用户名: 密码: 验证码:
泡桐丛枝植原体致病相关基因分子特征及其编码蛋白功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡桐(Paulownia sp.)是我国重要的阔叶树种之一,泡桐丛枝病(Paulownia witches’broom disease)在我国发生普遍,是由泡桐丛枝植原体(Paulownia witches’ broomphytoplasma)引起的侵染性病害,表现为腋芽和不定芽大量萌发至簇生成团,有些病树上会出现花变叶症状,常常不能正常开花结实。为了深入了解植原体致病机理,本文通过植原体致病相关基因的克隆、原核表达、抗血清制备、蛋白活性测定、瞬时表达与病症分析等方法,对植原体致病基因的功能进行研究和分析,发现tRNA-ipt基因可能影响了植物细胞的分裂和增长,这为植原体致病分子机制提供了新的思路和线索。
     本研究用PCR方法在我国四种16SrI组植原体中克隆到tRNA异戊烯基焦磷酸转移酶基因(tRNA-ipt),并对其全长序列进行生物信息学分析,发现泡桐丛枝(Paulowniawitches’ broom,PaWB)、桑萎缩(Mulberry dwarf,MD)、长春花绿变(periwinkle virescence,PeV)及苦楝丛枝(Chinaberry witches’ broom,CWB)植原体的tRNA-ipt基因的开放读码框长度均为876bp,G+C含量分别为30%、29.5%、29.5%和29.3%;它们均编码291个氨基酸的蛋白,预测分子量均为33kDa。四种植原体的IPT蛋白N端皆含有ATP/GTP结合相关序列(GPTASGKT)。预测该蛋白无跨膜区,分布在细胞质中。四种植原体的tRNA-IPT之间的氨基酸序列相似性为99.1%-99.5%,与同组植原体蛋白相似性为95.4%-99.3%,与其他组植原体低于70%;系统进化分析显示,所有已知9个植原体tRNA-IPT共聚为一大支,且与无胆甾原体遗传关系更近。
     对泡桐丛枝植原体tRNA-ipt基因进行原核表达并制备抗体。利用Western blot和FITC间接免疫荧光显微镜检测其在植原体中的表达。使用分光光度计分析该基因对大肠杆菌生长的影响,用ELISA测定转化菌株细胞分裂素含量。SDS-PAGE结果显示tRNA-IPT蛋白在大肠杆菌中得到表达。首次获得泡桐丛枝植原体tRNA-IPT抗体并检测到该蛋白在泡桐发病组织中的特异表达。经过对转化菌株生长曲线及玉米素含量的测定,发现该基因能促进大肠杆菌后期生长和玉米素核苷的积累。结果表明泡桐丛枝植原体tRNA-IPT蛋白能够在植原体中表达,根据该基因对异源菌株生长速率和激素合成的影响推断该蛋白可能参与植原体的细胞分裂素合成,并在致病过程中起到重要作用。
     构建病毒表达载体pCAPE-ipt,转化农杆菌,注射浸润健康泡桐组培苗叶片,使植物细胞表达tRNA-IPT蛋白。结果显示感染pCAPE-ipt的泡桐离体叶片可以保持较长的生长和存活时间;感染pCAPE-ipt的泡桐植株,两周后开始长出腋芽,与泡桐丛枝病早期症状极为相似。同时Western blot证实tRNA-IPT已在植物中表达。根据此结果推测,tRNA-IPT蛋白可能影响寄主植物激素平衡,从而导致丛枝病,这为植原体致病分子机制提供了新的线索。
     根据已发表植原体质粒序列设计引物,经两次PCR扩增,获得大小不同的两段DNA片段,测序后拼接得到了4种完整的环状质粒,分别是桑树萎缩植原体濮阳株系质粒(pMDPy)、长春花绿变植原体海南株系质粒(pPeVHn)、泡桐丛枝植原体山东株系质粒(pPaWBG33D)及苦楝丛枝植原体福清株系质粒(pCWBFq-2),其中pMDPy为首次测定,其质粒全长分别为3833bp、3943bp、3843bp和3913bp,4种质粒皆编码5个蛋白,ORF1和ORF5分别编码复制相关蛋白(RepA)和单链DNA结合蛋白(SSB),ORF2-4编码未知功能蛋白。4种质粒序列的非编码区分析表明,ORF1和ORF2之间的非编码区存在启动子和核糖体结合位点。将4种植原体质粒全序列与GenBank中登录的植原体质粒进行序列相似性比对和系统进化分析,结果表明这4种质粒与其它16SrI组的质粒聚为一个大的分支,与16S rDNA系统发育树基本一致。此研究为进一步深入了解不同植原体质粒的结构与功能、寄主专化性和质粒基因变异及进化奠定了基础,也为基于多基因分类鉴定提供新的理论依据。
     本研究首次在泡桐丛枝植原体中获得胸苷酸激酶基因(tmk),并在4个地区不同品种感病泡桐中检测到不同tmk基因。以PaWB-G33D、PaWB-JAN、PaWB-PS和PaWB-BJ株系侵染的泡桐总DNA为模板,扩增并克隆了tmk基因。分别由591、600、639和588个核苷酸组成。基因序列比对结果显示,泡桐丛枝植原体与16SrI组的其它几种植原体tmk基因相似性均大于90%。不同地区和不同品种泡桐tmk基因各有不同,这体现出在泡桐丛枝植原体中存在着tmk基因丰富的遗传变异和多样性种群。
Paulownia sp. is a kind of important broad leaf species in China. Paulownia witches’broom disease, is infectious disease and caused by Paulownia witches’ broom phytoplasma, itstypical symptoms includes abnormal adventitious bud and axillary bud germination to formcluster, even changed from flowers to leaves and can not form normal flowers and fruits. Inorder to understand the pathogenic mechanism of phytoplasma, the related function researchand analysis were explored. Based on the related gene cloning and prokaryotic expression,antiserum preparation, protein activity determination, instantaneous expression and diseasesand symptoms analysis etc, it was found that the tRNA-ipt gene may influence plant celldivision and growth, which provides a new clue for the study of phytoplasma pathogenicmolecular mechanism.
