. Using theindices, the wetland classification was made. The obtained accuracy of the wetland classification was92.24%with Kappa coefficient of0.902. Moreover, object-orientedclassification for the detailed wetland vegetation types was carried out based on segmentationof spectral angle threshold and the obtained overal classification accuracy was higher than85%.
     (2)Wetland vegetation structure parameter modeling
     Pearson product moment correlation between vegetation indices and leaf area index (LAI)was first analyzed. A total of seven vegetation indices including NDVI, RVI, DVI, SAVI,MSAVI, EVI and RDVI were selected as predictor variables of LAI. Various regression modelsincluding univariate linear regression model, polynomial (quadratic and cubic) models,exponential model, logarithmic model, and power regression model were used to fit the LAIdata and develop VI-LAI models. A sample consisting of23observations were employed forvalidating the models. The obtained optimal model to predict LAI was the NDVI basedexponential model with an accuracy of74.34%.
     After analyzing eight bands of WORLDVIEW-2images, a modified NDVI*basedvegetation fraction cover (VFC), NDVI*-VFC, was developed and this model was validatedusing the collected field observations. The obtained accuracy was87.8%. The overallvegetation fraction cover of the wetland region was64.3%. The VFC map was displayed withfive classes:0-20%,20-40%,40-60%,60-80%,80-100%. The results showed that the VFC ofthe study area could be accurately predicted using the modified NDVI*.
     In order to scientifically and reasonably predict vegetation biomass of the wetland region,the concept of plant structure parameters that have close relationship with vegetation biomasswas introduced, including average density PD, average height PHand average radius PLCRof theplants. In addition, the correlation analysis between each of eighteen image derived spectralvariables and each of the vegetation structure parameters were conducted and the first sixspectral variables having the highest correlation with vegetation structure parameters of sedge,red-knees herb, reed and artemisia selengensis were selected to develop linear stepwiseregression. The spectral variables were selected at a significant level of0.05. Whenheteroscedasticity appeared in a model and the quality of the regression model was dtramatically degraded, the spectral variable was removed. A total of9groups of multipleregression models were obtained. The results showed that the accuracy of all the models wereover75%. The obtained R2values and average relative errors of the estimates were reasonable.
     (3)Estimation of above-ground biomass for the wetland region
     The correlation between LAI and above-ground biomass was first analyzed. A total of35above-group biomass field observatons were then used to develop a relative growth model(Y=aXb) that accounts for the relationship of the above-ground biomass with LAI. The resultsshowed that the obtained:AGBiomass48.018LAI1.0278had a high correlation withabove-ground biomass. The relationship was stable and robust and can be used to accuratelyestimate above-ground biomass of the wetland vegetation.
     Moreover, vegetation structure parameters that were highly correlated with above-groundbiomass, including LAI, VFC, PD, PHand PLCR, were introduced into the above-groundbiomass regression models. Through correlation analysis of these predictor variables withabove-ground biomass, the optimal estimation models of biomass were obtained for typicalsedge, red-knees herb, reed and artemisia selengensis,respectively, with the accuracy of morethan70%. The reed above-ground biomass estimating model was the best, in which thecoefficint of determination was0.7288and root mean-square error was0.5121, averagerelative error was22.54%, and the overall accuracy was77.46%.
     In addition, the above vegetation structure parameter based biomass model was comparedwith the relative growth model and the widely used NDVI-based biomass model obtainedpreviously. The results show that the results from the vegetation structure parameter basedabove-ground biomass model were closer to the measurements and the estimate was12440.5294tons for the study region.
