用户名: 密码: 验证码:
基于水稻SSSLs的耐逆抗病基因(QTL)鉴定及育种利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用水稻两系骨干亲本,测序品种9311(籼稻)为受体亲本,日本晴(Nipponbare,粳稻)为供体亲本构建的92个单片段代换系(SSSLs),对水稻耐冷性、耐旱性、稻瘟病和稻曲病抗性进行了分析,并进行了耐(抗)逆基因(QTL)鉴定和育种利用研究,结果如下:
     1、在芽期和苗期对SSSLs和亲本分别进行4℃和13℃/7℃(白天/晚上)低温处理,以处理后的芽期恢复成活率和苗期卷叶程度作为耐冷性评价指标。结果表明,日本晴芽期和苗期耐冷性极显著强于9311,不同SSSLs芽期和苗期耐冷性存在极显著差异,有4个代换系芽期耐冷性较强(SSR%>70.00%),6个代换系苗期耐冷性(NLR%>60.00%)较强,粳稻耐冷基因的导入增强了9311耐冷性。芽期和苗期耐冷性均较好的代换系X724和X733较好地保持了9311的农艺性状,产量等性状GCA优于9311,所配组合比对照增产2.58%-9.42%。鉴定出17个芽期耐冷QTL和5个苗期耐冷QTL,分布于12条染色体上的20个代换片段中,第12染色体的RM519和RM17区域同时检测出芽期和苗期耐冷QTL;芽期耐冷QTL qCTP9、qCTP11.2、 qCTP12.1和苗期耐冷QTL qCTS1.1、qCTSl.2具有较大加性效应,为主效耐冷QTL,对应代换系耐冷性较强。
     2、利用田间直接鉴定法对SSSLs和亲本进行耐旱性鉴定,在干旱胁迫下,SSSLs及亲本的株高、穗粒数、有效穗、结实率、千粒重和单株产量显著下降,生育期显著延长,但不同SSSLs受影响程度不同。以结实率和单株产量作为耐旱性筛选指标,有25个SSSLs耐旱性强于受体亲本9311,耐旱株系X699、X705和X707综合农艺性状优良,且产量相关性状GCA优于对照,可作为耐旱亲本应用于耐旱两系杂交水稻选育。共检测出47个干旱条件下农艺性状QTL和31个与各性状耐旱性相关的QTL,分别定位于水稻12条染色体上的30个染色体区域。耐旱QTL qRPN4、qRPN5、 qRPN12.1qRSSR9和6个产量耐旱QTL为主效耐旱QTL位点。此外,第4染色体的RM16792-RM185区域,第5染色体RM421-RM31区域,第6染色体RM141区域,第9染色体RM410-RM201区域,第12染色体RM1261-RM519区域存在多个性状耐旱QTL,这些成蔟在同一区域的多个QTLs,可能是一因多效或紧密连锁的基因效应。
     3、采用田间自然诱发鉴定的方法,在四川省稻瘟病和稻曲病常发区,对SSSLs和亲本进行抗病性鉴定。结果表明,供体亲本日本晴稻瘟病和稻曲病抗性均优于受体亲本9311。不同SSSL对稻瘟病和稻曲病的抗性不同,有3个代换系在两个鉴定点表现出较强的稻瘟病抗性,同一材料在两个试验点稻瘟病鉴定结果具有相对一致性(r=0.325**)。有7个代换系稻曲病抗性较强(病穗率均为0)。抗稻瘟病株系X565,抗稻曲病株系X723综合农艺性状优良,所配组合表现出较强的杂种优势,可作为优良的抗病杂交稻亲本用于抗病品种选育。以病穗率为抗性表型值,共检测出11个稻瘟病抗性QTL和8个稻曲病抗性QTL,分别位于除第6、10、11染色体外的9条染色体上。其中,稻瘟病抗性位点qBR1.3和qBR5同时在两个鉴定点被检测到,稳定性较强,加性效应较大,为主效QTL位点。稻曲病抗性QTL qFSR2与稻瘟病抗性QTL qBR2.1位同一代换系的相同代换片段中,且均为负效应位点,代换系同时具有较强的稻曲病和稻瘟病抗性增强,对应代换系稻瘟病和稻曲病病穗率分别为14.59%和0,比对照9311极显著降低,为多抗位点;qFSR9.1和qBR9也同时存在于同一代换系的同一代换片段中,但效应方向相反,代换系稻曲病病穗率较对照9311增加150.94%,稻瘟病病穗率降低89.32%。
In this research, we have generated92SSSLs using the two sequenced rice varieties (indica rice cultivar9311and japonica rice cultivar Nipponbare) as recurrent and donor parents, respectively. On this basis, cold tolerance and drought tolerance of rice, rice blast and false smut disease resistance were analyzed, and we identified several resistance genes (QTLs), and studied the application of those materials in rice breeding.The main results were as follows:
     1. We treated SSSLs and parents in the condition of4℃and13℃/7℃(day/night) at plumule and seedling stages respectively, and took Survival Seedling Rate (SSR%) and Normal Leaves Rate (NLR%) as the indexes for cold tolerance evaluation. As a result, the cold tolerance of Nipponbare was highly significant better than9311at both plumule stage and seedling stage, and the cold tolerance of different SSSLs was significantly different. The SSSLs, including X709, X712, X686, and X729, had a strong cold tolerance at the plumule stage, and the SSR>70.00%. The SSSLs (X404, X634, X649, X732, X733, and X738) had a strong cold tolerance at seedling stage, and the NLR>60.00%. Therefore, the introgression of japonica segments into those SSSLs could enhance its cold tolerance. X724and X733, which had a superior cold tolerance at both plumule stage and seedling stage, maintained the9311elite agronomic traits, meanwhile, have higher GCA of yield trait than9311. In this research, we totally identified17QTLs with cold tolerance at the plumule stage, and5QTLs with cold tolerance at the seedling stage, which were located on20segments distributed on12chromosomes. Among these, we detected a cold tolerance QTL at plumule stages and seedling stages simultaneously between RM519and RM17on chromosomes12; the QTLs with cold tolerance at the plumule stage (qCTP9, qCTP11.2, qCTP12.1) and the QTLs with cold tolerance at the seedling stage (qCTS1.1and qCTS1.2) had a significant additive effect, and the corresponding substitution lines had a strong cold tolerance at9311background.