     Four kinds of full-length sequences of tRNA-ipts from aster yellows group(16SrI)phytoplasmas were amplified, sequenced and analyzed in-silico. It was found that the length ofopen reading frame of tRNA-ipt genes from paulownia witches’-broom,mulberry dwarf,periwinkle virescence and Chinaberry witches’-broom phytoplasmas is876bp, their G+Ccontents are30%,29.5%,29.5%and29.3%,respectively. All these genes encode291aminoacids, predicting the molecular weight is33kda. They contain an identical motif (GPTASGKT)at N-terminal region related to the ATP or GTP binding sites. It was predicted that the proteinsare without transmembrane region, distributed in the cytoplasm. Amino acid sequencehomology of four phytoplasma tRNA-IPTs was99.1-99.5%, sequence homology with thesame group phytoplasmas was95.4-99.3%, whereas with16SrX apple proliferation and16SrXII Australia grapevine yellows phytoplasmas was less than70%.Phylogenetic analysisrevealed that all nine known tRNA-IPTs of phytoplasmas were clustered into a common clade,and they had very close relationship with that of Acholeplasma sp.
     The paulownia witches’-broom phytoplasma (PaWB) tRNA-ipt gene was expressed in E.coli, specific antibody was prepared and used for the gene expression analyses by Western blotand FITC indirect immunofluroscence microscopy. Then the growth curve and cytokinincontents of E. coli with PaWB tRNA-ipt were measured by photodensitometry and ELISA,respectively. The pET expression vector containing the PaWB tRNA-ipt gene was constructedand the induced fusion protein was expressed and detected by SDS-PAGE. By Western blottingand immunofluorescence detection, the expression and localization of the phytoplasmastRNA-IPT protein in the phloem of infected paulownia were confirmed. According to thedetermination of growth curve and zeatin content, we found that the gene can promote thegrowth of E. coli in the late stage and zeatin nucleotide accumulation. The determination ofgrowth curve suggested that the growth rate increase of E. coli was effected by thetransformation of exogenous tRNA-ipt gene, which might be associated with the cytokininaccumulation. This protein was assumed to involve in the cytokinin synthesis in phytoplasmasas well as other bacteria, which may play an important role in pathogenic processes ofphytoplasmas and symptom development.