     Overall, this study led to the following innovations:(1) modifying four spectral indices(NDWI, NDVI, NDSI and NHFD) and greatly incraesing the accuracy of wetland classificationcompared with traditional classification methods;(2) putting forward a new idea with whhichvegetation structure parameters (PD、PHand PLCR) were introduced into estimation of wetland above-ground biomass and further using multivariate stepwise regression analysis method toseek the most important variables that were sensitive to the variation of wetland biomass and toobtain the optimal models for typical plant types (sedge, red-knees herb, reed and artemisiaselengensis); and (3) developing a relative growing model that is related to biophysicalmechanism and introducing LAI, VFC, PD, PHand PLCRwhich had close relationship withbiomass into biomass estimation to develop the vegetation structure parameter basedabove-ground biomass model. In a word, this study showed that using WORLDVIEW-2highspatial resolution imagery to perform wetland classification and information extraction,vegetation structure parameter inversion and biomass estimation was practical and the obtainedresults were accurate. The obtained methods through this research greatly enhanced the contentof wetland remote sensing research.
引文
Allan Crowe.Quebec2000: Millennium Wetland Event Program with Abstracts[A]. Quebec,Canada[C],ElizabethMacKay,2000:1-256.
    Amanda L.Azous and Richard R.Horner. Washington2000: Wetland and Urbanization:implication for thefuture [A].2000:1-325.
    Batty,Xie,Y.Modeling inside GIS:Part1:Model structures,exploratory spatial analysis[J].InternationalJournal of GeograPhicInformation Systems,1994,8(3):291-307.
    Blackburn GA. Quantifying ChloroPhylls and Caroteniods at Leaf and Canopy Scales: An Evaluation ofSome Hyperspectral Approaches [J]. Remote Sensing of Environment,1998,66(2):273-285.
    Boyd D S, Goody G M, Curran P J. The relationship between the biomass of Cameroonian tropical forestsand radiation reflected in middle infrared wavelength(3.0-5.0mum)[J].International Journal of RemoteSensing,1999,20(5):1017-1023.
    Brinson M.A hydrogeomorPhic c1assification for wetlands.Wetlands research Program technical reportWRP[R].DLR U.S Army Engineers waterways Experiment Station,Vicksburg,M.S.1993.
    C.M.Finlayson,N.Rea. Reasons for the loss and degradation of Australian wetlands. Wetlands Ecology andManagement[J],1999,7(1-2):1-11.
    Chen Xu exia,Vi erli ng Lee,Row ell Eric. Usin g lid ar and effective LAI dat a to eval uate IKONOS andLandsat-ETM+vegetation cover est im ates in a ponderosa pi ne forest[J]. RemoteSensing of Environment,2004,91:14-26.
    Chris Wright,Alisa Gallant. Improved wetland remote sensing in Yellowstone National Park usingclassification trees to combine TM imagery and ancillary environmental data. Remote Sensing ofEnvironment,2007,107(4):582-605.
    Cloude S R and Papathanassiou K P. Three-stage inversion Process for polarimetric SAR interferometry [J].IEE Proceedings Radar, Sonar&Navigation,2003,150(3):125-134.
    Cobb D.A.,Olivero A. Online GIS services [J]. Academic Librarianship.1997,23(6):484-507.
    CostaM.P.F,Niemann O,Novo E,Ahern F1BioPhyical Properties and Mapp ing of Aquatic Vegetationduring the Hydrological Cycle of Amazon Floodp lain Using JERS–1and Radarsat [J], Internationalof Journal of Remote Sensing,2002,23:1401-14261.
    Couclelis,From H..Cellular automata to urban models:new Principles for model development andimplementation[J].Environment and Planning B:Planning and Design,1997,24(2):165-174.
    Curran P J,Dungan J L,Gholz H L.Seasonal LAI in slash pine estimated with Landsat TM[J].RemoteSensing of Environment,1992,39:3-13.
    Dengsheng,Mateus BATISTELLA.ExploringTM image texture and its relationships with biomassestimation in Rond6ia,Brazilian Anlazon[J].Acts Amazonica,2005,35(2):261-268.
    Desnos Y L. POL-INSAR Achievements and Plans[R].Pol-InSAR,Frascati,Italy,26-31Jan,2009:1-27.
