用户名: 密码: 验证码:
腹板V形加劲冷弯薄壁卷边槽钢轴压柱稳定性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷弯薄壁型钢与热轧型钢相比,具有许多优越之处,正日益广泛地应用于轻钢货架、低层住宅以及工业厂房等建筑结构之中。目前,大部分国家冷弯薄壁型钢设计规范中,都采用的是有效截面法设计构件的承载力,该方法在计算复杂截面的有效宽度时将变得异常繁琐,并且未考虑畸变屈曲的不利影响。为解决这些问题,Schafer和Pek z提出了直接强度设计方法。近年来,在冷弯薄壁型钢卷边槽形截面柱中,为提高构件局部屈曲承载力,常在腹板上设置加劲肋。此时,畸变屈曲会成为此类构件的屈曲失效模式之一。
     为方便水管、电线以及暖气管道在墙体中通过,常在冷弯薄壁型钢卷边槽形截面腹板中预先开设孔洞。孔洞的出现会对构件的屈曲失效模式和极限承载力产生影响。开孔试件的屈曲模式、弹性屈曲应力以及极限承载力与未开孔柱试件相比存在诸多不同之处。关于此种开孔柱构件的研究,目前大部分都是针对腹板未加劲卷边槽形截面柱。为了解开孔腹板加劲冷弯薄壁卷边槽钢柱试件的稳定性能,有必要对该类型构件开展试验和理论研究。
     本文通过试验、有限元、有限条以及理论分析的方法,对Q345材质开孔与未开孔腹板V形加劲冷弯薄壁卷边槽钢柱的稳定性能开展了研究工作。
     对两种截面形式、共计20个开孔与未开孔腹板V形加劲冷弯薄壁卷边槽钢短柱和中长柱进行了试验研究。对试件初始几何缺陷、截面尺寸以及钢材材料属性进行了详细的测量。试验中所有柱试件发生了畸变屈曲失效。在荷载下降段,中长柱除发生畸变变形外,还可以观察到绕弱轴的弯曲。孔洞不仅能改变构件的屈曲模式,还会使中长柱试件的畸变屈曲半波数发生变化。腹板上开有孔洞,加速了畸变屈曲变形的发展,导致极限荷载下降以及翼缘端部侧向变形增大。在试验过程中发现,柱试件畸变初始缺陷越大,对应的极限承载力越小,而畸变屈曲侧向变形越大。另外,对所有试验试件进行了有限元模拟,有限元分析结果与试验值吻合较好。
     在试验验证基础上,对Q345材质开孔与未开孔腹板V形加劲冷弯薄壁卷边槽钢柱进行了大规模有限元参数分析。通过变化柱长、加劲肋高度、腹板宽度、翼缘宽度、卷边宽度、孔洞间距以及边界条件等相关参数,研究了此类构件的稳定性能,并对比研究了相关参数变化时柱试件的极限承载力和屈曲失效模式。有限元参数分析结果是对试验数据的有效补充,为后续设计公式的建立提供了理论依据。
     弹性屈曲应力计算是冷弯薄壁型钢构件直接强度法应用的关键环节。按翼缘模型计算构件弹性畸变屈曲应力时需要确定腹板对翼缘的转动约束刚度。现有转动约束刚度计算公式较复杂,求解过程需要进行一次迭代。为了简化计算过程,本文提出了冷弯薄壁型钢卷边槽形截面柱翼缘转动约束刚度简化计算公式。该公式是在Lau和Hancock公式的基础上,结合我国《冷弯薄壁型钢结构技术规范》(GB50018—2002)中关于腹板和翼缘局部屈曲系数的规定而导出的,并根据Lau和Hancock公式计算结果对其进行了修正。与有限条分析值对比表明:该公式可以准确、方便地计算转动约束刚度,能够应用于冷弯薄壁型钢卷边槽形截面柱的设计计算。孔洞对开孔冷弯薄壁卷边槽钢柱试件弹性畸变屈曲应力的影响,可以通过折减全截面厚度予以考虑。本文提出的弹性局部屈曲应力和弹性畸变屈曲应力理论计算公式都与有限条或有限元分析值吻合较好。
     本文给出了基于直接强度法设计理念的轴压开孔与未开孔腹板V形加劲冷弯薄壁卷边槽钢柱畸变屈曲承载力设计公式,其计算值与试验结果和有限元参数分析值吻合较好。所得设计方法可以为今后设计规范的修订提供参考。
     有限元参数分析时,部分试件发生畸变与局部相关屈曲。本文经分析后指出,除以前学者们提出的弹性畸变屈曲应力与局部屈曲应力之比外,柱长也是影响畸变与局部相关屈曲发生的重要因素。在有限元分析结果的基础上,提出了该类型屈曲失效模式的建议设计方法,其计算值安全可靠。
Cold-formed thin-walled steel is used increasingly in a wide range oflight-weight construction including steel storage rack columns, low-rise, andindustrial factory building due to its many advantages compared with hot-rolledsteel. At present, the effective section method is adopted to predict the memberbearing capacity for the design specification of cold-formed thin-walled steel inmost countries. The computation of the effective width of complex section is moredifficult and meanwhile it does not take account of the disadvantage influence of thedistortional buckling. To overcome this problem, the direct strength method wasdeveloped by Schafer and Pek z. In recent years, the cold-formed thin-walled steellipped channel section columns with an intermediate stiffener in the web are widelyused in civil engineering which can increase the local buckling bearing capacity ofthe member. In this case, the distortional buckling may be one of failure modes todecide the member capacity.