     The virus expression vector of pCAPE-ipt were constructed to transform into healthypaulownia plantlets leaf cells by agroinfiltrayion. Results showed that the detached paulownialeaves which infiltrated with GV3101-pCAPE-ipt could maintain a longer growing andsurvived period; When the PaWB tRNA-IPT was expressed in paulownia plants two weekslater, these treated plants showed symptoms of witches’ broom and dwarfism, which weretypical ones of phytoplasma infection. At the same time, Western blotting confirmed that theprotein tRNA-IPT was expressed in treated plants but not in control plants. According to thisresult, we speculateed that the phytoplasma tRNA-IPT protein may influence the host planthormone balance, and then lead to the symptom display of witches broom disease, whichprovides a new clue for the study of the phytoplasma pathogenic molecular mechanism.
     On the basis of the known phytoplasma plasmid sequences, two pairs of specific primerswere designed and used for PCR. Two section of DNA amplified fragments with different sizes covering whole plasmid were obtained through two round of PCR amplification. Aftersequenced and spliced,four phytoplasmal full-length circular plasmid DNA sequences wereobtained, including the plasmids of mulberry dwarf(pMDPy) in Puyang of Henan province,periwinkle(Catharanthus roseus)virescence (pPEVHn) in Hainan province, paulowniawitches’-broom (pPaWBG33D) in Yanzhou of Shandong province and chinaberrywitches’-broom phytoplasma strains (pCWBFqHu) in Fuqing of Fujian province,with thesizes of3833bp,3943bp,3843bp and3913bp, respectively. They are predicted to encode fiveproteins,open reading frame ORF1encoding replication associated protein(RepA),ORF5encoding binding protein(SSB)and ORF2-4encoding unknown function proteinss. pMDPy isthe first plasmid determined from mulberry dwarf phytoplasma.Sequence analysis ofnon-coding regions (NCR) of the four kinds of plasmids revealed that the NCR sequencesbetween ORF1and ORF2exist promoters and ribosome binding sites.The four phytoplasmaplasmid sequences were compared with the phytoplasma plasmid sequences found in GenBankthrough multiple alignment and phylogenetic analysis, the results showed that these fourplasmids and other16SrI group plasmid grouped into a large branch,which was consistent withthe phylogenetic tree created from16S rDNA comparisons. This research may not only providefurther insight into the structure and function, host specificity and plasmid variation andevolution within different phytoplasma species or strains,but also offers new theoretical basisfor multiple genes and index based system for phytoplasmal classification.
     Four different thymidylate kinase(tmk) genes were also identified in different paulowniacultivars of various regions. It was found that the length of tmk genes from PaWB-G33D、PaWB-JAN、PaWB-PS and PaWB-BJ phytoplasmas is591、600、639and588bp respected.Four tmks share the90-98%nucleotide sequence homology with the same groupphytoplasmas.The tmks of PaWB from diferent regions were different, which suggested thatthere might exist abundant genetic variation and population diversity in paulowniawitches’-broom phytoplasmas.
引文
蔡红,孔宝华,陈海如.长春花黄化植原体(PY)株系的检测与鉴定.微生物学报,2003,43(1):116-119.
    车海彦,罗大全,符瑞益等.海南长春花黄化病植原体的16Sr DNA序列分析研究.植物病理学报,2009,39(2):212-216.
    陈泠伶.日日春叶片黄化病植物菌质体之质体选殖与分析.台湾大学植物病理与微生物学研究所硕士学位论文,2010.
    陈育民,杨俊秀,景耀.丛枝病对泡桐生理及叶片微观构造的影响.陕西林业科技,1991,2:68-70.
    陈育民.丛枝病对泡桐叶片解剖构造生理生化及材性的影响.西北林学院学报,1992,7(4):50-57.
    范国强,蒋建平.泡桐丛枝病发生与叶片蛋白质和氨基酸变化关系的研究.林业科学研究,1997,10(6):570-573.
    范国强,李有,郑建伟等.泡桐丛枝病发生相关蛋白质的电泳分析.林业科学,2003,39(2):119-122.