    Dobson M C,Pierce L E,Ulaby F T.Knowledge based Land cover Classification using ERS-1/JERS-1SAR Composites Melon P,Martinez JM,ToanT L,eta1.Ontheretrieving of forest stem volume fromVHF SAR data:observation and modeling[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2364-2372.
    Eastwood J A,Yates M G, Thomson A G, et al. The Reliability of Vegetation Indices for MonitoringSaltmarsh Vegetation Cover[J].International Journal of Remote Sensing,1997,18(18):3901-3907.
    GRAETZ R D,Pech R R,Davis A W.The assessment and monitorings of sparsely vegetate rangelands usingcalibrated landsat data[J].International Journal of Remote Sensing,1988,9:1201-1222.
    Hamed K H.Trend detection in hydrologic data: The Mann-Kendall trend test under the scalinghypothesis[J].Journal of Hydrology,2008,349:350-363.
    Haralick R M.Statistical and Structural ApProaches to Texture [J].Proceedings of the IEEE,1993,67:786-804.
    Harrell P A,Bourgeau—Chavez L L,Kasisehke E S,et a1.Sensitivity of ERS-1and JERS-1radar data tobiomass and stand structure in Alaskan Boreal Forest[J].Remote Sensing of Environment,1995,(54):247-260.
    J.H. Ryu and J.S. Won, Application of Neural Networks to Waterline Extraction in Tidal Flat from OpticSatellite Images,2002,Proceedings IGARSS'2002,Toronto,Canada.
    Jean-Robert B,Bwangoy,Matthew C.Wetland mapping in the Congo Basin using optical and radar remotelysensed data and derived topograPhical indices[J].Remote Sensing of Environment,2010,114(1):73-86.
    Jensen.J.R,K.Rutchey. Narumalani1995Inland wetland change detection in the Everglades WaterConservation Area2A using a time series of normalized sensed data[J]. Photogrammetric Engineeringand Remote Sensing,1995,61:199-209.
    Jiang J,Zhang D,Fraedrich K. Historical Climate Variability of Wetness in East China(960-1992):AWavelet Analysis[J].Int.J.Ciim.1997,17(2):968-981.
    Jones P,Wigley T,Wright P.Global temperature variations between1861and1984[J]. Nature,1986,322:430-434.
    Kasischke E S, Bourgeau-Chavez L L.Monitoring south Florida wetland using ERS-1SAR imagery.Photogram metric Engineering and RemoteSensing,1997(63):281-291.
    Keuchel J,Naumann S,Heiler M.Automatic land cover analysis for Tenerife by supervised classificationusing remotely sensed data [J].Remote Sensing of Environment,2003,86(4):530-541.
    Kloiber, S.M., Brezonik, P.L. and Bauer, M.E. Application of Landsat imagery to regional-scaleassessments of lake clarity. Water Research.2002.36:4330-4340.
    Konstanze Kleinod,Michael Wissen,Michael Bock.Detecting vegetation changes in a wetland area inNorthern Germany using earth observation and geodata[J].Journal for Nature Conservation,2005,13(2):115-225.
    Kovacs J.M,Flores-Verdugo F,Wang J.F.Estimating leaf area index of a degraded mangrove forest usinghigh spatial resolution satellite data[J]. Aquatic Botany,2004,80(1):13–22.
    Li Ting-wei, Liang Dian-nong, and Zhu Ju-bo. A review of inversion of the forest height by polarimetricinterferometric SAR [J]. Remote Sensing Information,2009,3:95-101.
    Li.J,M.Narayanan.Integrated spectral and spatial information mining in remote sensing imagery[J]. IEEEtransactions on geoscience and remote sensing.2004,42,(3):673-685.
    LUCH,VAN I M K,RABBINGE R A scenario exploration of strategic land use options for the LoessPlateau in northern China[J].Agricultural Systems,2004,79:145-170.
