用户名: 密码: 验证码:
基于波电场成像的陆域填方压实质量评价方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在山区内河和库区港口建设中,常涉及大面积的陆域填方工程,该类工程具有填方高度大、坡度陡、受变幅水位的影响等特点,填方的压实质量将直接影响到陆域填方的稳定性。然而由于填方填料的粒度变化大、含水量又很不均匀,从而使得现有的压实度测试方法受到相当程度的限制。因而如何快速、经济、有效地检测土石混填地基的压实度已经成为目前港口陆域高填方修筑技术中亟待解决的关键问题。本文基于电阻率对土石混合料的含水量较为敏感、而波速对土石混合料的密实程度较为敏感的特性,采用理论分析、模型试验、现场测试和成像分析等手段在对土石混合料波动传播特性和电阻率特性研究的基础上,建立陆域填方压实指标的反演模型,然后基于层析成像技术,正反演模型和观测系统研究,构建港口陆域填方压实质量的波电场成像评价方法,并通过模型试验和工程应用验证了该方法的可行性和可靠性。本文的主要工作如下:
     (1)土石混合料波动传播特性的理论与试验研究
     在对港口陆域填方土石混合料的宏观波动传播特性和土石混合料的等效弹性特性研究的基础上,对土石混合料的等效波动传播特性进行了系统地研究,提出了土石混合料的纵、横波理论传播公式,并按照该理论公式对土石混合料的波动影响因素进行了深入地分析,通过对土石混合料的波动传播特性的试验研究,进一步验证了理论分析的可靠性。
     (2)土石混合料电阻率特性的理论与试验研究
     在前人建立的非饱和黏性土的电阻率结构模型的基础上,通过对土的电阻率主要影响因素的综合分析,建立了土石混合料构成的港口陆域填方地基的电阻率结构模型,导出了其电阻率理论公式,并对该类型地基的电阻率影响因素进行了详细分析。随后进行了土石混合料电阻率特性的试验研究,并基于电阻率试验成果,分别从击实次数、含水量以及土石比三个方面对影响该类型介质的主要因素进行了深入分析。
     (3)港口陆域填方压实指标的反演模型研究
     以港口陆域填方中横波速度与土石混合料物性参数的理论公式和电阻率与土石混合料物性参数的理论公式为基础,将含水率作为与两者之间均密切相关的共同物性参数,建立港口陆域填方中波电场参数与土石混合料物性参数的理论公式。将该理论公式以函数的形式表示,采用在实际工程中易于测得的宏观参数(波动参数、电场参数)以及其它相关的物性参数作为自变量,将反映土石混合料压实质量的重要物性参数(干密度)作为因变量。以压实度作为港口陆域填方压实质量的控制指标,结合波电场参数与土石混合料物性参数的函数关系式,建立了基于波电耦合特性的港口陆域填方压实度的理论公式。为了该公式在工程应用的便捷性,对该理论公式进行了进一步的简化工作。
     (4)港口陆域填方压实质量波电场成像的评价方法研究
     基于层析成像理论以及最小二乘正交分解反演算法原理,提出基于最小二乘正交分解(LSQR)反演算法的波速层析成像实施技术;基于最小构造反演方法,在共轭梯度法的反演方法基础上提出了电阻率层析成像技术。在此基础上,结合港口陆域填方的特点,通过对波速成像和电阻率成像的观测系统的研究,构建了基于直流电测法和波动测试方法的陆域填方压实质量的波电场成像方法,并给出了港口陆域填方压实质量波电场成像评价方法的分析软件、程序和步骤。
     (5)港口陆域填方压实质量成像评价方法的试验研究
     为了验证本文提出的港口陆域填方压实质量成像评价方法的可靠性及准确性,分别制作了含空洞区域、不均匀体和未压实区三种不同不密实类型的试验模型。分别利用电阻率成像技术和弹性波成像技术对模型进行了成像观测与处理。依据电阻率成像成果,利用电阻率与土石混合料物性参数的理论公式,计算得到了试验模型的含水率分布图像;依据基于波电耦合特性的港口陆域填方压实度的简化理论公式,以含水率和弹性波速作为计算时所采用的物性参数,获得了试验模型的压实度分布图像,得到了试验模型压实度的空间分布形态,结合试验模型缺陷的设置形态,从而验证了该方法在反演港口陆域填方压实质量方面的适应性和可靠性。
     (6)富宁港陆域填方压实质量的波电场成像评价
     采用现场瞬态瑞利波法和直流电法对云南富宁港陆域填方的土石混合料进行了现场测试。利用电阻率成像获得土石混合料的电阻率分布图像,计算获得了土石混合料的含水率分布特征;采用简化剥层法对瞬态瑞利波法测试数据进行处理,获取了土石混合料的横波分布图像;利用基于波电耦合特性的港口陆域填方压实度的简化理论公式,计算获得了测试区域的压实度分布图像,最终得到了富宁港陆域填方的压实度空间分布特征,并对富宁港陆域填方的压实质量进行了评价。
Port construction engineerings often involves widespread filled projects of landfield on the mountains and reservoir which has characteristics of fill height, steeperslopes and influenced by the range of water level. The stability of land fill is directlyaffected by the compaction quality of fill.