     2. We evaluated the drought tolerance of the SSSLs and parents in field, and found that the plant height, grain number, effective panicle number, seed setting rate, grain weight and yield per plant of the SSSLs and parents were significantly decreased under the condition of drought stress, but the significantly differences for drought tolerance was found among different SSSLs. Taking the seed setting rate and yield per plant as drought tolerance evaluation indexes, we identified25SSSLs which had stronger drought tolerance than the parent9311. Among these, under the condition of drought stress, X705and X707had a>80%seed setting rate; the yield per plant of X633and X707reached more than14gram. Compared with normal irrigation, X707, X632, X630, X699and X666had a few yield losses under the condition of drought stress. Comparing to the CK9311, drought-resistant lines (X699, X705and X707) had elite agronomic performance and the GCA of yield-related traits, which could be used to breed drought-resistant hybrid rice.47QTLs related plant height, heading date, grain number, effective panicle number, seed setting rate and yield-related had been detected through t-test (P<0.001) between the SSSLs and recipient.31QTLs related drought tolerance were located at30regions on rice12chromosomes. Among these QTLs,13QTLs related plant height all had positive effects except qPH5.2and qRPH5,59QTLs related heading date, grain number, effective panicle number, seed setting rate and yield-related all had negative effect except for qDH10, qSN4, qRPN1.1, qRGY1. In addition, some segments contain multiple QTL loci affecting different traits, such as the region of RM16792-RM185on chromosome4, the region of RM421-RM31on chromosome5, the region of RM141on chromosome6, the region of RM410-RM201on chromosome9, the region of RM1261-RM519on chromosome12. These multiple QTLs in the same area, maybe have the pleiotropic effects or closely linked genes effect.
     3. We evaluated the disease resistance of the SSSLs and parents using "natural field induced" identification methods for the rice blast and false smut in Sichuan Province. The results showed that both the rice blast and false smut resistance of the donor parent Nipponbare were better than the receptor9311. The rice blast and false smut resistance varied between different substitution lines,37lines had strong rice blast resistance at Ya'an point, and the average disease spike rate was from3.17%to17.50%. X648, X565and X646had strong rice blast resistance at Pujiang point, and the average disease spike rate was from8.89%to15.65%, the identification results of the same material had a relative consistency in two points (r=0.325**). Substitution lines X411, X560, X496, X495, X509, X704and X441had a strong false smut resistance (disease spike rates all were0). The different resistance genes derived from Nipponbare caused different disease resistance although the substitution lines had the same background. Blast-resistance line X565had excellent agronomic traits with moderate plant height and heading date, longer spike and more grains, grain weight higher, higher seed setting rate and higher yield than the CK9311, additionally, all the GCA of grain number, seed setting rate and yield were higher than that of9311. Blast-resistance lines X656, X437, X697, X671and X701had excellent agronomic traits, with moderate heading date and plant height (the X701slightly higher), strong tillering (PN>4), large grain density (SN>200), high seed setting rate (SSR>90%), large grain weight (TGW>30g), and yield was higher than9311; X679, X723, X704, X705, X701, X656and X717had a strong yield-related combining ability, which could be used as materials to breed blast-resistant hybrid rice. Taking the disease spike rate as the value of the resistance phenotype,11QTLs for rice blast resistance and8QTLs for false smut resistance were detected, which were located on6,9,10,11chromosomes. Among these,17QTLs had negative effects, which corresponding introgression segments enhanced the resistance of substitution lines, and2QTLs had positive effects, which introgression segments decreased the resistance of substitution lines. Blast-resistance locus qBR1.3and qBR5were detected at two points, additive effects were-11.15,-30.74,-8.53,-27.41, respectively. False smut resistance QTL qFSR2and rice blast resistance QTL qBR2.1were located at the same substitution segment of the same substitution line, and both QTLs had negative effects, the blast and false smut disease spikes rate of corresponding substitution line X560were14.59%and0respectively, and were significantly decreased comparing to9311, qFSR9.1and qBR9also existed at the same substitution segment of the same substitution line, but the effect was adverse, the additive effect was2.82and-13.25respectively. Compared with9311, the false smut disease spike rate of substitution lines was increased by150.94%, the rice blast disease spike rate of substitution lines was reduced by89.32%.
引文