    Macleod, R.D, R.G.Congalton, A Quantitative Compsarison of Change-Detection Algorithms forMonitoring Eelgrass from Remotely Sensed Data[J]. Photogrammetric Engineering&Remote Sensing,1998,64(3):207-216.
    Martin Schlerf,Clement Atzberger,Joachim Hill.Remote sensing of forest bioPhysical variables usingHymap Imaging Spectrometer data[J].Remote Sensing of Environment,2005,95(2):117-194.
    Menges C H,Bach C,Hosking J.Land Cover Discrimination in A Wetland Environment Using TopSARData[A].In:Geoscience and Remote Sensing Symposium[C].New York:IEEE Press.2001,3:1409-1411.
    Mercer B, Zhang Qing, and Schwaebisch M. et al.Forest height and ground topograPhy at L-band from anexperimental single-pass airborne Pol-InSAR system[R].Pol-InSAR:Frascati,Italy,26-31Jan.,2009:28-54.
    Mette T, Kugler F, and Papathanassiou K P, et al..Forest and the random volume over ground nature andeffect of possible error types[C]. EuSAR,Dresden,Germany,16-18May,2006:158-163.
    Moreau S, Toan T L. Biomass Quantification of Andean Wetland Forages Using ERS satellite SAR date foroptimizing livestock Management[J]. International Journal of Remote Sensing,2003,84:477-492.
    Moreau S,Toan T L.Biomass quantification of Andean wetland forages using ERS satellite SAR data foroptimizing livestock management.Remote Sensing of Environment,2003,(84):477-492.
    Moses Azong Cho,Andrew Skidmore,Fabio Corsi,Sipke E.Van Wierrn,Istiak Sobhan.Estimation of greengrass/herb bionmass from sirbome hyperspectral imagery useing spectral indices and partial leastsquares regression[J].International of Journal of Applied Earth Observed and Geoninformation,2007(9):414-424.
    MunyatiC.Wetland Change Detection on the Kafue Flats,Zambia,by Classification of A MultitemporalRemote Sensing Image Dataset[J].Int J Remote Sensing,2000,21(9):1787-1806.
    Murray M.R,Zisman S.A, Furley P.A. The mangroves of Belize: Part1.distribution, composition andclassification[J],Forest Ecology and Management,2003,174:265-279.
    Narasimha R PV,Sesha SM V R,SreenivasK.Textural Analysis of IRS-1D Panchromatic Data for LandCover Classification[J].International Journal of Remote Sensing,2002,23(17):3327-3345.
    Nemmour H,Chibani Y. Multiple support vector machines for land cover change detection: An applicationfor mapping urban extensions [J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,61(2):125-133.
    Newman S.,Reddy K. R.,DeBusk W.F.,et al. Spatial distribution of soil nutrients in a Northern EvergladesMarsh: Water Conservation Area [J].Soil Sci. Soc.Am.1997,61:1275-1283.
    Nyoungui A N di,Tonye E,AkonoA.Evaluation of Speckle Filtering and Texture Analysis Methods for LandCover Classification from SAR Images [J].International Journal of Remote Sensing,2002,23(9):1895-1925.
    Ohanian P P, Dubes R C.Performance Evaluation for Four Class of Texture Features [J].PatternRecognition,1992,25(8):819-833.
    Paul L.A.Erftemeijer. A new technique for rapid assessment of mangrove degradation: a case study ofshrimp farm encroachment in Thailand[J]. Trees-Structure and Function.2002,16,(2-3):204-208.
    Peddle D R,Franklin S E.Image Texture Processing and Data Integration for Surface Pattern Discrimination[J].Photogrammetric Engineering and Remote Sensing,1991,57(4):413-420.
    Philip A. Townsend,StePhen J. Walsh,Remote sensing of forested wetlands:application of multitemporaland multispectral satellite imagery to determine plant community composition and structure insoutheastern USA[J].2001,129-149.
    Philip A. Townsend,StePhen J. Walsh,Remote sensing of forested wetlands: application of multitemporaland multispectral satellite imagery to determine plant community composition and structure insoutheastern USA[J].2001,129-149.