     But because of the size distribution of filler changed greatly and the moisturecontent of filler changed unevenly, the existing test method of compaction is limited to acertain degree. So how to detect the compaction of the earth-rock mixture foundationfast, economically and effectively is an urgent problem to solve in current high fillbuilding technology on port construction.
     Based on the characteristics, such as resistivity is very sensitive to moisture contentof earth-rock mixture, while wave velocity is very sensitive to density of earth-rockmixture, according to the analysis of wave propagation characteristic and resistivitycharacteristics of earth-rock mixture with the method of theoretical analysis,model test,field test and imaging analysis, the compaction index inversion model of land fill isbuilt. Then wave field imaging evaluation method of compaction quality on land fill isestablished with tomography technology, forward and inversion model and observationinvestigation whose feasibility and reliability is verified by model test and engineeringapplication. The main studying contents of this paper are as follows:
     (1) Theory and experiment research on wave propagation characteristic of earth-rock mixture
     Based on the study of macroscopic wave propagation characteristics and equivalentelastic characteristics of earth-rock mixture in port land fill, the equivalent wavepropagation characteristic of earth-rock mixture is researched systematically, the P-wave and S-wave velocity theoretical formulas is raised. According to the theoryformulas, influence factors of wave propagation are studied deeply. The reliability oftheoretical analys is further verified with the experimental research of wave propagationcharacteristics on earth-rock mixture,
     (2) Theory and experiment research on the resistivity characteristics of earth-rockmixture
     On the basis of the previous resistivity structure model on unsaturated cohesivesoil, according to the comprehensive analysis of main influence factors on soil electricalresistivity, the electrical resistivity structure model of foundation with earth-rock mixture on port land fill is established,then theoretical formula of electrical resistivityis deduced and the affecting factors of electrical resistivity on this foundation isanalyzed in detail; Subsequently, electrical resistivity characteristics of earth-rockmixture is researched with experimental. Based on the result of electrical resistivity test,the main influence factors of this media are analyzed deeply with three aspectsseparately which are compaction times, water content and earth-rock ratio.
     (3) Inversion model research of compaction index on port land fill
     On the basis of the theoretical formulas between S-wave velocities of port land fill,electrical resistivity and physical properties parameters of earth-rock mixture, usemoisture content as common physical properties parameters of close relationship amongthem, then the theoretical formula between wave electric field parameters and earth-rock mixture parameters is built. The theoretical formula is shown with function, themacro-parameters (wave parameters, electric field parameters) and other relevantphysical parameters are as arguments which are easy to test, and the important physicalparameters such as dry density are dependent variable which reflects the compactionquality on soil-rock mixtures. Use degree of compaction as the control index ofcompaction quality for port land fill, and combine the function relationship between thewave electric field parameters and earth-rock mixture parameters, theoretical formula ofcompaction degree for port land fill is established with wave electrical couplingcharacteristics. The theoretical formula is further simplified for application expedientlyin actual engineering.
     (4) Wave-electric field imaging evaluation methods study of
     Based on the acoustic tomography theory and least squares orthogonaldecomposition algorithm principle, velocity tomography implementing technology israised with LSQR inversion algorithm. Based on the minimum structure inversionmethod, the electrical resistivity tomography technology is proposed with conjugategradient inversion method. On this basis, combine the characteristics of port land fill,wave electric field imaging method of compaction quality on port land fill is establishedby the method of direct current test and wave fluctuation testing, and the program, stepsand analysis software of the wave-electric field imaging evaluation methods ofcompaction quality on port land fill is given.
     (5) The experiment research on imaging evaluation methods of compaction qualityimaging for port land fill
     In order to verify the reliability and accuracy of compaction quality imagingevaluation methods on port land fill, three different un-compaction types are produced respectively which are contain empty zone, heterogeneous body, without compactedzone. The imaging observation and treatment of model is done by electrical resistivityimaging technology and elastic wave technology. According to the test results ofelectrical resistivity method, the moisture content distribution picture of test model iscalculated with theoretical formula between physical properties parameters of earth-rock mixture and electrical resistivity; Based on the simplified theoretical formula withwave electrical coupling characteristics for degree of compaction on port land fill, waterratio and the elastic wave velocity as the physical parameters, the degree of compactiondistribution picture on test model is obtained, and the space distribution is also obtained,combine the form of test model defection, the adaptability and reliability of this methodin inversing compaction quality on port land fill is verified.
     (6) The imaging evaluation on wave-electric field of compaction quality for portland area fill in Funing
     The earth-rock mixture filler of land fill in Yunnan Funing port is done a field testby the way of transient Rayleigh wave method and direct current electric method. thedistribution picture of electrical resistivity on earth-rock mixture filler is obtained withelectrical resistivity, the water content distribution characteristics is also calculated; thetest data of transient Rayleigh wave is processed with simplified stripping method, thenthe S-wave distribution picture of earth-rock mixture filler is obtained; the degree ofcompaction distribution picture for test zone is obtained by the simplified theoreticalformula which is based on wave electrical coupling characteristics for degree ofcompaction on port land fill, Finally, the degree of compaction for spatial distributioncharacteristics is obtained on land fill in Funing port, and the compaction quality forport land area fill in Funing is evaluated.
引文
[1]李晓,廖秋林,赫建明,等.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报,2007,26(12),2377-2384.