1章秀福,王丹英,方福平,等.中国粮食安全和水稻生产.农业现代化研究,2005,26(2):85-88
    2全球粮食和农业信息及预警系统(http://www.fao.org/giews/)作物前景与粮食形势.2012,4:1-33
    3潘英华,郑薇薇,李金杰,等.水稻耐冷性鉴定及定位研究概况.中国农学通报,2010,26(17):54-59
    4 Zhang Q. Strategies for developing Green Super Rice. Proceedings of the National Academy of Sciences of the United States of America,2007,104(42):16402-16409
    5向勇.水稻抗逆境相关基因的分离和功能分析.[博士学位论文].湖北武汉,华中农业大学,2008
    6 Lyom J M. Chilling injury in plants. Annual Review of Plant Physiology,1973,24: 445-451
    7曾乃燕,何军贤,赵文,等.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000,20(1):8-14
    8陈善娜,邹晓菊,梁斌.水稻不同抗冷性品种幼苗叶细胞膜系统的电镜观察.植物生理学通讯,1997,33(3):191-194
    9戴陆园,叶昌荣,工藤悟.中日合作稻耐冷性研究十五年进展概况.作物品种资源,1998,4:40-42
    10韩龙植,张三元.水稻耐冷性鉴定评价方法.植物遗传资源学报,2004,5(1):75-80
    11刘鸿先,曾韶西,王以柔,等.低温对杂优水稻及其亲本幼苗中超氧化物歧化酶的影响.植物学报,1987,29(3):262-270
    12 Minorsky P V. An heuristic hypothesis of chilling injury on plant. A role for calcium as the primary physiological transducer of injury. Plant Cell Environment,1985,8(2): 75-94
    13 Zhou L, Zeng Y W, Hu G L, et al. Characterization and identification of cold tolerant near-isogenic lines in rice. Breeding Science,2012,62:196-201
    14 Baruah A R, Oka N I, Adachi M, et al. Cold tolerance at the early growth stage in wild and cultivated rice. Euphytica,2009,165:459-470
    15 Jin R Z. Genetics and evaluation of cold tolerance of rice in Japan. Rice Reviews Abstract,1990,9:1-5
    16 Cruz R P D, Milach S C K, Federizzi L C. Inheritance of rice cold tolerance at the germination stage. Genetics and Molecular Biology,2006,29:314-320
    17简水溶,万勇,罗向东,等.东乡野生稻苗期耐冷性的遗传分析.植物学报,2011,46(1):21-27
    18 Zhao X C, Dolferus R, Drvey N. Precision breeding of cold tolerant rice. IREC Farmers' Newsletter,2007,177:12-13
    19 Shahi B B, Khuxh G S. Genetic analysis of cold tolerance in rice. Rice genetics,1986, 1:429-435
    20 Zhang Z H, Su L, Li W, et al. A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Science, 2005,168:527-534
    21陈玮,李炜.水稻RIL群体芽期耐冷性基因的分子标记定位.武汉植物学研究,2005,23(2):116-120
    22严长杰,李欣,程祝宽,等.利用分子标记定位水稻芽期耐冷性基因.中国水稻科学,1999,13(3):134-138
    23乔永利,韩龙植,安永平,等.水稻芽期耐冷性QTL的分子定位.中国农业科学,2005,38:217-221
    24杨杰,仲维功,王军,等.水稻芽期耐冷性的QTL分析.基因组学与应用生物学,2009,28(1):46-50
    25巩迎军,阮雯君,荀星,等.水稻芽性状耐冷性的QTL分析.分子植物育种,2009,7(2):273-278
    26 Lin J, Zhu W Y, Zhang Y D, et al. Detection of QTL for cold tolerance at bud bursting stage using chromosome segment substitution lines in rice (Oryza sativa L.). Rice Science,2011,18:71-74
    27SuhJP, Lee C K, Lee J H, et al. Identification of quantitative trait loci for seedling cold tolerance using RILs derived from a cross between japonica and tropical japonica rice cultivars. Euphytica,2012,184:101-108
    28钱前,曾大力,何平,等.水稻籼粳交DH群体苗期的耐冷性QTLs分析.科学通报,1999,44(22):2402-2407
    29LouQJ, Chen L, Sun Z X, et al. A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa-L.). Euphytica,2007,158:87-94
    30 Koseki M, Kitazawa N, Yonebayashi S, et al. Identification and fine mapping of a major quantitative trait locus origination from wild rice, controlling cold tolerance at the seedling stage. Molecular Genetics and Genomics,2010,284:45-54
    31 Misawa S, Mori N, Takumi S, et al. Mapping of QTLs for low-temperature response in seedlings of rice (Oryza sativa L.). Cereal Research Communication,2000,28: 33-40
    32 Han L Z, Qiao Y L, Cao G L, et al. QTLs analysis of cold tolerance during early growth period for rice. Rice Science.,2004,11:245-250
    33夏瑞祥,肖宁,洪义欢,等.东乡野生稻苗期耐冷性的QTL定位.中国农业科学,2010,43(3):443-451
    34 Dai L Y, Lin X H, Ye C R, et al. Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breeding Science,2004,54:253-258
    35 Suh J P, Jeung J U, Lee J I, et al. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in Cold-tolerant genotypes of rice (Oryza sativa L.). Theoretical and Applied Genetics,2010,120: 985-995
    36 Xu L M, Zhou L, Zeng Y W, et al. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Science,2008,174:340-347
    37 Saito K, Miura K, Nagano K, et al. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theoretical and Applied Genetics,2001,103:862-868
    38 Takeuchi Y, Hayasaka H, Chiba B, et al. Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breeding Science,2001,51:191-197
    39 Andaya V C, Mackill D J. QTLs conferring cold tolerance at the booting stage of rice using ricombinant inbred lines from a japonicaxindica cross. Theoretical and Applied Genetics,2003,106:1084-1090
    40 Zhou L, Zeng Y W, Zheng W W, et al. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theoretical and Applied Genetics,2010,121:895-905
    41刘建新.耐冷相关基因对早粳稻的遗传转化研究.[硕士学位论文],黑龙江大学2007
    42 Yokoi S, Higashi S I, Kishitani S, et al. Introduction of DNA for Arabidosis glycerol-3-phosphateacyl transferase (GPAT) confer unsaturation of fatty acid and chilling tolerance of photosynthesis on rice. Molecular Breeding,1998,4:269-275
    43 Babu R C, Zhang J X. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science,2004, 166:855-862
    44张妍,王瑛,梁玉玲,等.转LEA3基因水稻的抗性分析.河北农业大学学报,2005,28(5):33-36