    Qi J,Marsett R C,Moran M S,et al.Spatial and Temporal By namics ofVegetationinthe San Pedro RiverBasinArea[J].Agricultural and Forest Meteorology,2000,105:55-68.
    Ramírez-García. P, López-Blanco J,Oca.Mangrove vegetation assessment in the Santiago River Mouth,Mexico,by means of supervised classification using Landsat TM imagery[J]. Forest Ecology andManagement,1998,105(1-3):217-229.
    Sader S.A.,Bertrand M.,Wilson E.H.Satellite Change Detection of Forest Harvest Patterns on an IndustrialForest Landscape[J]. Forest Science,2003,49(3):341-353.
    Saich P.Thompson J R.Rebelo L M.Monitoring Wetland Extent and Dynamics in the Cat Tien National Park,Vietnam.Using Space based Radar Remote Sensing[A].In: Geoscience and Remote SensingSymposium[C].New York:IEEE Press.2007:3O99-3109.
    Sandmeier.Sensitivity Analysis and Quality Assessment of Laboratory BRDF Data[J].Remote SensingEnvironment,1998,64(4):176-191.
    Shashany M, Lavee K P.Monitoring temporal vegetation coyer changes in mediterranean and aridecosystems using a remote sensing technique:case study of the judean mountain and judeandesert[J].Journal of Arid Environments,1996,33(1):9-21.
    STEVEN A,DOUGLAS A,LIOU W Accuracy of Landsat-TM and GIS rule-based methods for forestwetland classification[J].Remote Sensing of Environment,1995,53:133-144.
    Tan Lu-lu and Yang Ru-liang. Investigation on tree height retrieval with polarimetric SAR interferometry[C].IGARSS,Boston, Massachusetts,USA,6-11July.,2008:546-549.
    Xiong Tao, Zhou Guang-yi, Yang Jian, et al.Volume coherence estimation for random forest heightretrieval based on POL-In SAR data[C]. IGARSS, Boston,USA,6-11July.,2008:217-220.
    Zhang Huaiqing,Zhu Xiaorong,Study on the Dynamic Monitoring and Succession Analysis of WetlandTypes in Dongting Lake Area,Proccedings of the2nd IEEE International Conference on ComputerScience and Information Technology,2009IEEE, vol.3, pp.223-227
    柏军华,李少昆.基于近地高光谱棉花生物量遥感估算模型[J].作物学报,2007,33(2):311-316.
    陈定贵,周德民,吕宪国等.三江平原洪河自然保护区湿地遥感分类研究[J].遥感技术与应用,2007,22(4):485-4911.
    陈良富,高彦华,程宇,卫征等.基于CBERS-02卫星数据和地面测量的生物量估算及其影响因素分析.中国科学E辑,2005,35(B12):113-124.
    邓劲松,王珂.决策树方法从SPOT-5卫星影像中自动提取水体信息研究[J],浙江大学学报,2005,31(2):171-174.
    第一财经日报.《中国湿地保护真相调查》,2012.http://www.yicai.com/news/2012/02/1414117.html.
    董磊,廖静娟,沈国壮·基于神经网络算法的多极化雷达数据估算鄱阳湖生物量·遥感技术与应用,2009,24(3):325-330.
    杜强,贾丽艳.SPSS统计分析从入门到精通.北京:人民邮电出版社,2009,150-278.
    方全兴,孙振华.上海市湿地资源调查中的遥感技术应用[J].2001(3),25-29.
    冯宗炜,陈楚莹,邓仕坚等.湖南会同两个森林群落的生物生产力[J].植物生态学与地植物学丛刊,1982,6(4):257-266.
    冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    高占国,张利权.盐沼植被光谱特征的间接排序识别分析[J].国土资源遥感,2006(02):51-56.
    管玉娟,张利权.影像融合技术在滩涂湿地植被分类中的应用[J].海洋环境科学,2008,27(6):647-652.