     In order to accommodate plumbing, electrical, and heating conduits in the walls,the holes are pre-punched in the web of lipped channel section and can alter thebuckling mode and ultimate bearing capacity of the members. The buckling modesand critical elastic buckling stress as well as ultimate bearing capacity of thespecimens with perforations are significantly different from the members withoutperforations. The majority of existing test data on cold-formed thin-walled steelcolumns with holes generally focus on the simple lipped channel sections withoutintermediate stiffener in the web. Thus, it is important to do some experiments andtheoretical investigation in order to know the stability behavior of lipped channelsection columns with holes in the stiffened web.
     In this dissertation, the stability behavior of cold-formed thin-walled steellipped channel section columns with and without holes in V-shaped stiffened web,which were made of Q345steel, was analyzed by experiments, finite elementmethod, finite strip method, and theoretical method.
     A total of20cold-formed thin-walled steel lipped channel short andintermediate length columns with and without holes in V-shaped stiffened webincluding two different cross-sections were tested. Detailed measurements of initialgeometric imperfections, cross-section dimensions, and material properties wereconducted. All of the specimens failed in distortional buckling. At post-ultimaterange, a noticeable interaction between distortional and flexural buckling bendingabout the weak axial was observed for intermediate length columns. The openings in the web result in the change of buckling modes of the members and also change thenumbers of distortional buckling half-wave of intermediate length columns.Experimentally, slotted web holes accelerated the development of distortionalbuckling deformation, which resulted in the decrease of ultimate load and increaseof lateral displacement of the flange tips. Moreover, it is found that the lagerdistortional initial imperfections of the columns would lead to the lower bearingcapacities and greater lateral deformations induced by the distortional buckling. Inaddition, all of the tested specimens are simulated by means of the finite elementmethod, and the results of the finite element accord well with that of theexperiments.
     On the basis of experiment verification, a comprehensive of finite elementparametric analysis were performed for Q345material cold-formed thin-walled steellipped channel columns with and without holes in V-shaped stiffened web. Thestability behavior of these specimens was studied by changing the column length,stiffener height, web width, flange width, lip width, holes distance, and boundaryconditions. The ultimate bearing capacities and failure modes were compared bychanging the above parameters. The result of finite element parametric analysis is asupplement to the experiment data that can provide a theoretical base forestablishing the design formulae.
     The calculation of elastic buckling stress of cold-formed thin-walled member isa key problem using direct strength method. When the elastic distortional bucklingstress of the members was calculated with flange model, it was necessary todetermine the rotational restraint provided by the web to the flange. However, thecurrent calculation formula for the rotational restraint was complicated, and oneiteration was required in the solution process. In order to simplify the calculationprocess, a simplified calculation method for the rotational restraint of cold-formedthin-walled steel lipped channel section column was proposed. Based on Lau andHancock’s formula, the proposed method was derived in combination with theregulations concerning the local buckling coefficients of the web and flange in the―Technical code of cold-formed thin-wall steel structures (GB50018-2002)‖, and itwas then modified according to the results obtained by Lau and Hancock’s formula.Compared with finite strip analytical values, it is shown that the simplified methodcan calculate the rotational restraint accurately and conveniently, and can be usedfor the calculation of cold-formed thin-walled steel lipped channel section columns.The holes influence on elastic distortional buckling stress of cold-formedthin-walled steel lipped channel columns could be approximated by modifying thewhole cross-section thickness. In this paper, closed-form prediction of elastic local buckling stress and elastic distortional buckling stress were provided and shown toagree well with finite strip method or finite element method.
     A suggested direct strength method to estimate distortional buckling bearingcapacity for axially compressed cold-formed thin-walled steel lipped channelcolumns with and without holes in V-shaped stiffened web had been presented, andthe values calculated by the proposed method were in good agreement with theresults of experimental and parameter analysis. The design method is very useful forcode revision in the future.
     In finite element parametric analysis, it was found distortional and localinteractive buckling may occur in some specimens. Previous scholars proposed thatthe ratio of elastic distortional buckling stress to local buckling stress effecteddistortional and local interactive buckling. This paper pointed out that the length ofspecimens was another important factor. Based on the finite element analysis data,the design method to consider the distortional and local interactive buckling forcold-formed thin-walled steel lipped channel columns with and without holes inV-shaped stiffened web was proposed. It is shown that the data acquired bycalculation formulae is safe and reliable.
引文
[1]于炜文.冷成型钢结构设计[M].董军,夏冰青译.北京:中国水利水电出版社,2003:1-20.