    [2]柴贺军,陈谦应,孔祥臣,等.土石混填路基修筑技术研究综述[J].岩土力学,2004,25(6),1005-1010.
    [3] Blot M A.Theory of propagation of waves in fluid-saturated porous solid(I)[J].J.Acoust Soc Am,1956,28(2):168-l78.
    [4] Blot M A.Theory of propagation of waves in fluid-saturated porous solid(Ⅱ)[J].J.Acoust Soc Am,1956,28(2):179-l91.
    [5]吴世明,唐有职,陈龙珠.岩土工程波动勘测技术[M].北京:水利电力出版社,l992.
    [6]吴世明.土介质中的波[M].北京:科学出版社,1997.
    [7]吴世明.土动力学原理[M].杭州:浙江大学出版社,1984.
    [8] Thomson W T.Transmission of elastic waves through a stratified solid edium[J].J.App1.Phys.,1950,21(1):89-93.
    [9] Haskell N A.The dispersion of surface waves in multilayered media[J].Bul1.Seismological Soc.of Am.,1953,43(1):l7-34.
    [10]杨桂通.土动力学[M].北京:中国建材工业出版社,2000.
    [11] Tajuddin M.Rayleigh waves in a poroelastic half-space.J Acoust Soc Am,1984,75:682-684.
    [12]陈云敏.成层地基中的瑞利波及其谱分析测试技术[博士学位论文D].杭州:浙江大学,1989.
    [13] Sharma M D,Gogna M L.Wave propagation in anisotropic liquid-saturated poroussolids. J Acoust Soc Am,1991:1068-1073.
    [14]夏唐代.地基中表面波特性及其应用[博士学位论文D].杭州:浙江大学,1992.
    [15]夏唐代,蔡袁强,吴世明,等.各向异性成层地基中Rayleigh波的弥散特性[J].振动工程学报,1996,9(2):191-197.
    [16]汪越胜,章梓茂.横观各向同性液体饱和多孔介质中平面波的传播[J].力学学报,1997,29(3):257-268.
    [17]陈龙珠,黄秋菊,夏唐代.饱和地基中瑞利波的弥散特性[J].岩土工程学报,1998,20(3):6-9.
    [18]刘凯欣,刘颖.横观各向同性含液饱和多孔介质中瑞利波的特性分析[J].力学学报,2003,35(1):100-104.
    [19]夏唐代,颜可珍,孙鸣宇.饱和土层中瑞利波的传播特性[J].水利学报,2004,(11):81-84.
    [20]周新民,夏唐代.半空间准饱和土中瑞利波的传播特性研究[J].岩土工程学报,2007,29(5):750-754.
    [21]黄茂松,任青,周仁义.层状地基中瑞利波随深度的衰减特性[J].岩土力学,2009,30(1):113-122.
    [22]赵明阶,吕卫兵.多相土-石复合介质波动传播特性[J].岩石力学与工程学报,2005,24(增1),4917-4923.
    [23] ARCHIE G E.The electric resistivity log as an aid in determining some reservoircharacteristics[J]. Transactions of the American Institute of Mining andMetallurgical Engineers,1942,146:54-61.
    [24] KELLER G V, FRISCHKNECHT F C. Electrical methods in geophysicalprospecting[M].New York:Pergamon Press,1966.
    [25] Parkhomenko,E.,Electrical properties of rocks[M].G.V.Keller,translator,ed.,Plenum Press,New York,N.Y.,1967.
    [26] Waxman M H,Smits L J M.Electrical conductivity in oil-bearing shaly sand[J].Society of Petroleum Engineering Journa1,1968,8:107-122.
    [27] Rhoades J J,Manteghi N A,Shouse P J,Alves W J.Soil electrical conductivityand soil salinity:new formulations and calibrations[J].Soil Science Society ofAmerican Journal,1989,53:433-439.
    [28] Arulmoli K, Arulanandan K, Seed H B. New method for evaluating liquefactionpotential[J]. Journal of Geotechnical Engineering Division, ASCE,1985,111(1):95-114.
    [29] MCNEILL J.Use of electromagnetic methods for groundwater studies[J].Geotechand Envir Geophys,1990(1):191-218.
    [30] Abu-Hassanein Z, Benson C, Blotz L. Electrical resistivity of compactedclays[J].Journal of Geotechnical Engineering,ASCE,1996,122(5):397-406.
    [31] KOMINE H. Estimation of chemical grouted soil by electricalresistivity[J].Ground Improvement,1997(1):101-ll3.
    [32] FUKUE M, MINATO T, HORIBE H, et al. The micro-structures of clay given byresistivity measurements[J].Engineering Geology,1999,54(1/2):43-53.
    [33]缪林昌,刘松玉,严明良.水泥土的电阻率特性及其工程应用研究[J].岩石力学与工程学报,2001,20(1),126-130.
    [34] McCarter W J. The electrical resistivity characteristics of compactedclays[J].Geotechnique,1984,34(2):263-267.
    [35] Kalinski R, Kelly W. Electrical-resistivity measurements for evaluatingcompacted soil liners[J]. Journal of Geotechnical Engineering, ASCE,1994,120(2):451-457.
    [36] LIU S Y YU X J. he electrical resistivity characeteristies of the cementedsoil[C]//Procedings of the2nd International Symposium on Lowland Technology,2000:185-190.