    45 Pantuwan G, Fukai S, Cooper M, et al. Yield response of rice(Oryza sativa L.) genotypes to different types of drought under rainfed lowlands-Part 1. Grain yield and yield components. Field Crops Research,2002,73:153-168
    46 Gimelfard A, Lande R. Marker-assisted selection and marker-QTL association in hybrid populations. Theoretical and Applied Genetics,1995,91:522-528
    47王贺正,马均,李旭毅.水稻开花期抗旱性鉴定指标的筛选.作物学报,2005,31(11):1485-1489
    48 Bailey-Serres J, Fukao T, Yeung E. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell, 2011,23(1):412-427
    49蒋明义,郭绍川.渗透胁迫下稻苗中铁催化的膜脂过氧化作用.植物生理学报,1996,22:6-12
    50王万里.植物对水分胁迫的响应.植物生理学通迅,1981,5:55-64
    51郑丕尧,杨孔平,王经武,等.水陆稻在水田、早地栽培的生态适应性研究.Ⅱ。稻株碳氮代谢的生态适应性观察.中国水稻科学,1996,4(2):69-74
    52 Cutler J M, Steponkus P L, Wach M J, et al. Dynamic aspects and enhancement of leaf elongation in rice. Plant Physiology,1980,66:147-152
    53杨建昌,王志琴,刘立军,等.旱种水稻生育特征与产量形成的研究.作物学报,2002,28(1):11-17
    54张文忠,韩亚东,杜宏绢,等.水稻开花期冠层温度与土壤水分及产量的关系.中国水稻科学,2007,21(1):99-102
    55王熹,陶龙兴,黄效林,等.灌溉稻田水稻早作法研究-水稻的生育与生理特性.中国农业科学,2004,37(9):1274-1281
    56陈晓远,刘晓英,罗远培.土壤水分对冬小麦根、冠干物质动态消长关系的影响.中国农业科学,2003,36(12):1502-1507
    57秦江涛,胡锋,李辉信,等.覆草早作对水稻主要农艺性状的影响及节水效应.中国水稻科学,2006,20(2):171-176
    58郑秋玲.不同生育阶段干旱胁迫下的水稻产量效应.河北农业科学,2004,8(3):83-95
    59李贤勇,何永歆,李顺武,笛.水稻对干旱胁迫的农艺调节研究.西南农业学报, 2003,1 8(3):244-249
    60周毅,郭世伟,宋娜,等.供氮形态和水分胁迫对苗期-分蘖期水稻光合和水分利用效率的影响.植物营养与肥料学报,2006,12(3):334—339
    61杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报,1995,21(1):110-114
    62 Chaves M M, Peretva J S, Marolo J, et al. How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany,2002, (89):907-916
    63 Accvedo E, Isiao T C. Immediate and subsequent growth response of maize leave to changes in water stress. Plant Physiology,1971, (48):631-636
    64邵玺文,张瑞珍,齐春艳,等.拔节孕穗期水分胁迫对水稻生长发育及产量的影响.吉林农业大学学报,2004,26(3):237-241
    65 Barlow E W K. The growth and functioning of leaves. London, Cambridge University Press,1988,314-345
    66王泽港,梁建生,曹显祖,等.半根干旱胁迫处理对水稻叶片光合特性和糖代谢的影响.江苏农业研究,1999,20(3):21-26
    67卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理.作物学报,1994,20(5):601—606
    68胡继超,姜东,曹卫星,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响.应用生态学报,2004,15(1):63-67
    69 Araus J L, Slafer G A, Reynokls M P, et al. Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany,2002,89:925-940
    70张玉屏,朱德峰,林贤青,等.不同时期水分胁迫对水稻生长特性和产量形成的影响.干旱地区农业研究,2005,23(2):48-53
    71王成瑗,王伯伦,张文香,等。土壤水分胁迫对水稻产量和品质的影响.作物学报,2006,32(1):131-137
    72丁友苗,黄文江,王纪华,等.水稻早作对产量和产量构成因素的影响.干旱地区农业研究,2002,20(4):50-54
    73山仑,陈培元.旱地农业生理生态基础.北京,科技出版社,1998
    74 Hsian TC. Rapie changes in levels ofpolyribosomes in zeaways in response to waterstress. Plant Physiology.1970,46:281-285
    75黄文江,王纪华,赵春江,等.旱作水稻幼穗发育期若干生理特性及节水机理的研究。作物学报,2002,28(3):411-416
    76李德福,李金才,魏风珍.拔节长穗期水分胁迫对早作水稻若干生理特性和经济产量的影响.安徽农业科学,2005,33(7):1166-1167,1169
    77 Stiller V, Lafitte H R, Sperry J S, et al. Hydraulic properties of rice and the response of gas exchange to water stress. Plant Physiology,2003,132:1698-1706
    78 Tardieu F, Davies W J. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant cell and Environment,1993, (16):341-349
    79 Sauter A, Davies W J, Hartung W. The long-distance abscisic acid signal in the droughted plant:the fate of the hormone on its way from root to shoot. Journal of Experimental Botany,2001,52(363):1991-1997
    80 Liang J S, Zhang J H, Wong M H. How do roots control xylem sap ABA concentration in response to soil drying? Plant Cell Physiology,1997,38(1):10-16
    81 Liang J S, Zhang J H. Xylem carded ABA in plant responses to soil drying. Current Topics in Plant Biology,1999, (1):89-96
    82陈新红,刘凯,奚岭林,等.土壤水分与氮素对水稻地上器官脱落酸和细胞分裂素含量的影响.作物学报,2005,31(11):1406-1414
    83郑成本,黄东益,莫饶,等.“热大9W”序列早稻新品系农艺特性与抗旱性的研究.热带作物学报,2000,21(4):52-57
    84张永平,王志敏,吴永成,等.不同供水下小麦不同绿色器官的气孔特征.作物学报,2006,32(1):70-75
    85 Hare P D, Cress W A., Van Staden J. Proline synthesis and degradation:a model system for elucidating stress-related signal transduction. Journal of Experimental Botany,1999,50(333):413-434
    86 Babu R C, Pathan M S, Blum A, et al. Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Science,1999,39:150-158
    87刘祖祺,张石城.植物抗旱生理学.北京,中国农业出版社,1994,9
    88 Fukai S, Cooper M. Development of drought resistant cultivars using Physio-morphological traits in rice. Field crops Research,1995,40(2):67-86
    89黄文江,王纪华,赵春江,等.水稻旱作条件下渗透调节物质和激素含量是关系.干旱地区农业研究,2002,20(1):61-64
    90韩建民.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系.河北农业大学报,1990,13(1):17-21
    91孙彩霞,沈秀瑛,刘志刚.作物抗旱性生理生化机制的研究现状和进展.杂粮作物,2002,22(5):285-288
    92 Jia W S, Wang Y Q, Zhang S Q, et al. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. Journal of Experimental Botany,2002, 50(378):2201-2206
    93 Aharoni N, Richmond A E. Endogenous gibbemllin and abscisic acid coment as related to senescence of detached lettuce leaves. Plant Physiology,1978,62:224-228
    94 Liang J, Zhang J, Wong M H. Can itomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosyn Res,1997,51:149-159