    [2]陈雪庭,张中权.冷弯薄壁型钢结构构件[M].北京:中国铁道出版社,1990:5-7.
    [3] Yu C. Distortional Buckling of Cold-Formed Steel Members in Bending [D].John Hopkins University,Baltimore,2005:1-386.
    [4] Davies J M. Recent Research Advances in Cold-Formed Steel Structures [J].Journal of Constructional Steel Research,2000,55(1-3):267-288.
    [5]齐岩,苏明周,张琳琳,等.低层冷弯薄壁型钢房屋振动台试验及有限元分析[J].建筑科学与工程学报,2009,26(3):71-75.
    [6]周绪红,石宇,周天华,等.低层冷弯薄壁型钢结构住宅体系[J].建筑科学与工程学报,2005,22(2):1-14.
    [7]王海明.冷弯薄壁型钢受弯构件稳定性能研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:1-203.
    [8]中华人民共和国国家标准. GB50018-2002冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社,2003:1-93.
    [9] Yang D M, Hancock G J. Compression Tests of High Strength Steel ChannelColumns with Interaction between Local and Distortional Buckling [J]. Journalof Structural Engineering,2004,130(12):1954-1963.
    [10] Yang D M, Hancock G J. Compression Tests of Cold-Reduced High StrengthSteel Channel Columns Failing in the Distortional Mode [R]. Department ofCivil Engineering,University of Sydney,2003:1-104.
    [11]何保康,蒋路,姚行友,等.高强冷弯薄壁型钢卷边槽形截面轴压柱畸变屈曲试验研究[J].建筑结构学报,2006,27(3):10-17.
    [12]何保康,蒋路.冷弯薄壁型钢构件的直接强度法[J].建筑结构,2007,37(1):20-23.
    [13]姚行友,李元齐,沈祖炎.高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲性能研究[J].建筑结构学报,2010,31(11):1-9.
    [14] Kwon Y B, Hancock G J. Test of Cold-Formed Channels with Local andDistortional Buckling [J]. Journal of Structural Engineering,1992,117(7):1786-1803.
    [15] Yap D C Y, Hancock G J. Experimental Study of High Strength Cold-FormedStiffened Web Steel Sections [R]. School of Civil Engineering,University ofSydney,2008:1-118.
    [16] Kwon Y B, Kim B S, Hancock G J. Compression Tests of High StrengthCold-Formed Steel Channels with Buckling Interaction [J]. Journal ofConstructional Steel Research,2009,65(2):278-289.
    [17] Yap D C Y, Hancock G J. Experimental Study of High-Strength Cold-FormedStiffened-Web C-Sections in Compression [J]. Journal of StructuralEngineering,2011,137(2):162-172.
    [18] Chen J, He Y, Jin W L. Stub Column Tests of Thin-Walled Complex Sectionwith Intermediate Stiffeners [J]. Thin-Walled Structures,2010,48(6):423-429.
    [19] Kwon Y B, Park H S. Compression Tests of Longitudinally Stiffened PlatesUndergoing Distortional Buckling [J]. Journal of Constructional SteelResearch,2011,67(8):1212-1224.
    [20] Schafer B W, Pek z. Direct Strength Prediction of Cold-Formed Steel MembersUsing Numerical Elastic Buckling Solutions [C]. In: Proceedings of theFourteenth International Specialty Conference on Cold-Formed SteelStructures,1998:69-76.
    [21] North American Specifcation. North American Specifcation for the Design ofCold-Formed Steel Structural Members:2007Edition [S]. Washington, D.C.,American Iron and Steel Institute,2007:1-114.
    [22] North American Specifcation. Supplement No2to the North AmericanSpecifcation for the Design of Cold-Formed Steel Structural Members,2007Edition [S]. Washington, D.C., American Iron and Steel Institute,2010:1-47.
    [23] Standard Australia/Standards New Zealand. Cold-Formed Steel Structures,AS/NZS4600[S]. Sydney,NSW,Australia,2005:1-148.
    [24] Schafer B W. Distortional Buckling of Cold-Formed Steel Columns [R].American Iron and Steel Institute,Washington, D.C.,2000:1-41.
    [25] Schafer B W. Local, Distortional, and Euler Buckling of Thin-Walled Columns[J]. Journal of Structural Engineering,2002,128(3):289-299.
    [26] Schafer B W. Review: The Direct Strength Method of Cold-Formed SteelMember Design [J]. Journal of Constructional Steel Research,2008,64(7-8):766-778.
    [27] ádány S, JoóA L, Schafer B W. Buckling Mode Identification of Thin-WalledMembers by Using cFSM Base Functions [J]. Thin-Walled Structures,2010,48(10-11):806-817.
    [28]陈骥.冷弯薄壁型钢构件的直接强度设计法[J].建筑钢结构进展,2003,5(4):5-13.
    [29]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001:1-594.
    [30] Mulligan G P, Pek z T. Locally Buckled Thin-Walled Columns [J]. Journal ofStructural Engineering,1984,110(11):2635-2654.
    [31] Mulligan G P, Pek z T. Local Buckling Interaction in Cold-Formed Columns[J]. Journal of Structural Engineering,1987,113(3):604-620.