    [37] LIU S Y,YU X J.The electrical resistivity characeteristies of the cementedsoil[C]//Procedings of the2nd International Symposium on Lowland Technology,2000:185-190.
    [38] G.L Yoon, and J.B.Park..Sensitivity of leachate and fine contents onelectrical resistivity variations of sandy soils[J]. Jourhal of HazardousMaterials,2001,(B84):147-161.
    [39] ELLAN J,DELANEY P,PEAPPLES R.Electrical resistivity of frozen and petroleum-contaminated-fine-grained soil[J].Cold Region Science and Technology,2001,32:107-119.
    [40]刘松玉,于小军,缪林昌.水泥土的电阻率特性研究[J].地基处理,2001,12(3),30-36.
    [41] WILLIAM J Seaton, THOMAS J Burbey. Evaluation of two-dimensional resistivitymethods in a fractured crystalline-rock terrane[J]. Journal of AppliedGeophysics.2002,51:21—41.
    [42] GIAO P H, CHUNG S G, KIM D Y, TANAKA H. Electric imaging and laboratoryresistivity testing for geotechnical investigation of Pusan claydeposits[J].Journal of Applied Geophysics,2003,52:157-175.
    [43]于小军,刘松玉.电阻率测试技术在水泥土深层搅拌法工程中的应用研究.岩土力学,2003,24(8):592-597.
    [44] ROBAIN H.Laboratory measurement of electrical resistivity versus water contenton small soil cores[J].Geophysical Research Abstracts,2003,5:03830.
    [45]郭秀军,刘涛,贾永刚,等.土的工程力学特性与其电阻率关系实验研究[J].地球物理学进展,2003,18(1),151-155.
    [46]刘国华,王振宇,黄建平.土的电阻率特性及其工程应用研究[J].岩土工程学报,2004,26(1),83-87.
    [47]缪林昌,严明良,崔颖.重塑膨胀土的电阻率特性测试研究[J].岩土工程学报,2007,29(9),1413-1417.
    [48]查甫生,刘松玉,杜延军,等.非饱和黏性土的电阻率特性及其试验研究[J].岩土力学,2007,28(8),1671-1676.
    [49] Waxman,M.H.,and Smits,L.,J.,M..Electrical conductivity in oil-beating shalysand[J].Society of Petroleum Engineers Journal,1968,65,1577-1584.
    [50] Mitchell J K.Fundamentals of Soil Behavior[M].NewYork:Wiley&Sons,1993.
    [51]马争呜,李衍达.地震层析成像[J].石油地球物理勘探,1991,26(1),109-124.
    [52]甘利灯.地震层析成像的现状与展望[J].石油地球物理勘探,1993,28(3),362-373.
    [53]石林珂,孙懿斐.声波层析成像技术[J].岩石力学与工程学报,2003,22(1),122-125.
    [54]和锐,杨建思,张翼.地震层析成像方法综述[J]. CT理论与应用研究,2007,16(1),35-48.
    [55]王振宇.土木工程的层析成像与广义反演研究[硕士学位论文D].浙江:浙江大学,2003.
    [56]喻振华.工程井间地震波正演模拟及层析成像技术研究[博士学位论文D].长沙:中南大学,2008.
    [57]肖柏勋.高模式瑞雷面波及其正反演研究[博士学位论文D].长沙:中南大学,2000.
    [58]邢庆祝.地震CT成像技术中正演模拟技术的研究与应用[硕士学位论文D].福州:福州大学,2005.
    [59]杨文采,杜剑渊.层析成像新算法及其在工程检测上的应用[J].地球物理学报,1994,37(2),239-244.
    [60]朱文仲,赵志忠.弹性波CT技术几个重要问题的研究[J].工程地球物理学报,2008,5(2),173-180.
    [61]杨文采.地球物理反演[J].地球科学进展,1993,8(2),82-84.
    [62]杨文采.地震地震层析成像在工程勘测中的应用[J].物探与化探,1993,17(3),182-192.
    [63]杜剑渊,杨文采.跨孔地震层析成像的级联方法[J].地球物理学报,1991,34(6),771-780.
    [64]李天成.电阻率成像技术的二维三维正反演研究[博士学位论文D].北京:中国地质大学,2008.
    [65]李成森.电阻率成像技术在煤矿防治水方面的应用研究[硕士学位论文D].泰安:山东科技大学,2010.
    [66]王勇.井地电阻率成像法的应用研究[硕士学位论文D].长春:吉林大学,2011.
    [67]沈平.井间电阻率成像方法研究[硕士学位论文D].长沙:中大学,2010.
    [68]白登海,于晟.电阻率层析成象理论和方法[J].地球物理学进展,1995,10(1),56-75.
    [69]王兴泰,李小琴.电阻率图像重建的佐迪(Zohdy)反演及其应用效果[J].物探与化探.1996.20(3):228-233.
    [70]崔元星,张西荣.电阻率层析成像的实质及其应用[J].水文地质工程地质,1997,(2),58-60.
    [71]李晓芹,陶裕录,冯锐.电阻率层析成像的原理与初步应用[J].地震地质,1998,20(3),234-242.
    [72]毛先进,鲍光淑.2.5维电阻率成像的新方法[J].物探与化探,1999,23(2),150-152.
    [73]底青云,王妙月.积分法三维电阻率成像[J].地球物理学报,2001,44(6),843-851.