    95 Schauf C L, Wilson K J. Effects of abscisic acid on K+ channels invicia faba guafrd cell protoplasts. Biochemical Biophysiology Research Communication,1987,145: 285-290
    96汤春芳,刘云国,曾光明,等.镉胁迫对萝卜幼苗活性氧产生、膜质过氧化和抗氧化酶话性的影响.植物生理与分子生物学学报,2004,30(4):469-474
    97 Still D W, Kovach D A, Bradford K J. Development of desiccation tolerance during embryogenesis in rice(Oryza sativa) and wild rice(Zizania palustris), dehydrin expression, abscisic acid content, and sucrose accumulation. Plant Physiology,1994, 104:431-438
    98韦朝领,袁家明.植物抗逆境的分子生物学研究进展.安徽农大学报,2000,27(2):204-208
    99景蕊莲.作物抗旱研究的现状与思考.干旱地区农业研究.1999,17(2):79-85
    100黎裕.作物抗旱性的遗传研究.世界农业,1993(12):18-19
    101 http://www.plantstress.com/biotech/index.asp?Flag=1
    102 Farooq M, Wahid A, Lee D J, et al. Advances in drought resistance of rice. Critical Reviews in Plant Sciences,2009,28(4):199-217
    103 Champoux M C, Wang G, Sarkaruag S. et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theoretical and Applied Genetics,1995,90:969-981
    104 Ray J D, Yu L, Mccouch S R, et al. Mapping quantitative trait loci associated with root penetration ability in rice(Oryza sativa L.). Theoretical and Applied Genetics, 1996,92(6):627-636
    105 Price A H, Tomos A. Genetic dissection of root growth in rice(Oryza sativa L.). II. Mapping quantitative trait loci using molecular markers. Theoretical and Applied Genetics,1997,95:143-152
    106 Yadav R, Corutois B, Huang N, et al. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theoretical and Applied Genetics,1997,94:619-632
    107 Venuprasad R, Shashidhar H E, Hittalmani S, et al. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica,2002,128(3):293-300
    108 Steele K A, Price A H, Shashidhar H E, et al. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theoretical and Applied Genetics,2006,112(2):208-211
    109 Ali M L, Pathan M S, Zhang J, et al. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theoretical and Applied Genetics, 2000,101:756-766
    110 Zhang J, Zheng H G, Aarti A, et al. Locationg genomic regions associated with components of drought resistance in rice:comparative mapping within and across species. Theoretical and Applied Genetics,2001,103(1):19-29
    111 Zheng H G, Chandra Babu R, Md, et al. Quantitative trait loci for root penetration ability and root thickness in rice:comparison of genetic backgrounds. Genome,2000, 43(1):53-61
    112 Zheng B S, Yang L, Zhang W P, et al. Mapping QTLs and candidate genes for rice root traits under different water supply conditions and comparative analysis across three population. Theoretical and Applied Genetics,2003,107(8):1505-1515
    113 Kamoshita A, Wade L, Ali M, et al. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theoretical and Applied Genetics, 2002,104(5):880-893
    114 Kamoshita A, Babu R C, Boopathi N M, et al. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Research,2008,109(1-3):1-23
    115 Price A H, Steele K A, Moore B J, et al. A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theoretical and Applied Genetics,2000,100(1):49-56
    116 Price A H, Steele K A, Moore B J, et al. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes:Ⅱ. Mapping quantitative trait loci for root morphology and distribution. Field Crops Research,2002,76(1):25-43
    117聂元元,蔡耀辉,付红,等.栽培稻抗旱性相关性状QTL定位及分子育种研究进展.江西农业学报,2011,23(7):89-92
    118 Lilley J M, Ludlow M, McCouch S, et al. Locating QTL for osmotic adjustment and dehydration tolerance in rice. Journal of Experimental Botany,1996,47:1427-1436
    119 Tripathy J N, Zhang J X, Robin S, et al. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theoretical and Applied Genetics,2000, 100(8):1197-1202
    120 Price A H, Tomos A D, Virk D S. Genetic dissection of root growth in rice(Oryza sativa L.) I:a hydrophonic screen. Theoretical and Applied Genetics,1997,95: 132-142
    121胡颂平,杨华,邹桂花,等.水稻胚芽鞘长度与抗旱性的关系及QTL定位。中国水稻科学,2006,20(1):19-24
    122 Courtois B, McLaren G, Sinha P K, et al. Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding,2000,6:55-66
    123 Price A H, Townend J, Jones J T, et al. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Molecular Biology,2002,48(5-6):683-695
    124 Atlin G N, Venuprasad R, Bernier J, et al. Rice germplasm development for drought-prone environments:Progress made in breeding and genetic analysis at the International Rice Research Institute. Drought Fromtiers in Rice:Crop Improvement for Increased Rainfed Production. World Scientific Publishing and Los Banos (Philippines):International Rice Research Institute, Singapore,35-59
    125 Quarrie S A, Laurie D A, Zhu J H, et al. QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Molecular Biology,1997,35(1-2):155-165
    126赵秀琴,徐建龙,朱苓华,等.利用高代回交导入系定位水、旱条件下影响水稻根系及产量的QTL.中国农业科学,2008,41(7):1887-1893
    127 Yue B, Xiong L Z, Xue W Y, et al. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theoretical and Applied Genetics,2005,111(6):1127-1136
    128 Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population associations among traits and genetic markers. Theoretical and Applied Genetics,2004,109:1237-1246