    [32] Hancock G J. Cold-Formed Steel Structures [J]. Journal of Constructional SteelResearch,2003,59(4):473-487.
    [33]何保康,周天华.冷弯型钢截面局部屈曲和AISI规范有效宽度计算的统一法则[J].建筑钢结构进展,2005,7(4):6-10.
    [34]张其林,沈祖炎.受压槽形截面的屈曲后强度[J].土木工程学报,1995,28(2):11-19.
    [35]董震,张其林.薄壁铝合金轴压构件承载力计算的直接强度法[J].土木工程学报,2009,42(6):28-34.
    [36]周绪红,莫涛,周期石,等.边缘加劲板件有效宽厚比设计方法中的板组效应研究[J].建筑结构学报,2002,23(3):37-43.
    [37]郭彦林.冷弯薄壁槽钢截面柱局部与整体相关屈曲[J].建筑结构学报,1992,13(1):53-59.
    [38]郭彦林.冷弯薄壁型钢柱局部与整体稳定相关屈曲作用的理论和试验研究[J].土木工程学报,1991,24(1):23-30.
    [39]郭彦林.冷弯薄壁槽钢柱相关屈曲的试验研究[J].西北工业大学学报,1990,8(2):159-165.
    [40]朱慈勉,沈祖炎.薄壁柱相关屈曲分析的混合有限元模型[J].同济大学学报,1997,25(1):11-16.
    [41]周绪红,王世纪.薄壁构件稳定理论及其应用[M].北京:科学出版社,2009:1-304.
    [42] Chodraui G M B, Neto J M, Gon alves RM, et al. Distortional Buckling ofCold-Formed Steel Members [J]. Journal of Structural Engineering,2006,132(4):636-639.
    [43] Kesti J, Davies J M. Local and Distortional Buckling of Thin-Walled ShortColumns [J]. Thin-Walled Structures,1999,34(2):115-134.
    [44] Hancock G J. Distortional Buckling of Steel Storage Rack Columns [J]. Journalof Structural Engineering,1985,111(12):2770-2783.
    [45] Casafont M, Pastor M M, Roure F, et al. An Experimental Investigation ofDistortional Buckling of Steel Storage Rack Columns [J]. Thin-WalledStructures,2011,49(6-7):701-729.
    [46] Luo H G, Guo Y J, Ma S C. Distortional Buckling of Thin-Walled InclinedLipped Channel Beams Bending about the Minor Axis [J]. Journal ofConstructional Steel Research,2011,67(12):1884-1889.
    [47]蒋路.卷边槽形冷弯薄壁型钢轴压柱畸变屈曲的试验和理论研究[D].西安:西安建筑科技大学学位论文,2007:1-137.
    [48]陈绍蕃,苏明周.冷弯型钢檩条的有效截面[J].建筑结构学报,2003,24(6):63-66.
    [49]苏明周,陈绍蕃.卷边槽钢梁受压翼缘畸变屈曲时的屈曲系数[J].西安建筑科技大学学报,1997,29(2):119-124.
    [50]徐翔,郝际平.关于截面可变形薄壁梁的方法论研究[J].西安建筑科技大学学报(自然科学版),2008,40(2):176-183.
    [51] Santos E S, Batista E M, Camotim D. Experimental Study on Cold-FormedSteel Lipped Channel Columns Undergoing Local-Global Interaction [C].SDSS’Rio2010Stability and Ductility of Steel Structures,Rio de Janeiro,Brazil,2010.
    [52] Batista E M. Local–Global Buckling Interaction Procedures for the Design ofCold-Formed Columns: Effective Width and Direct Method IntegratedApproach [J]. Thin-Walled Structures,2009,47(11):1218-1231.
    [53] Camotim D, Dinis P B. Coupled Instabilities with Distortional Buckling inCold-Formed Steel Lipped Channel Columns [J]. Thin-Walled Structures,2011,49(5):562-575.
    [54] Dinis P B, Camotim D. Post-Buckling Behaviour and Strength of Cold-FormedSteel Lipped Channel Columns Experiencing Distortional/Global Interaction[J]. Computers and Structures,2011,89(3-4):422-434.
    [55] Dinis P B, Camotim D, Silvestre N. FEM-Based Analysis of the Local-Plate/Distortional Mode Interaction in Cold-Formed Steel Lipped Channel Columns[J]. Computers and Structures,2007,85(19-20):1461-1474.
    [56] Silvestre N, Camotim D. Local-Plate and Distortional Postbuckling Behavior ofCold-Formed Steel Lipped Channel Columns with Intermediate Stiffeners [J].Journal of Structural Engineering,2006,132(4):529-540.
    [57]周绪红,王世纪.卷边板件屈曲分析的半能量法[J].湖南大学学报,1991,18(2):11-18.
    [58] Gon alves R, Grognec P L, Camotim D. GBT-Based Semi-Analytical Solutionsfor the Plastic Bifurcation of Thin-Walled Members [J]. International Journalof Solids and Structures,2010,47(1):34-50.