    [74]底青云,倪大来,王若.高密度电阻率成像[J].地球物理学进展,2003,18(2),323-326.
    [75]郭秀娟,张志毅,梁伟杰.三维电阻率成像新方法及应用[J].吉林大学学报(地球科学版),2005,35(1),118-122.
    [76]秦建增,杨磊,贺为民,等.电阻率成像技术研究与应用[J]. CT理论与应用研究,2008,17(3),50-56.
    [77]王广月,王登杰.填土压实标准的研究[J].中外公路,2003,23(3),78-80.
    [78]王延涛,刘洋,赵晓芳.灌砂法测定压实度应注意的几个问题[J].辽宁省交通高等专科学校学报,2003,5(2),22-24.
    [79]何兆益,吴国雄,朱洪洲.山区高填方土石混填路堤压实质量控制研究[J].公路交通科技,2002,19(3),28-31.
    [80]王鹏,郭成超,王海涛.增大击实功的路基压实试验研究[J].公路交通科技,2007,24(2),1-4.
    [81]赵桂娟,郭平.高速公路路基压实度检测方法相关性分析[J].西安科技大学学报[J].2006,26(2),179-183.
    [82]胡红梅,徐刚,盛安连.快速测量路基压实度的技术研究[J].江苏大学学报(自然科学版),2003,24(3),84-87.
    [83]顾炳其,马荣贵.路基压实度快速测定的瞬态冲击频谱分析法[J].西安公路交通大学学报,1997,17(4),37-41.
    [84]徐立章,徐刚.基于便携式计算机的路基压实度测定方法的实现[J].江苏理工大学学报(自然科学版),2001,22(5),69-72.
    [85]顾汉明,宋先海,刘江平,等.用瞬态瑞雷波反演横波速度评价高速公路压碾效果[J].地质科技情报,2001,20(2),100-102.
    [86]韦刚,赵明阶,黄卫东,等.土石路堤模型试验及压实度的波动测试[J].重庆交通学院学报,2004,23(4),49-53.
    [87]李少波,张献民,智胜英.路基压实度剪切波测试新技术[J].公路交通科技,2008,25(3),32-37.
    [88]邓学欣,王太勇,任成祖.压实度自动检测技术及其应用[J].西南交通大学学报,2003,38(5),505-508.
    [89]宁甲琳,曹源文.一种新型压实度连续检测方法[J].重庆交通学院学报,2007,26(1),74-77.
    [90]武雅丽,王鹊,卫雪莉.振荡压实度计的试验与研究[J].中国公路学报,1998,11(4),121-126.
    [91]张红春,戴经梁,李小重.智能冲击压路机路基压实度自动检测方法[J].交通运输工程学报,2007,7(5),63-67.
    [92]曹文贵,胡天浩,罗宏,等.土石混填路基压实度检测新方法探讨[J].湖南大学学报(自然科学版),2008,35(2),22-26.
    [93]郝孟辉,郝培文.土石混填路基动态回弹模量与压实度的关系[J].南京林业大学学报(自然科学版),2011,35(1),87-90.
    [94]杨成林.应用瑞利波等方法对公路质量进行无损检测[J].物探与化探,1996,20(2):104-ll5.
    [95]赵晓豹,马良筠.瞬态瑞利波测试方法[J].岩石力学与工程学报,2001,20(增):1127-1131.
    [96]石中明,夏唐代,梁国钱,等.检测堆填土密实度的瑞利波法[J].人民长江,2003,34(5):42-43.
    [97]王祥琴,陈进杰.波速测试检测路基压实质量的试验研究[J].铁道标准设计,2003,(6):40-41.
    [98]杨保全,张昊,王云泉.瑞利波弥散特性及在高速公路测试中的应用研究[J].长江科学院院报.2004,21(4):25-27.
    [99]谢昭晖,钟和,陈昌彦.瑞利波勘探技术在岩土工程勘察中应用[J].物探与化探,2007,31(3):279-282.
    [100]范云,汪英珍.瞬态瑞利波技术在铁路既有线路基基床质量评价中的应用[J].铁道标准设计,2008,(1):7-10.
    [101]贾学明,杨建国.土石混填路基强夯法施工质量无损检测技术[J].重庆交通大学学报(自然科学版),2008,27(增刊):945-947.
    [102]戴天,厉隽.瑞利波法检验客运专线湿陷性黄土地基处理效果[J].物探与化探,2009,33(5):603-607.
    [103]费晗,李志俊,蔡德钩.瞬态瑞利波法在检验地基加固效果中的应用研究[J].铁道建筑,2010,(9):86-88.
    [104]蒋伟宏,蒋正红,王斌.高密度电阻率成像技术及在铁路路基病害探测中的应用[J].西南交通大学学报,1999,34(3),331-336.
    [105]邓居智,刘庆成,莫撼.高密度电阻率法在探测水坝隐患中的应用[J].华东地质学院学报,2001,24(4),282-285.
    [106]朱自强,戴亦军.高密度电阻率法在高速公路岩溶探测中的应用[J].工程地球物理学报,2004,1(4),309-312.
    [107]廖从荣.高密度电阻率法在水库堤坝隐患探测中的应用效果分析[J].山西地震,2004,(3),12-15.