    范国强,张胜,翟晓巧等.抗生素对泡桐丛枝病植原体和发病相关蛋白质的影响.林业科学,2007,43(3):138-142..
    胡勤学,周咏芝,马修理等.泡桐丛枝病指示植物的病理变化-I.同工酶、酚及相关酶.中南林学院学报,1992,12(1):57-63.
    胡佳续,宋传生,林彩丽耿显胜,田国忠.4种植物病害植原体病原质粒全序列测定及分子特征林业科学2013:49(4):90-97.
    蒋建平.泡桐栽培学.北京:中国林业出版社,1990:48-62.
    金开璇.泡桐丛枝病对泡桐立木生长影响的研究.林业实用技术,1980,5:25-26.
    廖晓兰,罗宽,朱水芳.植原体的分类及分子生物学研究进展.植物检疫,2002,16(3):167-172.
    林彩丽.泡桐丛枝病植原体质粒分子特征及其编码蛋白功能研究.中国农业大学博士生学位论文,2009.
    林木兰,杨继红,陈捷.泡桐丛枝病类菌原体单克隆抗体的研制及初步应用.植物学报,1993,35(9):710-715.
    刘仲健,罗焕亮,张景宁.植原体病理学.北京:中国林业出版社,1999.
    牟海青,范在丰,田国忠.泡桐丛枝植原体抗原膜蛋白抗血清的制备及应用.植物病理学报,2011,41(2):161-170.
    邱礽,陶刚,李奇科.农杆菌渗入法介导的基因瞬时表达技术及应用.分子植物育种,2009,7(5):1032-1039.
    秦淑丽,张兴国,宋波等.异戊烯基转移酶基因的克隆与转化烟草的研究.西南师范大学学报,2009,34(3):206-209.
    宋传生,林彩丽,田国忠等.苦楝丛枝植原体质粒的测定与分子特征.微生物学报,2011,51(9):1158-1167.
    宋传生.木本植物黄化类植原体的检测鉴定及苦楝丛枝植原体质粒的测定.中国林业科学研究院硕士论文,2011.
    宋晓斌,张学武,郑文锋等.罹丛枝病泡桐组织组织结构的解剖观察.陕西林业科技,1993,4,38-40.
    田国忠,李志清,胡佳续(共同第二作者),赵俊芳等.我国部分枣树品种(系)对枣疯病的抗性鉴定研究.林业科技开发,2013,27(3):19-25.
    田国忠,黄钦才,袁巧平等.感染植原体泡桐组培苗代谢变化与致病机理的关系.中国科学,1994,24(5):484-490.
    田国忠,李怀方,裘维蕃.植物激素与植物病害的相互作用.植物生理学通讯,1999,35(3):177-183.
    田国忠,李永,朱水芳等.我国木本植物致病性土壤杆菌的分子检测和比较鉴定.林业科学,2006,42(2):63-72.
    田国忠,温秀军,李永等.枣疯病和泡桐丛枝病植原体不同分离物组织培养保藏和嫁接传病试验比较.林业科学研究,2005,18(1):1-9.
    田国忠,袁巧平,黄钦才等.类菌原体病原致病机理探讨.中国植物病理学会第二届青年学术讨论会论文选编,1995:303-307.
    田国忠,朱水芳,罗飞等.根癌农杆菌对感染植原体的泡桐组培苗症状的影响.林业科学研究,2001,14(3):258-264.
    田国忠,李永,梁文星.丛枝病植原体侵染对泡桐组培苗组织内H2O2产生的影响.林业科学,2010,46(9):96-104.
    田国忠,张锡津,朱水芳等.间接免疫荧光显微术检测泡桐丛枝病原MLO的研究.林业科学研究,1996,9(1):1-6.
    王洁.泡桐丛枝病植原体延伸因子tuf基因分析及其他寄主植物的检测.山东农业大学硕士学位论文,2008.
    吴吉林,王再花,叶庆生等.细胞分裂素合成基因ipt研究进展.亚热带植物科学,2005,34(2):66-69.
    胥珊,孙一铭,贾之春等.超量表达IPT和KN1基因对转基因烟草生长发育的影响.植物生理学通讯,2009(6):537-543.