    [59] Silvestre N, Camotim D. First-Order Generalised Beam Theory for ArbitraryOrthotropic Materials [J]. Thin-Walled Structures,2002,40(9):755-789.
    [60] Silvestre N, Camotim D. Second-Order Generalised Beam Theory for ArbitraryOrthotropic Materials [J]. Thin-Walled Structures,2002,40(9):791-820.
    [61] Gon alves R, Dinis P B, Camotim D. GBT Formulation to Analyse theFirst-Order and Buckling Behaviour of Thin-Walled Members with ArbitraryCross-Sections [J]. Thin-Walled Structures,2009,47(5):583-600.
    [62] Casafont M, Marimon F, Pastor M M. Calculation of Pure Distortional ElasticBuckling Loads of Members Subjected to Compression via the Fnite ElementMethod [J]. Thin-Walled Structures,2009,47(6-7):701-729.
    [63] Camotim D, Silvestre N, Basaglia C, et al. GBT-Based Buckling Analysis ofThin-Walled Members with Non-Standard Support Conditions [J].Thin-Walled Structures,2008,46(7-9):800-815.
    [64]王春刚,张耀春,张壮南.冷弯薄壁斜卷边槽钢受压构件的承载力试验研究[J].建筑结构学报,2006,27(3):1-9.
    [65]王春刚,张耀春.直接强度法计算冷弯薄壁斜卷边槽钢轴压柱的承载力[J].工业建筑,2006,36(1):71-74.
    [66] Zhang Y C, Wang C G, Zhang Z N. Tests and Finite Element Analysis ofPin-Ended Channel Columns with Inclined Simpled Edge Stiffeners [J].Journal of Constructional Steel Research,2007,63(3):383-395.
    [67]王春刚.单轴对称冷弯薄壁型钢受压构件稳定性能分析与试验研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:1-183.
    [68] Silvestre N, Camotim D. Distortional Buckling Formulae for Cold-FormedSteel C and Z-Section Members: PartⅠ-Derivation [J]. Thin-WalledStructures,2004,42(11):1567-1597.
    [69] Silvestre N, Camotim D. Distortional Buckling Formulae for Cold-FormedSteel C-and Z-Section Members: Part II-Validation and Application [J].Thin-Walled Structures,2004,42(11):1599-1629.
    [70]王子龙.腹板V形加劲的冷弯卷边槽钢轴压下局部和畸变屈曲分析[D].哈尔滨:哈尔滨工业大学,2006:1-73.
    [71]姚行友,李元齐,沈祖炎.冷弯薄壁型钢构件畸变屈曲研究现状[J].结构工程师,2010,26(5):148-156.
    [72] Lau S C W, Hancock G J. Distortional Buckling Formulas for Channel Columns[J]. Journal of Structural Engineering,1987,113(5):1063-1078.
    [73] Papangelis J P, Hancock G J. Computer Analysis of Thin-Walled StructuralMembers [J]. Computers and Structures,1995,56(1):157-176.
    [74] Hancock G J, Kwon Y B, Bernard E S. Strength Design Curves for Thin-WalledSections Undergoing Distortional Buckling [J]. Journal of Constructional SteelResearch,1994,31(2-3),169-186.
    [75] Standard Australia/Standards New Zealand. Cold-Formed Steel Structures,AS/NZS4600[S]. Sydney,NSW,Australia,1996:1-115.
    [76] Polyzois D, Charnvarnichborikarn P. Web-Flange Interaction in Cold-FormedSteel Z-Section Columns [J]. Journal of Structural Engineering,1993,119(9):2607-2628.
    [77] Schafer B W. Cold-Formed Steel Behavior and Design: Analytical andNumerical Modeling of Elements and Members with Longitudinal Stiffeners
    [D]. Cornell University,Ithaca,New York,1997:1-454.
    [78] Schafer B W, Pek z T. Cold-Formed Steel Members with Multiple LongitudinalIntermediate Stiffeners [J]. Journal of Structural Engineering,1998,124(10):1175-1181.
    [79] Schafer B W, Pek z T. Laterally Braced Cold-Formed Steel Flexuar Memberswith Edge Stiffened Flanges [J]. Journal of Structural Engineering,1999,125(3):118-127.
    [80] Schafer B W, Pek z T. Computational Modeling of Cold-Formed Steel:Characterizing Geometric Imperfections and Residual Stresses [J]. Journal ofConstructional Steel Research,1998,47(3):193-210.
    [81] Schafer B W. Thin-Walled Column Design Considering Local, Distortional andEuler Buckling [C]. Structural Stability Research Council Annual TechnicalSession and Meeting,2001.
    [82] Young B, Rasmussen K J R. Tests of Fixed-Ended Plain Channel Columns [J].Journal of Structural Engineering,1998,124(2):131-139.
    [83] Young B, Rasmussen K J R. Design of Lipped Channel Columns [J]. Journal ofStructural Engineering,1998,124(2):140-148.
    [84] Young B, Rasmussen K J R. Behaviour of Cold-Formed Singly SymmetricColumns [J]. Thin-Walled Structures,1999,33(2):83-102.