    [108]刘晓民,刘廷玺,万峥.高密度电阻率法在水文地质勘查中的应用[J].中国水利水电科学研究院学报,2007,5(2),154-157.
    [109]肖宏跃,雷行健,雷宛.环境物探技术在岩溶勘察中的应用及其效果[J].灾害学,2007,22(3),58-62.
    [110]牟平,霍军鹏,侯彦威.应用高密度电阻率法探测顶板基岩含水层厚度[J].勘探地球物理进展,2009,32(4),297-303.
    [111]赵明阶,何叶,荣耀,等.填方路基压实质量的电阻率成像诊断试验[J].中国公路学报,2011,24(3),16-21.
    [112]赵明阶,黄卫东,韦刚.公路土石混填路基压实度波动检测技术及应用[M].北京:人民交通出版社,2006.
    [113]韦刚.土石复合路堤压实度的波动测试技术研究[硕士学位论文D].重庆:重庆交通大学,2004.
    [114] Luke B,Stokoe n K H.Application of SASW method underwater[J].J.Geotech.andGeoenvironmental Engrg,1998,l7(3):523-532.
    [115] Tokimatsu K, Shinzawa K, Kuwayama.Use of short period microtremors for vsprofiling[J].J.Geotech,Engrg.,ASCE,1992,118(10):1544-1558.
    [116] Gucunski N, Woods R D. Inversion of Rayleigh wave dispersion curve for SASWtest[A].In:5th Int. Conf.on Soil Dyn.and Earthquake Engrg.[c].Karlsruhe,Germany:Computational Mechanics Publications,l99l,l27-l38.
    [117] AI-Hunaidi M O. Difficulties with phase spectrum unwrapping in spectral analysisof surface waves nondestructive testing of pavements[J]. Can. Geotech. J.,1992,29:506-5l1.
    [118] AI-Hunaidi M O.Insight on the SASW nondestructive testing method[J].Can.J.ofCivil Engrg.1993,20(6):940-950.
    [119] SOHEIL Nazarian, MILIND R D. Automated surface wave method:the fieldtesting[J].Journal of Geotechnique Engineering,1993,109(7):1094-lll2.
    [120] DEREN Yuan, SOHEIL Nazarian. Automated surface wave method: inversiontehnique[J].Journal of Geotechnique Engineering,1993,109(7):lll2-l127.
    [121] Jones R. Surface wave techenique for measuring the elastic properties andthickness of roads:theoretical developments[J].J.App1.Pilys.,1962,l3:2l-29.
    [122] Gabriel P,Sneider R,Nolet G.In-situ measurements of shear wave velocity insediments with higher-mode Rayleigh waves[J].Geophys Prospecting, l987,35:l87-l96.
    [123] AI-Hunaidi M O. Analysis of dispersed multi-mode signals of the SASW methodusing multiple filter/crosscorrelation technique[J]. Soil Dyn. and EarthquakeEngrg.,1994,13(1):13-24.
    [124] AI-Hunaidi M O.Nondestructive evaluation of pavements using spectral analysis ofsurface waves in frequency wave-number domain[J]. J.of NondestructiveEvaluation,1996,15(2):71-82.
    [125] Ganji V,-Gucunski N, Nazarian S.Automated inversion procedure for spectralanalysis of surface waves[J].J.Geotech.and Geoenvironmental Engrg.,1998,124(8):757-770.
    [126] Kausl E, Peek R. Dynamic loads in the interior of layered strum:an explicitsolution[J].Bul1.Seismological Soc.Of Am.,1982,72(5):l459-l48l.
    [127] Tokimatsu K,Tamura S,Kojima H.Effects of multiple modes on Rayleigh wavedispersion characteristic[J].J.Geotech.Engrg.,ASCE,1992,118(10):1529-1543.
    [128] Ganji V,Gucunski N,Maher A.Detection of underground obstacles by SASW method-numerical aspects[J].J.Geoteeh.and Geoenvironmental Engrg.,1997,123(3):212-220.
    [129] Wolf J P.Dynamic Soil-Structure Interaction[M]. Englewood Cliff: Prentic-HallInc.,1985.
    [130] Kausel E, Roesset J M. Stiffness matrixes for layeredsoils[J].Bul1.Seismological Soc.Of Am.,1981,7l(6):1743-1761.
    [131] Roesset J M, Chang D W.Stokoe K H II. Comparison of2D and3D models foranalysis of surface wave tests[A]. In:5th Int. Conf. on Soil Dyn. andEarthquake Engrg.[c].Karlsruhe,Germany:Computational Mechanics Publications,1991,11l-l26.
    [132] Meier R W,Rix G J.An initial study of surface wave inversion using artificialneural networks[J].Geotech.Testing J.,1993,l6(4):425-43l.
    [133]伊文W.层状介质中的弹性波[M].刘光鼎译.北京:科学出版社,1966.
    [134]吴爱祥,孙业志,黎剑华.散体介质中弹性波的传播规律[J].岩石力学与工程学报,2001,20(增):1121-1123.
    [135]黄卫东,赵明阶,韦刚.高速公路土石混填路基压实质量控制与评价[J].重庆交通学院学报,2005,24(4),49-54.
    [136]查甫生,刘松玉,杜延军,等.电阻率法评价膨胀土改良的物化过程[J].岩土力学,2009,30(6),1711-1718.
