用户名: 密码: 验证码:
山区沿河公路水毁评估与减灾方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前全球气候变化和灾害频发的背景下,作为分布最广泛、最便捷的公路基础设施,公路本身即是受灾害作用的客体,同时也承担为抢险救灾提供交通支持的任务,因此开展山区沿河公路水毁风险研究有重要意义。风险评估是防灾减灾学科的重要方面,可为山区公路地质安全提供决策支持。本文以山区沿河公路水毁风险为研究对象,通过大量现场调查,采用灾害学、公路水毁学、灾害地质学、地貌学、岩土力学、水力学、GIS技术、数值模拟等多学科交叉和综合研究手段,研究山区沿河公路水毁风险形成机制、评估及减灾方法,取得的主要研究成果如下:
     1)立足山区沿河公路建设及养护需求,从山区沿河公路水毁灾害分类、水毁风险形成机制、评估和减灾措施等方面构建了山区沿河公路水毁风险评估理论和减灾技术框架。提出了山区沿河公路地质安全和水毁风险评估的理念,丰富了公路养护科学内涵。重视小流域山洪、河道洪水对山区沿河公路的致灾作用,提出了水毁灾害体的概念。
     2)基于水毁灾害体毁损山区沿河公路的受力模式,将山区沿河公路水毁灾害类型概化为推挤、牵拉、“冲”、“淤”、“渗”五大类型,便于进一步深入研究水毁灾害体毁损山区沿河公路的力学机制。通过有限元数值模拟对典型公路水毁类型破坏公路的机制进行了研究,数值模拟研究重点针对滑坡推挤、滑坡牵拉、落石冲击、冲蚀槽扩展、泥石流淤埋、涵洞渗流等作用对公路的毁损规律进行了研究,得出了典型水毁灾害类型毁损公路的变形破坏规律。
     3)提出了公路水毁风险的耦合对抗形成机制,即公路水毁风险是水毁灾害体危险性与公路承灾体易损性之间时空耦合对抗的结果。认为水毁风险评估是关于多因素非线性灾害风险系统的预测评价问题。根据水毁风险形成的耦合机制,提出了采用解耦措施来逆向控制公路水毁风险形成演化过程的减灾思路。
     4)提出了水毁灾害体的孕灾环境与致灾因子异相耦合发育机理。基于公路承灾体健康的理念,认为公路承灾体易损性主要受控于公路结构本身的健康性态,采取技术可行、经济合理的技术措施使结构健康复原是工程性减灾措施的目的。将公路承灾体类型分为结构性承灾体和功能性承灾体两类。针对山区沿河公路,给出了从孕灾环境、致灾因子、水毁灾害体危险性、承灾体易损性评价到水毁风险评估的思路与一般函数表达式。
     5)建立了小流域山洪对沟口段公路的危险性评价方法。基于流域地貌分析,提取分岔比、河流频数、RHO系数、形状系数等典型地貌特征参数,综合考虑提取的地貌量化参数与小流域山洪危险性的关系,分级量化小流域山洪对沟口公路的危险性大小。
     6)构建了山区沿河公路崩滑灾害危险性评价方法和指标权重计算方法。基于崩滑灾害的孕灾环境和致灾因子异相耦合发育机理,采用地理信息系统和遥感技术手段,在因素分析、指标遴选、基础数据库建立、崩滑信息指数和指标权重计算的基础上,构建了山区沿河公路崩滑灾害危险性评价方法。基于历史崩滑灾害面积分布信息熵,建立了山区沿河公路崩滑灾害危险性评价指标权重的计算方法,确定的权重具有一定的客观性。
     7)建立了基于泥石流沟地貌演化阶段的公路泥石流灾害危险性评价方法。根据泥石流沟不同地貌演化阶段与泥石流灾害规模、频率的关系,建立了泥石流沟不同发育阶段与泥石流灾害危险性等级之间的映射关系,可据此进行泥石流地貌灾害危险性评价。一般情况下,泥石流沟谷地貌演化从幼年期到老年期的整个过程中,泥石流灾害危险性总的变化趋势是先增高再降低,在壮年偏幼年期泥石流灾害危险性等级最高为极危险;各发育阶段根据泥石流灾害危险性由高到低排序,依次为:壮年偏幼年期、壮年期、幼年期、壮年偏老年期、老年期。
     8)以横断山区美姑河流域沿河公路为例进行了小流域山洪对沟口公路危险性评价、崩滑灾害危险性评价、公路泥石流灾害危险性评价,验证了本文建立的危险性评价方法的有效性,得出了研究区公路水毁风险相关的一些结论,可供研究区公路管养部门防灾减灾决策参考。
     9)从流固耦合动力学、紊流力学、泥沙运动力学的角度研究了山区沿河公路洪水毁损过程及机理、路基冲失机制、路基缺口形成机制。以河道洪水毁损山区沿河公路承灾体机制研究为基础,遴选典型承灾体易损性评价指标,并进行指标分级量化后,进行山区沿河公路主要承灾体易损性分析。
     10)在山区沿河公路水毁风险评价单元划分的基础上,对山区沿河公路线形评价单元在潜在多灾种作用下的危险性评价给出了危险度计算方法。对山区沿河公路评价单元综合易损性和潜在公路灾害损失分别给出了易损度和潜在损失估算方法。针对山区沿河公路水毁风险评估,耦合危险度、易损度和潜在公路灾害损失得出了山区沿河公路水毁风险计算的隐式表达式,并就水毁风险评估的显式计算模型进行了探讨。
     11)强调以水毁风险评估为代表的非工程性减灾手段的重要性,得出了山区沿河公路水毁灾害减灾系统框架体系,从工程性和非工程性措施两方面系统总结了山区沿河公路水毁灾害减灾措施的研究现状和进一步研究的方向。从山区沿河公路养护工作创新意识和基于水毁风险评估的灾害预警两方面探讨了山区沿河公路非工程性水毁灾害减灾措施。针对山区洪水、泥石流灾害毁损沿河公路的作用特征,从山区沿河路基曲面型路基防护结构扩展了工程性减灾措施。
In the current climate changing and disaster frequently happening background, as the most widely distributed and most convenient transportation infrastructure, highway is often affected by adverse action effect of disasters, at the same time highway also provides traffic support for emergency rescue and disaster relief, therefore the study of water-related highway disaster risk assessment in mountain area for highway along the river has important significance. Risk assessment is an important aspect of the discipline for disaster prevention and mitigation science, it can provide decision support to