    129 Zou G H, Mei H W, Liu H Y, et al. Grain yield responses to moisture regimes in a rice population:association among traits and genetic markers. Theoretical and Applied Genetics,2005,112(1):106-113
    130 Xu J L, Lafitte H R, Gao Y M, et al. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theoretical and Applied Genetics,2005,111,(8):1642-1650
    131 Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G. A large effect QTL for grain yield under reproductive stage drought stress in upland rice. Crop Science,2007,47: 507-518
    132 Kumar R, Venuprasad R, Atlin G N. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India:Heritability and QTL effects. Field Crops Research,2007,103(1):42-52
    133 Venuprasad R, Dlid C O, Valle M D, et al. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theoretical and Applied Genetics,2009,120(1): 177-190
    134 Babu R C, Nguyen D B, Chamarerk V, et al. Genetic analysis of drought resistance in rice by molecular markers association between secondary traits and field performance. Crop science,2003,43:1457-1469
    135 Jonaliza C, Grienggrai P, Boonrat J, et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. American Society of Plant Biologists, 2004,135(1):384-399
    136 Venuprasad R, Bool M E, Qulatchon L, et al. A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theoretical and Applied Genetics,2012,124(2):323-332
    137 Wang Y, Zang J P, Sun Y, et al. Identification of genetic overlaps for salt and drought tolerance using simple sequence repeat markers on an advanced backcross population in rice. Crop Science,2012, 111(2):115-130
    138 Vikram P, Swamy BP M, Dixit S, et al. qDTY1.1, amajor QTL for rice grain yield under reproductive stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics,2011,12:89
    139 Vikram P, Swamy BP M, Dixit S, et al. Bulk segregant analysis:"An effective approach for mapping consistent-effect drought grain yield QTLs in rice". Field Crops Research,2012,134,(12):185-192
    140 Wang H G, Zhang H L, Li Z C. Analysis of gene expression profile induced by water stress in upland rice (Oryza sativa L. var IRAT109) seedlings using subtractive expressed sequence tags library. Journal of Integrative Plant Biology,2007,49(10): 1455-1463
    141 Liu W Y, Wang M M, Huang J, et al. The OsDHODH1 gene is involved in salt and drought tolerance in rice. Journal of Integrative Plant Biology,2009,51(9):825-833
    142 Gu Z M, Wang J F, Huang J, et al. Cloning and characterization of a novel rice gene family encoding putative dual-specificity protein kinases, involved in plant responses to abiotic and biotic stresses. Plant Science,2005,169(3):470-477
    143刘三雄,刘灶长,周立国,等.Osl2基因的克隆及其植物表达载体的构建.分子植物育种,2007,5(4):548-552
    144孟繁君,黄骥,鲍永美,等.水稻TFIHA型锌指蛋白基因ZFF207的克隆和表达分析.遗传,2010,32(4):387-392
    145 Xiao B Z, Huang Y M, Tang N, et al. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics,2007,115(1):35-46
    146徐雍皋,徐敬友.农业植物病理学.江苏科学技术出版社.1995
    147黄世文,余柳青.国内稻曲病的研究现状.江西农业学报,2002,14(2):45-51
    148 Ou S H. Rice diseases. Commonwealth Mycological institute. Kew, UK,1985,380
    149张晋.95份水稻抗瘟资源的抗瘟性和农艺性状评价.[硕士学位论文],四川雅安,四川农业大学,2007
    150全国稻瘟病生理小种联合试验组.我国稻瘟病菌生理小种研究.植物病理学报,1980,10(2):71-82
    151黄富.水稻抗稻瘟病种质资源筛选评价及改造利用.[博士学位论文],四川雅安,四川农业大学,2006
    152彭云良,陈国华,曾德初,等.杂交稻稻瘟菌致病菌系的组成及其变化.植物保护学报,1995,22(3):247-250
    153柴荣耀,金敏忠.水稻稻瘟病菌小种间相对生存力研究.植物保护学报,1997,24(3):215-220
    154李成云,沈璜.稻瘟病菌两个陆稻菌株的致病性遗传研究.中国农业科学,1997,30(4): 30-36
    155朱献丰.水稻稻瘟病抗遗传及基因定位研究.浙江大学,2001,3-4
    156山崎羲人,高坂卓尔.稻瘟病与抗病育种[M].农业出版杜,1990
    157潘家驹.作物育种学[M].农业出版社,1994:186-187
    158乐美旺,陈实,潘庆华,等.水稻稻瘟病菌侵染途径研究综述.江西农业学报,2006,18(2):101-105
    159王久林,凌忠专.稻瘟病菌致病性变异及稳定菌系的筛选.北京农学院学报,1993,8(1):85-89
    160何和明.漫谈植物杀菌素.生物学通报,1985,1:8
    161康美花,曹丰生,陈红萍,等.水稻稻瘟病抗生基因研究进展及其在育种上的应 用.江西农业学报,2010,22(2):95-98
    162杨勤忠,林菲,冯淑杰,等.水稻稻瘟病抗性基因的分子定位及克隆研究进展.中国农业科学,2009,42(5):1601-1615
    163邓其明,周涛,林琳,等.水稻稻瘟病抗性基因研究进展及其在育种上的应用.安徽农业科学,2009,37(4):1489-1492
    164凌忠专,潘庆华,黄书针,等.水稻抗稻瘟病育种[M].福州:福建科学技术出版社,1990,737-745
    165国家水稻数据中心.稻瘟病主效抗性基因列表[DB/OL].http://www.ricedata.cn/gene/gene_pi.htm,2012-6-20
    166 Mackill D J, Bomnan J M. Inheritance of blast resistance in near-isogenic lines of rice. Genetics,1992,82(7):746-749
    167 Hittalmani S, Parco A, Mew T W, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in Rice. Theoretical and Applied Genetics,2000,100(7):1121-1128
    168李仕贵,王玉平,黎汉云,等.利用微卫星鉴定水稻的稻瘟病抗性.生物工程学报,2000,16(3):324-327
    169张建福,王国英,谢华安,等.粳稻云引抗稻瘟病基因的遗传分析及其定位.农业生物技术学报,2003,11(3):241-244
    170张建福,凌忠专,王国英,等.利用SRR标记定位粳稻云引抗稻瘟病基因.分子植物育种,2006,4(3):359-364
    171朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑:化学),1994,24(10):1048-1052
    172鄂志国,王磊.水稻抗病性基因的克隆和功能研究进展.遗传,2009,31(10):999-1005
    173 Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance bilongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance gene. The Plant Journal,1999,19(1):55-64