    [137]查甫生,刘松玉,杜延军.电阻率法在地基处理工程中的应用探讨[J].工程地质学报,2006,14(5),637-643.
    [138]查甫生,刘松玉,杜延军,等.黄土湿陷过程中微结构变化规律的电阻率法定量分析[J].岩土力学,2010,31(6),1692-1698.
    [139]查甫生,刘松玉,杜延军.击实膨胀土的电阻率特性试验研究[J].公路交通科技,2007,24(2),28-32.
    [140]查甫生,刘松玉,杜延军,等.基于电阻率的非饱和土基质吸力预测[J].岩土力学,2010,31(3),1003-1008.
    [141]查甫生,刘松玉,杜延军,等.基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J].岩土工程学报,2008,30(12),1832-1839.
    [142]刘松玉,韩立华,杜延军.水泥土的电阻率特性与应用探讨[J].岩土工程学报,2006,28(11),1921-1926.
    [143]刘松玉,查甫生,于小军.土的电阻率室内测试技术研究[J].工程地质学报,2006,14(2),216-222.
    [144]王玉,郭秀军,贾永刚,等.土壤一地下水系统非水相液体污染区的电性特征及电阻率法探测[J].地球物理学进展,2009,24(6),2316-2323.
    [145]郭秀军,刘涛,贾永刚,等.土的工程力学特性与其电阻率关系实验研究[J].地球物理学进展,2003,18(1),151-155.
    [146]屠毓敏,刘国华,王振宇,等.龙凤山水库土石坝电阻率层析成像无损检测技术[J].岩土力学,2008,29(6),1597-1601.
    [147] Brian E.Hornby.各向异性孔隙介质电学特性和弹性特性的等效介质模拟[J].石油物探译丛,1994,(6),46-52.
    [148] Yu Xiaojun, Miao Linchang, liu Songyu.The Electrica l ResistivityCharacteristics of Cement-Soil and Flyash-Lime-Soil[J]. Journ al of SoutheastUniversity (English Edition),2001,17(1),55-58.
    [149]于小军.电阻率结构模型理论的土力学应用研究[博士学位论文D].南京:东南大学,2004.
    [150] Mitchell J K. Arulanandan K. Electrical dispersion in relation to soilstructure[J].Journal of Soil Mechanics and Foundation Division,ASCE,1968,94(2):447-441.
    [151] Smith S S, Arulanandan K. Relationship of electrical dispersion to soilproperties[J]. Journal of Geotechnical Engineering. Division, ASCE,1981,107(5):591-604.
    [152] Thevanaayagam S. Electrical response of two phase soil: theory andapplications[J].Journal of Geotechnical Engineering,ASCE,1993,109(8):1250-1275.
    [153]顾明芬.基于电阻率特征的水泥土损伤模型初步研究[硕士学位论文D].南京:东南大学,2005.
    [154] Arulanandan K,Muraleetharan K K.Level ground soil liquefaction analysis usingin situ properties,part I[J].Journal of Geotechnical engineering.Division,ASCE,1988,114(7):771-790.
    [155] Campanella R G Weemees I.Development and use of an electrical resistivity conefor groundwater contamination studies[J].Canadian Geotechnical Tournal,1990,27:557-567.
    [156] Fukue M, et a1. Use of a resistivity cone for detecting contaminated soillayers|J].Engineering Geology,2001,60:361-369.
    [157] HORPIBULSUK S,MIURAN,NAGARAJ T S.Assessment of strength development in cementadmixed high water content clays with Abram’s law as a basis[J].Geoteehnique,2003,53(4):439-444.
    [158] M.Fukue, T.Minato, H.Horibe, N.Taya.The micro-structures of clay given byresistivity measurements[J].Engineering Geology,1999,(54):43-53.
    [159] Abu-Hassanein,Z.,Benson,C.,and Blotz,L..Electrical resistivity of compactedclays[J].J.Geotech Engrg.,ASCE,1996,122(5):397-406.
    [160] O. Tezel&F.Ozeep..Relationships of electrical resistivity and geotechnicalparameters[A].1ntemational Conference on Earth Sciences and Electronics[C],2003(ICESE一2003).
    [161] L.S.Bryson.Evaluation of geotechnical parameters using electrical resistivitymeasurements[A].Geofronters2005[C].New York,2005.
    [162] Thevanaayagam, S.. Electrical response of two phase soil: theory andapplications[J].J.Geotech.Engrg.,ASCE,1993,109(8):1250—1275.
    [163] M. Fukue et a1., Use of a resistivity cone for detecting contaminated soillayers[J].Engineering Geology,2001,(60):361-369.
    [164]余东.土石坝渗漏的电阻率成像诊断试验研究[硕士学位论文D].重庆:重庆交通大学,2010.
    [165]李赓.土石混合料电阻率试验研究[硕士学位论文D].重庆:重庆交通大学,2008.
    [166] JTG E60-2008,公路路基路面现场测试规程[S].
    [167] JTG F10—2006,公路路基施工技术规范[S].
    [168] JTS257-2008,水运工程质量检验标准[S].
    [169]沙庆林.公路压实与压实标准(第三版)[M].北京:人民交通出版社,1999.
    [170]袁从华,杨明亮,章光.粤连电厂拦灰坝土石混合料碾压试验研究[J].岩土力学,2004,25(4):640—645.