    何春光,崔丽娟,石川忠晴.洪泛区湿地水面积遥感监测新方法研究--以向海自然保护区为例[J],东北师大学报(自然科学版),2006,38(1),108-113.
    侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究[J].地理学与国土研究,2002,18(3):105-107.
    黄春燕,王登伟,曹连莆等.棉花地上鲜生物量的高光谱估算模型研究[J].农业工程学报,23(3):131-135.
    黄华梅,张利权,高占国.上海滩涂植被资源遥感分析[J].生态学报,2005,25(10):2686-2693.
    黄华梅,张利权.上海九段沙互花米草种群动态遥感研究[J].植物生态学报,2007,31(1):75-82
    胡晓华.东洞庭湖湿地权属问题研究.2007,湖南大学.
    贾立,奚歌,刘绍民.基于MODIS影像的黄河三角洲湿地蒸散量的估算研究[J],第三届黄河国际论坛论文集,2007.
    黎夏,叶嘉安,王树功等.红树林湿地植被生物量的雷达遥感估算.遥感学报,2006,10(3):387-396.
    李芳芳,贾永红.一种基于TM影像的湿地信息提取方法及其变化检测[J].测绘科学.2008,33(2):147-149.
    李健,舒晓波.基于IAndsat-TM数据鄱阳湖湿地植被生物量遥感监测模型的建立[J].广州大学学报(自然科学版),2005,(4):32-38.
    李仁东,刘纪远.应用LandsatETM数据估算鄱阳湖湿生植被生物量.地理学报,2001,56(5):532-540.
    李爽,张祖陆,周德民.湿地植被地上生物量遥感估算模型研究-以洪河湿地自然保护区为例[J].地理研究,2011,30(2):279-290.
    李廷伟,黄海风,梁甸农等.三层植被极化干涉建模及参数反演新方法研究[J].红外与毫米波学报,2011,04:333-338.
    李廷伟,梁甸农,朱炬波.极化干涉SAR森林高度反演综述[J].遥感信息.2009,3:85-91.
    李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981:34-50.
    李小文.汪骏发等.多角度与热红外对地遥感[M].科学出版社.2001〔2〕.
    李旭文,季耿善,杨静.太湖梅粱湖蓝藻生物量遥感估算.国土资料遥感,1995,2(2):23-28.
    凌成星、鞠洪波,张怀清等.基于Worldview-2数据的东洞庭湖湿地区域植被盖度估算研究[J].科学技术与工程,2012a,29:7515-7520.
    凌成星、鞠洪波,张怀清.湿地资源遥感动态监测和管理应用综述[J].安徽农业科学,2012b,40(28):14111-14115.
    刘红玉,吕宪国,张世奎.湿地景观变化过程与累积环境效应研究进展[J].地理科学进展,2003,22(1):60-70.
    刘瑜,韩震.基于遥感的长江口南汇潮滩植被群落时空动态变化[J].上海海洋大学学报,2009,18(5):579-585.
    刘占宇,黄敬峰,吴新宏等.草地生物量的高光谱遥感估算模型[J].农业工程学报,2006,22(2):15-19.
    骆知萌,田庆久,惠凤鸣.用遥感的方法计算森林LAI[J].南京大学学报,2005,41(3):253-258.
    那晓东,张树清.基于决策树方法的淡水沼泽湿地信息提取-以三江平原东北部为例[J].遥感技术与应用.2008,23(4):365-372.
    牛志春,倪绍祥.青海湖环湖地区草地植被生物量遥感监测模型.地理学报,2003,58(5):695-702.
    潘维俦,李利村,高正衡等.杉木人工林生态系统的生产量及其生产力的研究[J].中南林业科技,1979,(4):2-14.
    浦瑞良,宫鹏,John R.Miller.美国西部黄松叶面积指数与高光谱分辨率CASE数据的相关分析[J].环境遥感,1993,8(2):112-125.