    [85] Yan J, Young B. Column Tests of Cold-Formed Steel Channels with ComplexStiffeners [J]. Journal of Structural Engineering,2002,128(6):737-745.
    [86] Young B, Yan J. Channel Columns Undergoing Local, Distortional and OverallBuckling [J]. Journal of Structural Engineering,2002,128(6):728-736.
    [87] Young B, Yan J. Finite Element Analysis and Design of Fixed-Ended PlainChannel Columns [J]. Finite Elements in Analysis and Design,2002,38(6):549-566.
    [88] Young B, Hancock G J. Compression Tests of Channels with Inclined SimpleEdge Stiffeners [J]. Journal of Structural Engineering,2003,129(10):1403-1411.
    [89] Young B, Yan J. Design of Cold-Formed Steel Channel Columns with ComplexEdge Stiffeners by Direct Strength Method [J]. Journal of StructuralEngineering,2004,130(11):1756-1763.
    [90] Yan J, Young B. Numerical Investigation of Channel Columns with ComplexStiffeners-Part I: Test Verifcation [J]. Thin-Walled Structures,2004,42(6):883–893.
    [91] Young B, Yan J. Numerical Investigation of Channel Columns with ComplexStiffeners-Part II: Parametric Study and Design [J]. Thin-Walled Structures,2004,42(6):895–909.
    [92] Young B. Tests and Design of Fixed-Ended Cold-Formed Steel Plain AngleColumns [J]. Journal of Structural Engineering,2004,130(12):1931-1940.
    [93] Young B. Experimental Investigation of Cold-Formed Steel Lipped AngleConcentrically Loaded Compression Members [J]. Journal of StructuralEngineering,2005,131(9):1390-1396.
    [94] Young B. Research on Cold-Formed Steel Columns [J]. Thin-WalledStructures,2008,46(7-9):731-740.
    [95] Davies J M, Leach P. First-Order Generalised Beam Theory [J]. Journal ofConstructional Steel Research,1994,31(2-3):187-220.
    [96] Davies J M, Leach P, Heinz D. Second-Order Generalised Beam Theory [J].Journal of Constructional Steel Research,1994,31(2-3):221-241.
    [97] Leach P, Davies J M. An Experimental Verification of the Generalized BeamTheory Applied to Interactive Buckling Problems [J]. Thin-Walled Structures,1996,25(1):61-79.
    [98] North American Specifcation. Appendix1: Design of Cold-Formed SteelStructural Members Using the Direct Strength Method. In:2004Supplement tothe North American Specifcation for the Design of Cold-Formed SteelStructures [S]. Washington, D.C., American Iron and Steel Institute,2004.
    [99] Schafer B W, Sarawit A, Pek z T. Complex Edge Stiffeners for Thin-WalledMembers [J]. Journal of Structural Engineering,2006,132(2):212-226.
    [100]Schafer B W, ádány S. Buckling Analysis of Cold-Formed Steel MembersUsing CUFSM: Conventional and Constrained Finite Strip Methods [C].Eighteenth International Specialty Conference on Cold-Formed SteelStructures,Orlando,FL. October2006.
    [101]ádány S, Schafer B W. Buckling Mode Decomposition of Single-BranchedOpen Cross-Section Members via Fnite Strip Method: Derivation [J].Thin-Walled Structures,2006,44(5):563-584.
    [102]ádány S, Schafer B W. Buckling Mode Decomposition of Single-BranchedOpen Cross-Section Members via Finite Strip Method: Application andExamples [J]. Thin-Walled Structures,2006,44(5):585-600.
    [103]ádány S. Buckling Mode Classifcation of Members with Open Thin-WalledCross-Sections by Using the Finite Strip Method [R]. Johns HopkinsUniversity,2004:1-99.
    [104]Schafer B W, ádány S. Understanding and Classifying Local, Distortional andGlobal Buckling in Open Thin-Walled Members [C]. Proceedings of theAnnual Technical Session and Meeting, Structural Stability Research Council,Montreal,Quebec,Canada,May2005:27-46.
    [105]ádány S, Schafer B W. A Full Modal Decomposition of Thin-Walled,Single-Branched Open Cross-Section Members via the Constrained Finite StripMethod [J]. Journal of Constructional Steel Research,2008,64(1):12-29.
    [106]Beregszászi Z, ádány S. Application of the Constrained Finite Strip Methodfor the Buckling Design of Cold-Formed Steel Columns and Beams via theDirect Strength Method [J]. Computers and Structures,2011,89(21-22):2020-2027.
    [107]Pala M. A New Formulation for Distortional Buckling Stress in Cold-FormedSteel Members [J]. Journal of Constructional Steel Research,2006,62(7):716-722.
    [108]Pala M, Caglar N. A Parametric Study for Distortional Buckling Stress onCold-Formed Steel Using a Neural Network [J]. Journal of ConstructionalSteel Research,2007,63(5):686-691.
    [109]Pala M. Genetic Programming-Based Formulation for Distortional BucklingStress of Cold-Formed Steel Members [J]. Journal of Constructional SteelResearch,2008,64(12):1495-1504.