    [171]夏唐代,陈龙珠,吴世明.半空间饱和土中瑞利波特性[J].水利学报,1998,(2):47-53.
    [172]徐平,夏唐代.饱和度对准饱和土体中瑞利波传播特性的影响[J].振动与冲击,2008,27(4):10-13.
    [173]方谦光,李志华,潘瑞林.利用瑞利波进行铁路路基稳定性检测的理论基础及应用[J].铁道学报,1999,21(1):55-59.
    [174]夏唐代,陈云敏,吴世明.利用瑞利波速度弥散特性反演地基参数[J].振动工程学报,1991,4(4):31-37.
    [175]夏唐代,陈汉良,吴世明.流体-固体成层介质中瑞利波特性的进一步讨论[J].振动工程学报,1999,12(3):348-353.
    [176]夏唐代,吴世明.流体-固体介质中瑞利波特性[J].水利学报,1994,(1):69-75.
    [177]刘志丰,黄茂松.瑞利波法试验研究和理论综述[J].同济大学学报,2004,32(3):312-316.
    [178]吴燕清,杨天春.瑞利波频散曲线的反演[J].煤炭学报,2008,33(10):1097-1101.
    [179]柴华友,汪江波,周一勤,等.瑞利波分析方法及应用进展[J].岩石力学与工程学报,2002,21(1),119-125.
    [180]陈云敏,吴世明,夏唐代.用表面波频谱分析法检测道路结构的质量[J].浙江大学学报(自然科学版),1993,27(3),309-314.
    [181]罗延钟,万乐.高密度电阻率法成像[J].CT理论与应用研究,2006,15(1),61-65.
    [182]董浩斌,王传雷.高密度电阻率法的发展和应用[J].地学前缘,2003,10(10):171-176.
    [183] TRIPP A C,HOHMANN G W,SWIFT C G.Two-dimensional resistivity inversion[J].Geophysics,1984,49:1708.
    [184] JUPP D L B.VOZOFF K.Two-dimensional magnetotelluric inversion[J].Geophys.J.Roy.Astr.,1976,50:333.
    [185] FERRE P A,REDMAN J D,RUDOLPH D L,et a1.The dependence of the electricalconductivity measured by time domain reflectometry on the water content of asand[J].Water Resources Research,1998,34(5):1207-1213.
    [186] ZHU J J,KANG H Z,GONDA Y.Application of Wenner configuration to estimate soilwater content in pine plantations on sandy land[J].Pedosphere,2007,17(6):801-812.
    [187] SHEETS K R,HENDRICKX J M H.Non-invasive soil water content measurements usingelectromagnetic induction[J]. Water Resources Research,1995,31(10):2401-2409.
    [188]王怀坤,雷宛,罗有春,等.电磁阵列剖面资料的高密度处理与比较[J].石油天然气学报,2009,31(1),43-47.
    [189]肖鹏飞,孙开峰,曲寿利,等.电阻率法在复杂地区近地表速度建模中的应用[J].石油物探,2008,47(6),624-628.
    [190]江玉乐,康万福,张楠,等.高密度电阻率法在岩溶勘察中的应用[J].成都理工大学学报(自然科学版),2007,34(4),452-455.
    [191]宋先海,顾汉明.用瞬态瑞雷波反演横波速度试验研究[J].人民长江,2006,37(4),62-63.
    [192]厢汉,宋先海,刘江平,等.用瞬态瑞雷波反演横波速度评价高速公路压碾效果[J].地质科技情报,2001,20(2),100-102.
    [193]陈龙珠,严细水,赵永倩.关于面波法检测地基波速中的测点布置问题[J].岩土工程学报,2003,25(1),63-66.
    [194]杨成林.瑞雷波勘探[M].北京:地质出版社,1993.
    [195] B Park, R D Miller, Xia J. Multichannel analysis of surfacewaves[J].Geophysics,1999,64(3):800-808.
    [196]绦攸在.动测地基承载力方法中参数的确定[J].岩土工程学报,1996,18(1):15-19.
    [197] Xia J,Miller R D,Park C B.Estimation of near-surface shear wave velocity byinversion of Rayleigh wave[J].Geophysics,1999(64):691-700.
    [198]刘明贵.瞬态与稳态瑞利波法频散曲线等价性研究[J].岩土力学,2003,24(4):500-504.
    [199]夏唐代,陈云敏,吴世明.匀质软夹层地基瑞利波弥散特性[J].振动工程学报,1993,6(1):42-50.
    [200] Jones J P.Rayleigh wave in a porous saturated solid[J].J.Acoust Soc Am,1961,33:959-962.
    [201] Chiang C M,Mostafa A F.Wave-induced responses in fluid-filled poro-elasticsolid with a free surface boundary layer theory.Geophsics[J].J.R.Astr.Soc.,198l,166:597-631.
    [202] Anderson,D D. Elastic wave propagation in layered anisotropic Media.J.ofGeophysical Research.1961,66(9):2953-2963.
    [203] Jones JP, Rayleigh waves in a poroelastic half-plane. J Acoust Soc Am,1961,33:952-962.
    [204]张碧星,路来玉,汪承灏.瑞利波在分层半空间介质的反演[J].中国物理快报,2004,21(4):682-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700