    乔平林,张继贤,李海涛等.水库容水量遥感监测方法研究[J],测绘科学,2003,28(3):55-57.
    孙久虎,刘晓萌,李佑钢等.北运河地区植被覆盖的遥感估算及变化分析[J].水土保持研究,2006,13(6):97-99.
    孙玉梅,郝素贞,张义文.利用RS和GIS技术对南大港湿地类型的调查研究[J].河北师范大学学报(自然科学版),2003,05:523-526.
    谈璐璐,杨立波,杨汝良.合成孔径雷达简缩极化干涉数据的植被高度反演技术研究[J].电子与信息学报,2010,32(12):2814-2819.
    唐延林,王人潮,黄敬峰等.不同供氮水平下水稻高光谱及其红边特征研究[J];遥感学报;2004,8(2):185-192.
    童庆禧,郑兰芬.湿地植被成象光谱遥感研究·遥感学报,1997,1(1):50-57.
    王臣立,郭治兴,牛铮等.热带人工生物物理参数及生物理对RADAHSAT SAR信号响应研究[J].生态环境,2006,15(1):l15-l19.
    王红娟,姜加虎,黄群.基于知识的洞庭湖湿地遥感分类方法[J].长江流域资源与环境.2008,17(3):370-373.
    王庆,廖静娟.基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演[J].地球信息科学学报,2010,2:282-291.
    王宪礼,布仁仓,胡远满等.辽河三角洲湿地的景观破碎化分析[J].应用生态学报,1996,7(3):299-304.
    王秀珍,黄敬峰,李石梅等.水稻叶而积指数的多光谱遥感估算模型研究[J].遥感技术与应用,2003,18(2):57-65.
    韦顺军,张晓玲.基于分类统计的PolInSAR植被高度最大似然估计[J].现代雷达,2009(11):60-63.
    武红敢,乔彦友,陈林洪等.马尾松林叶面积指数动态变化的遥感监测研究[J].植物生态学报,1997,21(5):485-488.
    席建超,张红旗,张志强.应用遥感数据反演针叶林有效叶面积指数[J].北京林业大学学报,2004,26(6):36-39.
    夏学齐,田庆久,杜凤兰.遥感提取叶面积指数的地形影响分析[J].遥感信息,2004(2):16-19.
    新华网.《世界湿地日:湿地和水资源管理》,2013.http://news.xinhuanet.com/world/2013-02/01/c
    _114584021.html.
    许全芝,张万昌,等.黑河流域叶面积指数的遥感反演[J].干旱区研究,2003,20(4):281-285.
    杨永兴.从魁北克2000-世纪湿地大事件活动看21世纪国际湿地科学研究的热点与前沿.地理科学,2002.22(2):150-156.
    杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展,2002,22(2),111-120.
    杨永兴.国际湿地科学研究进展和中国湿地科学研究优先领域、展望.地球科学进展,2002,22(4):508-514.
    衣伟宏,杨柳.基于ETM+影像的扎龙湿地遥感分类研究[J].2004,2(3):208-212.植物冠层仪LAI-2000使用说明书,2009.
    张建奇,朱长纯,方小平等.湿润地表红外辐射统计特性和热图像空间结构[J].西安电子科技大学学报,1999,1:53-57.
    张霞,刘良云,赵春江等.利用高光谱遥感图像估算小麦氮含量[J].遥感学报,2003(3):176-181.
    张怀清,朱晓荣等,退田还湖工程前后洞庭湖区湿地变化分析,林业科学研究,2009,22(3):309-314
    章仲楚,张秀英.基于RS和GIS的西溪湿地景观格局变化研究[J].2007,27(4):38-41.
    钟文君,兰樟仁..基于高空间分辨率遥感影像的湿地信息提取技术研究[J].云南地理环境研究,20O7,19(5):134-139.
    朱晓荣,张怀清,周金星等东洞庭湖湿地遥感动态监测技术研究,林业科学研究,2008,21(z):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700