    174 Zhou B, Qu S H, Liu G F, et al. The eight amino-acid differences within three liucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2006,19(11):1216-1228
    175 Qu S H, Liu G F, Zhou B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics,2006,172(3):1901-1914
    176杨健源,曾列先,陈深,等.我国稻曲病研究进展.广东农业科学,2011,2:77-79
    177夏宝远,王林.我国水稻稻曲病的研究现状.畜牧与饲料科学,2009,30(1):33-34
    178黄珊.水稻稻曲病研究进展.福建农业学报,2012,27(4):452-456
    179高峻.稻曲病粒对鸡和兔的毒性.植物保护,1987,13(3):52-53
    180尚炳荣,许绍朴,王云英,等.水稻稻曲病病菌对猪的危害性试验.浙江农业科学,1985,(1):35-37
    181王诚钊,黄霞敏,沈瑛,等。稻曲病的流行规律和防治研究.中国植物导刊,1988,2:34-39
    182张汝通,陈飞跃.稻曲病发生规律及防治研究.湖南农学院学报,1989,15(1):70-75
    183胡德具.稻曲病病曲的为害及曲粉对种子发芽的影响.浙江农业科学,1984,(4):164-167
    184方先文,汤陵华,王艳平.水稻稻曲病抗性遗传机制.江苏农业学报,2008,24(6):762-765
    185李余生,朱镇,张亚东,等.水稻稻曲病抗性的主基因+多基因混合遗传模型分析.作物学报,2008,34(10):1728-1733
    186李余生,韩丽华,杨娟,等.不同环境下水稻稻曲病抗性位点检测.江苏农业学报,2012,28(5):933-937
    187徐建龙,薛庆中,罗利军,等.近等基因导入系定位水稻抗稻曲病数量性状位点的研究初报.浙江农业学报,2002,14,(1):14-19
    188 Howell P M, Marshall D F, Lydiate D G. Towards developing inter varietal substitution lines in Brassica napus using marker-assisted selection. Genome,1996, 39:348-358
    189王玉民,席章营,尚爱兰,等.作物单片段代换系的构建及应用.农业生物技术科学,2008,24(3):67-71
    190 Exhed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics,1995,141(3):1147-1162
    191刘冠明.水稻单片段代换系的建立及QTL定位.[硕士学位论文],广东广州,华南农业大学,2002
    192阿克沙。水稻单片段替换系群体的建立及QTL定位.分子植物育,2003,1(4):565-567
    193何风华.水稻单片段替换系群体的建立及QTL定位.分子植物育种,2003,1(4):562-564
    194席章营.基于水稻单片段代换系的QTL鉴定与定位.[博士学位论文],湖北武汉,华南农业大学,2004
    195何风华,席章营,曾瑞珍,等.利用单片段代换系定位水稻抽穗期QTL.中国农业科学,2005,38(8):1505-1513
    196曾瑞珍,Talukdar,刘芳,等.利用单片段代换系定位水稻粒形QTL.中国农业科学,2006,39(4):647-654
    197 Alpert K B, Grandillo S, Tanksley S D. fw 2.2:a major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theoretical and Applied Genetics,1995,91:994-1000
    198 Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2:2:a major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences of the United States of America,1996,93:15503-15507
    199 Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484bp within an invertase gene. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(9):4718-4723
    200 Ronen G, Carmel-Goem L, Zamir D, et al. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences of the United States of America,2000,97(20):11102-11107
    201 Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerize essential for the production of β-carotene and xanthophyll's in plants. The Plant Cell,2002,14:333-342
    202刘冠明,李文涛,曾瑞珍,等.水稻单片段代换系代换片段的QTL鉴定.遗传学报,2004,31(12):1395-1400
    203黄益峰.水稻粒形和粒重QTL的鉴定、聚合和上位性分析.[硕士学位论文],华南农业大学,2006
    204余传元,万建民,翟虎渠,等.利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势.科学通报,2005,50(1):32-37
    205王智权.利用染色体片段置换系剖析水稻籼粳亚种间产量相关农艺性状杂种优势的遗传基础.[博士学位论文],江苏南京,南京农业大学,2010
    206欧阳恋.基于SSSL的水稻品质基因的鉴定、定位和聚合.[硕士学位论文],广东广州,华南农业大学,2006
    207 Sthapit B R, Witcombe J R. Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Science.,1998,38:660-665
    208 Fujino K, Sekiguchi H, Sato T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics,2004,108:794-799
    209 Andaya V C, Mackill D J. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. Journal of Experimental Botany,2003,54:2579-2585
    210何芳.基于水稻SSSLs的主要农艺性状QTL分析及杂种优势研究.[博士学位论文],四川雅安,四川农业大学,2012
    211杨川航,王玉平,涂斌,等.利用籼粳交RIL群体对水稻耐寒性及再生力的QTL分析。中国水稻科学,2012,26:741-745
    212徐云碧,申宗坦.水稻苗期耐冷性鉴定技术的研究.浙江农业大学学报,1990,10(1):25-30
    213唐启义.DPS数据处理系统—实验设计、统计分析及数据挖掘.科学出版社,2010
    214 Zhu W Y, Lin J, Yang D W, et al. Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 9311 and japonica donor Nipponbare. Plant Molecular Biology Reporter,2009,27: 126-131
    215 Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics,1995,141:1147-1162
    216 Zhang Y S, Yang J Y, Shan Z L, et al. Substitution mapping of QTLs for blast resistance with SSSLs in rice(Oryza saliva L.). Euphytica,2012,184(1):141-150
    217 Xi Z Y, He F H, Zeng R Z, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome,2006,49:476-484
    218 McCouch S R, CGSNL. Gene nomenclature system for rice. Rice,2008,1:72-84
    219 Glaszmann J C. Isozymes and classification of Asian rice varieties. Theoretical and Applied Genetics,1987,74:21-30
    220 Glaszmann J C, Kaw R N, Khush G S. Genetic divergence among cold tolerance rices(Oryza sativa L.). Euphytica,1990,45:95-104
    221 Kubo T, Yoshimura A. Complementary genes causing F2 sterility in Japonica/Indica cross of rice. Rice Genetics New slitter,1999,16:68-70
    222 Kubo T, Eguchi M, Yoshimura A. A new gene for F1 pollen sterility in Japonica/Indica cross of rice. Rice Genetics Newsletter,2000,17:63-64
    223 Han L Z, Qiao Y L, Zhang S Y, et al. Identification of quantitative trait loci for cold response of seedling vigor traits in rice. Journal of Gentetics and Genomics,2007, 34(3):239-246
    224 Han L Z, Zhang Y Y, Qiao Y L, et al. Genetic and QTL analysis for low-temperature vigor of germination in rice. Acta Genetica Sinica,2006,33(11):998-1006
    225詹庆才,朱克永,陈祖武,等.利用分子标记进行水稻苗期耐冷性相关性状的QTLs研究.杂交水稻,2005,20(1):50-55
    226 Oh C S, Choi Y H, Lee S J, et al. Mapping of quantitative trait loci for cold tolerance in weedy rice. Breeding Science,2004,54:373-380