    徐梅卿,何平勋.中国木本植物病原总汇.哈尔滨:东北林业大学出版社,2008:816-817.
    徐启聪.中国不同地区不同枣树品种上枣疯植原体的分子鉴定及变异分析.中国林业科学研究院硕士论文,2009.
    徐启聪,田国忠,王振亮,孔繁华,李永,王合.中国各地不同枣树品种上枣疯植原体的PCR检测及分子变异分析.微生物学报,49(11):1510-1519.
    杨旺.森林病理学.北京:中国林业出版社,1996.
    张和禹,汪泰初,鲍先巡.桑树萎缩病的研究进展.中国蚕业,2010,31(1):9-12.
    赵锦,刘孟军,周俊义.枣疯病病树中内源激素的变化研究.中国农业科学,2006,39(11):2255-2260.
    赵京芳,胡佳续,宋传生,朱京驹,田国忠.北京市丰台区主栽枣品种对枣疯病抗性试验.中国森林病虫,2011,30(3):11-14
    郑文锋,宋晓斌,东子亭.泡桐丛枝病病原及传毒途径的研究.陕西林业科技,1990,(1):23-25.
    Albertazzia G, Milca J, Caffagnia A, et al.Gene expression in grapevine cultivars in response to Bois Noirphytoplasma infection. Plant Science,2009,176(6):792-804.
    Aldaghi M, Massart S, Bertaccini A, et al.Identification of host genes potentially implicated in the Maluspumila and ‘Candidatus Phytoplasma mali’ interactions.21st International Conference on Virus andother Graft Transmissible Diseases of Fruit Crops,2010,427:162-166.
    Bai XD, Correa VR, Toru o TY, et al.AY-WB phytoplasma secretes a Protein That Targets Plant Cell Nuclei.Molecular Plant-Microbe Interactions,2009,22(1):18-30.
    Bai, X., Zhang, J, Ewing, A, et al.Living with genome instability: the adaptation of phytoplasmas to diverseenvironments of their insect and plant hosts. J. Bacteriol,2006,188(10):3682-3696.
    Bertaccini, A. Phytoplasmas: diversity, taxonomy, and epidemiology. Front. Biosci,2007,12:673-689.
    Carginale V, Maria G, Capassoa C, et al.Identification of genes expressed in response to phytoplasmainfection in leaves of Prunus armeniaca by messenger RNA differential display.Gene,2004,332:29-34.
    Chang C.J.Pathogenicity of aster yellows phytoplasma and Spiroplasma citri on periwinkle.Phytopathology,1998,88:1347-1350.
    Chen WY, Lin CP.Characterization of Catharanthus roseus genes regulated differentially by peanut WitchesBroom Phytoplasma Infection.J Phytopathol,2011,159:505-510.
    Christensen NM, Axelsen KB, and Nicolaisen M, et al.Phytoplasmas and their interactions with hosts.Trends in Plant Science,2005,10(11):526-535.
    Davey JE, Van Staden J, De Leeuw GTN. Endogeous cytokinin levels and development of flower virescencein Catharanthus roseus infected with mycoplasmas. Physiological Plant Pathology,1981,19:193-200.
    Doi Y, Teranaka M, Yora K. Mycoplasma or PLT group-like micoorganisms found in the phloem elements ofplants infected with mulberry dwarf, potato witches’-broom,aster yellows,or paulownia witches’-broom.Annals of the Phytopathological Society of Japan,1967,33:259-266.
    Eberhard W G. Evolutionin bacterial plasmids and levels of selection. The Quarterly Review ofBiology,1990,65(1):3-22.
    Hisashi N, Shin-ichi M, Kenro O, et al. In planta expression of a protein encoded by the extrachromosomalDNA of a phytoplasma and related to geminivirus replication ptoteins. Microbiology,2001,147:507-513.
    Hogenhout S, Oshima K, Ammar ED, et al.Phytoplasmas: bacteria that manipulate plants and insects.Molecular Plant Pathology,2008,9(4):403-423.