mountain area highway geological safety. This paper takes the water-related highway disaster risk of highway along river in mountain area as the research object, performs the study of formation mechanism, risk evaluation and disaster reduction method for water-related highway disaster of mountainous riverbank highway through a lot of field survey and by combining the theories and comprehensive research methods of disaster science, water-related highway disaster science, disaster geology, geomorphology, rock-soil mechanics, hydraulics, GIS technique, numerical simulation, etc., the main achievements are obtained as follows:
     1) Based on the mountainous riverbank highway construction and maintenance demand, set up the water-related highway disaster theory and mitigation technology framework from the aspects of water-related highway disaster classification, risk formation mechanism, risk evaluation and relief measures etc. Puts forward the concepts of highway geology safety and water-related highway disaster risk evaluation for mountainous riverbank highway, enriched the scientific connotation of highway maintenance. Paying attention to disaster effect caused by flash floods of small watershed and river flood along river, this paper put forward the concept of water-related highway disaster body.
     2) Based on the highway damaging mechanical model under the action of water-related highway disaster body, classified the water-related highway disaster into five major types, that is pushing, pulling,"impacting","silting" and "seepage", the new classfication of water-related highway disaster can facilitate the mechanical mechanism research of water-related highway disaster damage to riverbank highway in mountainous area. Damage mechanism of highway were studied through the finite element numerical simulation of typical highway water-related disaster, and the numerical simulation research mainly focused on the landslide pushing, landslide pulling, rockfall shock, erosion groove expansion, debris flow burying and culvert seepage action to highway, obtained the deformation and failure law of highway caused by typical water-related highway disasters.
     3) Put forward the coupling and confrontation mechanism of water-related highway disaster risk, that is water-related highway disaster risk is the result of coupling and confrontation between hazard of water-related highway disaster body and vulnerability of highway hazard-bearing body. Thought water-related highway disaster risk assessment is about the prediction and evaluation study on the multi-factors and nonlinear disaster risk system. According to the coupling formation mechanism of water-related highway disaster risk, put forward the decoupling disaster alleviation idea to reverse control the formation processes of water-related highway disaster risk.