    [110]Li L Y, Chen J K. An Analytical Model for Analyzing Distortional Buckling ofCold-Formed Steel Sections [J]. Thin-Walled Structures,2008,46(12):1430-1436.
    [111]Teng J G, Yao J, Zhao Y. Distortional Buckling of Channel Beam-Columns [J].Thin-Walled Structures.2003,41(7):595-617.
    [112]姚谏,滕锦光.冷弯薄壁卷边槽钢弹性畸变屈曲分析中的转动约束刚度[J].工程力学,2008,25(4):65-69.
    [113]Moen C D, Schafer B W. Experiments on Cold-Formed Steel Columns withHoles [J]. Thin-Walled Structures,2008,46(10):1164-1182.
    [114] Moen C D, Igusa T, Schafer BW. Prediction of Residual Stresses and Strainsin Cold-Formed Steel Members [J]. Thin-Walled Structures,2008,46(11):1274-1289.
    [115]Moen C D. Direct Strength Design for Cold-Formed Steel Members withPerforations [D]. Johns Hopkins University, Baltimore,2008:1-529.
    [116]Moen C D, Schafer B W. Direct Strength Design for Cold-Formed SteelMembers with Perforations [R]. Research Report,Washington, D.C.:AmericanIron and Steel Institute,2009:1-488.
    [117]Moen C D, Schafer BW. Elastic Buckling of Cold-Formed Steel Columns andBeams with Holes [J]. Engineering Structures,2009,31(12):2812-2824.
    [118]Moen C D, Schafer BW. Elastic Buckling of Thin Plates with Holes inCompression or Bending [J]. Thin-Walled Structures,2009,47(12):1597-1607.
    [119]Li Z. Buckling Analysis of the Finite Strip Method and Theoretical Extensionof the Constrained Finite Strip Method for General Boundary Conditions [R].Johns Hopkins University,2009:1-51.
    [120]Li Z, Schafer B W. Buckling Analysis of Cold-Formed Steel Members withGeneral Boundary Conditions Using CUFSM: Conventional and ConstrainedFinite Strip Methods [C]. Twentieth International Specialty Conference onCold-Formed Steel Structures Saint Louis,Missouri,USA,2010.
    [121]Schafer B W, Li Z, Moen CD. Computational Modeling of Cold-Formed Steel[J]. Thin-Walled Structures,2010,48(10-11):752-762.
    [122]Li Z, Schafer B W. Application of the Finite Strip Method in Cold-FormedSteel Member Design [J]. Journal of Constructional Steel Research,2010,66(8-9):971-980.
    [123]Li Z, Hanna M T, ádány S, et al. Impact of Basis, Orthogonalization, andNormalization on the Constrained Finite Strip Method for Stability Solutionsof Open Thin-Walled Members [J]. Thin-Walled Structures,2011,49(9):1108-1122.
    [124]李元齐,刘翔,沈祖炎,等.高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲控制试验研究[J].建筑结构学报,2010,31(11):9-16.
    [125]李元齐,王树坤,沈祖炎,等.高强冷弯薄壁型钢卷边槽形截面轴压构件试验研究及承载力分析[J].建筑结构学报,2010,31(11):17-25.
    [126]李元齐,刘翔,沈祖炎,等.高强冷弯薄壁型钢卷边槽形截面偏压构件试验研究及承载力分析[J].建筑结构学报,2010,31(11):26-35.
    [127]李元齐,沈祖炎,王磊,等.高强冷弯薄壁型钢卷边槽形截面构件设计可靠度分析[J].建筑结构学报,2010,31(11):36-44.
    [128]Pek z T. Development of a Unified Approach to the Design of Cold-FormedSteel Members [R]. AISI Report SG-86-4,Nov.1986.
    [129]Schafer B W. Designing Cold-Formed Steel Using the Direct Strength Method
    [C]. In: Proceedings of the Eighteenth International Specialty Conference onCold-Formed Steel Structures.2006.
    [130]Schafer B W. Computational Modeling of Cold-Formed Steel [C]. CIMS2008,Fifth International Conference on Coupled Instabilities in Metal StructuresSydney,Australia,23-25June,2008.
    [131]Laboube R A, Yu W W. Recent Research and Developments in Cold-FormedSteel Framing [J]. Thin-Walled structures,1998,32(1-3):19-39.
    [132]Laboube R A, Yu W W, Langan JE, et al. Cold-Formed Steel Webs withOpenings: Summary Report [J]. Thin-Walled Structures,1997,27(1):79-84.
    [133]Abdel-Rahman N. Cold-Formed Steel Compression Members with Perforation
    [D]. McMaster University,Hamilton,Ontario,Canada,1997:1-264.
    [134]胡白香,刘永娟.轴压单孔冷弯薄壁槽形中长钢柱的极限承载力[J].江苏大学学报(自然科学版),2007,28(3):258-261.
    [135]赵桂萍,何保康.冷弯薄壁卷边槽钢开孔腹板屈曲后性能的试验研究[J].西安冶金建筑学院学报,1989,21(2):23-30.