    Hoshia A, Oshima K, Kakizawa S, et al.A unique virulence factor for proliferation and dwarfism in plantsidentified from a phytopathogenic bacterium.Proceedings of the National Academy of Sciences of theUnited States of America.2009,106(15):6416-6421.
    Hren M, Nikoli P, Rotter A, et al.'Bois noir' phytoplasma induces significant reprogramming of the leaftranscriptome in the field grown grapevine.BMC Genomics,2009,10:460-476.
    Ishii Y, Kakizawa S, Hoshi A, et al.In the non-insect transmissible line of onion yellows phytoplasma(OY-NIM), the plasmid-encoded transmembrane protein ORF3lacks the major promoter region.Microbiology,2009,155:2058-2067.
    Ishii Y, Oshima K, Kakizawa S, et al.Process of reductive evolution during10years in plasmids of anon-insect-transmissible phytoplasma.Gene,2009,446:51-57.
    Jagoueix-Eveillard S, Tarendeau F, Guolter K,et al.Catharanthus roseus genes regulated differentially bymollicute infections.MPMI,.2001,14(2):225-233.
    Ji XL, Gai YP, Zheng CC, et al.Comparative proteomic analysis provides new insights into mulberry dwarfresponses in mulberry (Morus alba L.). Proteomics,2009,9:5328-5339.
    K. Oshima, S. Kakizawa, H. Nishigawa.Reductive evolution suggested from the complete genome sequenceof a plant-pathogenic phytoplasma.Nature Genetics,2004,36(1):27–29.
    Kirkpatrick, B. C.Strategies for characterizing plant pathogenic mycoplasma-like organisms and their effectson plants. Plant Microbe Interact,.1989,3:241-293.
    Kirkpatrick, B. C., Stenger, D. C., Morris, T. J., et al.Cloning and detection of DNA from a nonculturableplant pathogenic mycoplasma-like organism. Science,1987,238(4824):197-200.
    Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., et al.'Candidatus Phytoplasma asteris', a novelphytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol,2004,54(4):1037-1048.
    Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., et al.Revised classification scheme of phytoplasmas basedon RFLP analyses of16S rRNA and ribosomal protein gene sequences [In Process Citation]. Int. J. Syst.Evol. Microbiol,1998,48(4):1153-1169.
    Lee, Y.-T., Jacob, J., Michowski, W., et al. Human sgt1binds HSP90through the CHORD-sgt1domain andnot the tetratricopeptide repeat domain. J. Biol. Chem,2004,279(16):16511-16517.
    Liefting, L. W., Kirkpatrick, B. C. Cosmid cloning and sample sequencing of the genome of the uncultivablemollicute, western X-disease phytoplasma, using DNA purified by pulsed-field gel electrophoresis.FEMS Microbiol. Lett,2003,221(2):203-211.
    Lin C L, Zhou T, Li H F, et al. Molecular characterization of two plasmids from paulownia witches'-broomphytoplasma and and detection of a plasmid-encoded protein in infected plants European Journal ofPlant Pathology,2009,123:321-330.
    M. Kube, B. Schneider, H. Kuhl. The linear chromosome of the plant-pathogenic mycoplasma―CandidatusPhytoplasma mali‖, BMC Genomics,2008,9:306.
    MacLean AM., Sugio A., Makarova OV, et al. Phytoplasma effector SAP54induces indeterminate leaf-likeflower development in Arabidopsis plants. Plant Physiology,2011,157(2):831-841.
    Margaria P, Palmano S. Response of the Vitis vinifera L. cv.‘Nebbiolo’ proteome to Flavescence dore′ephytoplasma infection.Proteomics,2011,11:212-224.
    Musetti P, Tubaro F, Polizzotto R, et al. Recovery da apple proliferation in melo èassociato all’aumentodella condentrazione dello ione calcio nel floema. Petria,2008,18(2):380-383.
    Neimark, H., Kirkpatrick, B. C.Isolation and characterization of full-length chromosomes fromnon-culturable plant-pathogenic mycoplasma-like organisms. Mol. Microbiol,1993,7(1):21–28.
    Nicolaisen M, Horvath DP.A branch-inducing phytoplasma in Euphorbia pulcherrima is associated withchanges in expression of host genes. J. Phytopathology,2008,156:403-407.