    227 Ranawake A L, Nakamura C. Cold tolerance of an inbred line population of rice (Oryza sativa L.) at different growth stages. Tropical Agricultural Research & Extension,2011,14:25-33
    228 Kaw R N, Khush G S. Combining ability for low-temperature tolerance in rice. Proceedings International Rice Genetics Symposium, Los Banos, Philippines, 593-612
    229 Clark R. Water:The International Crisis[M]. London:Earthscan Publications LTD, 1991,3-40
    230罗利军,张启发.栽培稻抗早性研究的现状与策略.中国水稻科学,2001,15(3):209-214
    231王英,李宏,崔彦茹,等.从回交导入群体中筛选耐盐和抗旱水稻植株.分子植物育种,2010,8(6):1133-1141
    232应存山,主编.中国稻种资源.中国北京,中国农业科技出版社,1993,530-531
    233 Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany,2010,61(13):3509-3517
    234 Lafitte H R, Li Z K, Vijayakumar C H M, et al. Improvement of rice drought tolerance through backcross breeding:Evaluation of donors and selection in drought nurseries. Field Crops Research,2006,97 (1):77-86
    235徐建龙,高用明,傅彬英,等.回交导入后代水稻种质有利基因的鉴定与筛选研究.分子植物育种,2005,3(5):619-628
    236 Ali A J, Xu J L, Ismail A M, et al. Hidden diversity for abiotic stress tolerances in the primary gene of rice revealed by a large backcross breeding program. Field Crop Research,2006,97 (1):66-76
    237张帆,郝宪彬,高用明,等.利用籼稻资源中的“隐蔽有利基因”提高粳稻苗期耐冷性.作物学报,2007,33(10):1618-1642
    238 Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice. Euphytica,2000,112 (1):69-78
    239庄杰云,樊叶杨,吴建利,等.水稻CMS-WA育性恢复基因的定位.遗传学报,2001,28(2):129-134
    240 Mei H W, Luo L J, Ying C S, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theoretical and Applied Genetics,2003,107:89-101
    241 Liu H Y, Zou G H, Liu G L, et al. Correlation analysis and QTL identification for canopy temperature, leaf water potential and spikelet fertility in rice under contrasting moisture regimes. Chinese Science Bulletin,2005,50 (4):317-326
    242 Wang X S, Zhu J, Mansueto L, et al. Identification of candidate genes for drought stress in rice by the integration of a genetic (QTL) map with the rice genome physical map. Journal of Zhejiang University Science,2005,6B (5):382-388
    243 Yue B, Xue W Y, Luo L J, et al. Identification of quantitative trait loci for four morphologic traits under water stress in rice(Oryza sativa L.). Journal of Genetics and Genomics,2008,35:569-575
    244 Zhao X Q, Xu J L, Zhao M, et al. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice(Oryza sativa L.). Plant Science,2008,174 (6):618-625
    245 Cui K H, Huang J L, Xing Y Z, et al. Mapping QTLs for seedling characteristics under different water supply conditions in rice(Oryza sativa L.). Physiologia Plantarum,2008,132:53-68
    246 Subashri M, Robin S, Vinod K K, et al. Trait identification and QTL validation for reproductive stage drought resistance in rice using selective genotyping of near flowering RILs. Euphytica,2009,166:291-305
    247 Yue B, Xue W Y, Xiong L Z, et al. Genetic basis of drought resistance at reproductive stage in rice:separation of drought tolerance from drought avoidance. Genetics,2006, 172:1213-1228
    248滕胜,钱前,曾大力,等.水稻苗期耐旱性基因位点及其互作的分析.遗传学报,2002,29(3):235-240
    249叶少平,张启军,李杰勤,等.用(培矮64S/Nipponbare) F2群体对水稻产量构 成性状的QTL定位分析.作物学报,2005,31(12):1620-1627
    250 He P, Li S G, Qian Q, et al. Genetic analysis of rice grain quality. Theoretical and Applied Genetics,1999,98:502-508
    251李仕贵,马玉清,何平,等.不同环境条件下水稻生育期和株高的QTL分析.作物学报,2002,28(4):546-550
    252徐建龙,薛庆中,罗利军,等,水稻单株有效穗和每穗粒数的QTL剖析.遗传学报,2001,28(8):752-759
    253曹立勇,占小登,庄杰云,等.水稻产量性状的QTL定位与上位性分析.中国农业科学,2003,36(11):1241-1247
    254王贺正.水稻抗旱性研究及其鉴定指标的筛选.[博士学位论文],四川温江,四川农业大学,2007
    255 Lin H X, Zhu M Z, Yano M, et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics,2004,108: 253-260
    256 Zhang X, Zhou S X, Fu Y C, et al. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O.rufipogon Griff.). Plant Molecular Biology,2006,62:247-259
    257 Huang X Y, Chao D Y, Gao J P, et al. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development,2009,23:1805-1817
    258 Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology,2008,148:1938-1952
    259 Hu H H, Dai M Q, Yao J L, et al. Over expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006,103:12987-12992
    260 Karaba A, Dixit S, Greco R, et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences of the United States of America,2007,104: 15270-15275
    261鄂志国,张丽靖,焦桂爱,等.稻瘟病抗性基因的鉴定及利用进展.中国水稻科学,2008,22(5):533-540
    262湖南农学院郴州分院.杂交水稻抗病性遗传研究.40-44
    263何会流,毛建辉,卢代华,等.四川水稻品种对稻瘟病和稻曲病抗性评价.西南大学学报,2008,30(7):104-109
    264朱小源,杨祁云,霍超斌,等.水稻品种对稻瘟病的质量抗性和数量抗性的初步研究.中国水稻科学,1999,10(3):181-184
    265李晓方,罗文永,肖听,等.一套研究水稻抗瘟性材料体系的建立和应用.中国农业科学,2003,36(2):121-127
    266 Bonman J M, Mackill D J关于水稻对稻瘟病的持久抗性.广东农业科学,1991,4:45-48
    267翟文学,朱立煌.水稻白叶枯病抗性基因的研究与分子育种.生物工程进展,1999,19(6):9-15
    268蒋晓英,张致力,陈旭,等.稻瘟病无害化防控技术研究进展.江西农业学报,2009,21(3):121-123,135
    269王疏,白元俊,周永力,等.稻曲病菌的病原学.植物病理学报,1998,28(1):19-24
    270单泽林,张桂权.水稻单片段代换系稻瘟病病圃鉴定方法的建立及初步分析.惠州学院学报,2007,27(6):5-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700