    [136]何保康,赵桂萍.冷弯薄壁卷边槽钢开孔腹板屈曲性能分析[J].西安冶金建筑学院学报,1989,21(1):1-9.
    [137]Yu W W, Davis C S. Cold-Formed Steel Members with Perforated Elements [J].Journal of the Structural Division,1973,99(10):2061-2077.
    [138]Oritz-Colberg R A. The Load Carrying Capacity of Perforated Cold-FormedSteel Columns [D]. Cornell University,Ithaca,NY,1981.
    [139]Loov R. Local Buckling Capacity of C-Shaped Cold-Formed Steel Sectionswith Punched Webs [J]. Canadian Journal of Civil Engineering,1984,11(1):1-7.
    [140]Shanmugam N E, Paramasivam P, Lee SL. Stiffened Flanges ContainingOpenings [J]. Journal of Structural Engineering,1986,112(10):2234-2246.
    [141]Shanmugan N E, Thevendran V, Tan Y H. Design Formula for AxiallyCompressed Perforated Plates [J]. Thin-Walled Structures,1999,34(1):1-20.
    [142]Shanmugam N E, Dhanalakshmi M. Design for Openings in Cold-FormedSteel Channel Stub Columns [J]. Thin-Walled Structures,2001,39(12):961-981.
    [143]Shanmugam N E. Opening in Thin-Walled Steel Structures [J]. Thin-WalledStructures,1997,28(3-4):355-372.
    [144]Dhanalakshmi M, Shanmugam N E. Design for Openings in Equal-AngleCold-Formed Steel Stub Columns [J]. Thin-Walled Structures,2001,39(2):167-187.
    [145]Sivakumaran K S. Analysis for Local Buckling Capacity of Cold-Formed SteelSection with Web Openings [J]. Computer and Structures,1987,26(1-2):275-282.
    [146]Sivakumaran K S. Load Capacity of Uniformly Compressed Cold-FormedSteel Section with Punched Web [J]. Canadian Journal of Civil Engineering,1987,14(4):550-558.
    [147]Abdel-Rahman N, Sivakumaran K S. Effective Design Width for PerforatedCold-Formed Steel Compression Members [J]. Canadian Journal of CivilEngineering,1998,25(2):319-330.
    [148]Sivakumaran K S, Abdel-Rahman N. A Finite Element Aanalysis Model for theBehaviour of Cold-Formed Steel Members [J]. Thin-Walled Structures,1998,31(4):305-324.
    [149]Miller T H. Behavior of Cold-Formed Steel Wall Assemblies Subject toEccentric Axial Loads [D]. Cornell University,USA,1990:1-288.
    [150]Miller T H, Pek z T. Behavior of Cold-Formed Steel Wall Stud Assemblies [J].Journal of Structural Engineering,1993,119(2):641-651.
    [151]Miller T H, Pek z T. Unstiffened Strip Approach for Perforated Wall Studs [J].Journal of Structural Engineering,1994,120(2):410-421.
    [152]Pu Y, Godley M H, Beale R G., et al. Prediction of Ultimate Capacity ofPerforated Lipped Channels [J]. Journal of Structural Engineering,1999,125(5):510-514.
    [153]Sputo T, Tovar J. Application of Direct Strength Method to Axially LoadedPerforated Cold-Formed Steel Studs: Longwave Buckling [J]. Thin-Walledstructures,2005,43(12):1852-1881.
    [154]Sputo T, Tovar J. Application of Direct Strength Method to Axially LoadedPerforated Cold-Formed Steel Studs: Distortional and Local Buckling [J].Thin-Walled structures,2005,43(12):1882-1912.
    [155]周金将,余绍锋.等效模量法计算冷弯薄壁开孔槽钢柱屈曲应力[J].钢结构,2010,2(25):27-31.
    [156]王刚.腹板开孔C形卷边截面构件轴心受压性能研究[D].哈尔滨工业大学工学硕士学位论文,2002:1-69.
    [157]陈宇.腹板开孔冷弯薄壁卷边槽形受压构件性能研究[D].哈尔滨工业大学工学硕士学位论文,2004:1-10.
    [158]中华人民共和国国家标准. GB/T228-2002金属材料室温拉伸试验方法
    [S].北京:中国标准出版社,2002:1-332.
    [159]Dubina D, Ungureanu. Effect of Imperfections on Numerical Simulation ofInstability Behaviour of Cold-Formed Steel Members [J]. Thin-WalledStructures,2002,40(3):239-262.
    [160]Abdel-Rahman N, Sivakumaran K S. Material Properties Models for Analysisof Cold-Formed Steel Members [J]. Journal of Structural Engineering,1997,123(9):1135-1143.
    [161]周天华,周绪红,何保康,等. G550级高强薄板钢材的材性及应用[J].建筑科学与工程学报,2005,22(2):43-46.
    [162]Sharp M L. Longitudinal Stiffeners for Compression Members [J]. Journal ofthe Structural Division,1966,92(ST5):187-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700