    Oshima K, Kakizawa S, Nishigawa H., et al. A plasmid of phytoplasma encodes a unique replication proteinhaving both plasmid-and virus-like domains: clue to viral ancestry or result of virus/plasmidrecombination? Virology,2001,285(2):270-277.
    Oshima KT, Shiomi T, Kuboyama T, et al.Isolation and characterization of derivative lines of the onionyellows phytoplasma that do not cause stunting or phloem hyperplasia.Phytopathology,2001,91:1024-1029.
    Oshima, K., Kakizawa, S., Nishigawa, H., et al. Reductive evolution suggested from the complete genomesequence of a plant-pathogenic phytoplasma. Nat. Genet,.2004.36(1):27-29.
    Persson BC, Esherg B, Olafasson O,et al. Synthesis and function of isopentenyl adenosine derivatives intRNA. Biochimie,1994,76:1152-1160.
    Peter J Davies.植物激素:合成、信号转导和作用.段留生等译.第三版.北京:中国农业大学出版社,2008:71-77.
    Pracros P, Hernould M, Teyssier E, et al. Stolbur phytoplasma-infected tomato showed alteration of SlDEFmethylation status and deregulation of methyltransferase genes expression.Bulletin ofInsectology,2007,60(2):221-222.
    Pracros P, Renaudin J, Eveillard S, et al.Tomato flower abnormalities induced by stolbur phytoplasmainfection are associated with changes of expression of floral development Genes.MPMI,2006,19(1):62-68.
    Seemueller, E., Marcone, C., Lauer, U., et al. Current status of molecular classification of the phytoplasmas.J. Plant Pathol,1998,80:3–26.
    Seemüller E, Schneider B, Maürer R, et al.Phylogenetic classification of phytopathogenic Mollicutes bysequence analysis of16S ribosomal DNA. International Journal of Systematic Bacteriology,1994,44(7):440-446.
    Sundin G W.Genomic insights into the contribution of phytopathogenic bacterial plasmids to theevolutionary history of their hosts. Annual Review of Phytopathology,2007,45:129-151.
    Tan Weiming, He Suping, Zhao Hongwei, et al.Systemic optimization of antibody and coating antigenconcentrations in ELISA checkerboard assay. Chinese Journal Of Analytical Chemistry,2008,36(9):1191-1195.
    Tian GZ, Yuan QP, Huang QC, et al.Effects of plant growth regulators and phenolic compounds onpaulownia culture in vitro infected with mycoplasma-like organisms. International Journal of TropicalPlant Diseases,1994,12(2):43-52.
    Vivian A, MurilloJ,J ackson R W.The roles of plasmids in phytopathogenic bacteria: mobile arsenals?Microbiology,.2001,147:763-780.
    Wang J, Zhu XP, Gao R, et al.Genetic and serological analyses of elongation factor EF-Tu of paulowniawitches’-broom phytoplasma (16SrI-D). Plant Pathology,2010,59:972-981.
    Wei W, Kakizawa S, Suzuki S, et al. In planta dynamic analysis of onion yellows phytoplasma usinglocalized inoculation by insect transmission. Bacteriology,2004,94(3):244-250.
    Weintraub PG, Beanland L.Insect vectors of phytoplasmas.Annu. Rev. Entomol,2006,51:91-111.
    Welliver R.Diseases caused by phytoplasmas. Plant Pathology Circular,1999,25(1):17-22.
    X. Bai, J. Zhang, A.Ewing. Living with genome instability: the adaptation of phytoplasmas to diverseenvironments of their insect and plant hosts, Journal of Bacteriology,2006,188(10):3682–3696.
    Yoshiko I, Shigeyuki K, Ayaka H, et al. In the non-insect-transmissible line of onion yellows phytoplasma(OY-NIM), the plasmid-encoded transmembrane protein ORF3lacks the major promoter region.Microbiology,2009,155:2058-2067.
    Zhong BX, Shen YW.Accumulation of pathogenesis-related type-5like proteins in phytoplasma infected
    garland chrysanthemum chrysanthemum coronarium. Acta Biochim Biophys Sin,2004,36(11):773–
    779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700