     4) Put forward the catastrophe-coupling development mechanism of water-related highway disaster body by interaction between disaster-breeding environment and disaster-causing factor. Based on the health concept of highway hazard-affected body, thought hazard-bearing body vulnerability is mainly controlled by the health state of highway structure, the purpose of engineering disaster alleviation measures is making structure health recovery by taking technically feasible and economy reasonable measures. Classified the highway hazard-affected body into two types, that is structural and functional ones. In regard to mountainous riverside highway, given the work ideas and general function expressions for assessment of disaster-breeding environment, disaster-causing factor, water-related highway disaster body hazard, hazard-bearing body vulnerability and water-related highway disaster risk.
     5) Established the flash flood hazard evaluation method for highway at the outlet of small watershed. Based on morphometric analysis of watershed, extracted the quantitative parameters of watershed geomorphology such as bifurcation ratio, river frequency, RHO ratio and shape factor etc. Comprehensively considering the relationship between the quantitative parameters of geomorphology and flash flood hazard for sub-basins, the hazard degree of outlet sections of highway for the sub-basins was quantified and classified.
     6) Constructed collapse and landslide hazard evaluation method and index weight calculation method of mountainous highway along river. Based on the catastrophe-coupling development mechanism of collapse and landslide by interaction between disaster-breeding environment and disaster-causing factor, using geographical information system and remote sensing technology means, collapse and landslide hazard evaluation method was constructed on the basis of factor analysis, index selection, basic database established, the calculation of information index and index weight of collapse and landslide. Based on the historical avalanche and landslide disaster area distribution information entropy, established the evaluation index weight calculation method for mountainous collapse and landslide hazard evaluation of riverbank highway, and the weights obtained from this method is objective to some extent.
     7) Established hazard assessment method of debris flow along highway based on geomorphic evolution stages. Highway debris flow hazard can be assessed based on the established relationships between evolution stage of debris flow gully and disaster scale, frequency and hazard level. Research shows that in strong-to-young stage the debris flow gully has the highest hazard level, and the rank of hazard level in life cycle of debris flow gully from high to low is strong-to-young, strong, young, strong-to-old, old.
     8) Hazard evaluation of flash flood, debris flow, collapse and landslide was performed for riverside highway in Meigu river of Hengduan Mountains, verified the validity of hazard evaluation method established in this paper, and drew some useful conclusions about water-related highway disaster risk, which could provide supporting for highway disaster prevention and mitigation decision-making of local highway maintenance department.
     9) Flood damage process and mechanism of mountain area riverside subgrade including washout and collapse gap were studied from the perspective of fluid-structure coupling dynamics, turbulent mechanics and mechanics of sediment movement. Based on the mechanism research of flood-induced highway damage, selected vulnerability evaluation index of hazard-affected body, quantified and classified the indexes, performed the vulnerability evaluation for main hazard-affected bodies of highway along river in mountainous area.
     10) Based on evaluation unit alignment of water-related highway disaster risk, hazard degree calculation method under multi-disasters was established for mountainous highway along river. And integrated vulnerability degree and potential highway disaster loss estimation methods were given respectively. Implicit calculation expression for water-related highway disaster risk was established by coupling hazard degree, vulnerability degree and potential highway disaster loss together, and explicit calculation model for water-related highway disaster risk was discussed.
     11) Disaster relief frame system for highway along river in mountainous area was put forward by emphasizing the importance of nonstructural disaster mitigation measures such as water-related highway disaster risk assessment, the present research situation and further research direction of water-related highway disaster control measures were summarized systematically from structural and nonstructural countermeasures. The nonstructural water-related highway disaster countermeasure of highway along river in mountainous area was discussed from maintenance innovation consciousness to disaster early warning based on risk assessment. According to the action characteristics of flood and debris flow performed on highway structure along river, expanded the structural disaster reduce measure by curved surface roadbed protection structure for subgrade along mountainous riverbank.
引文
[1]陈洪凯,祝江林,张永兴.公路水毁的系统工程方法论探讨[J].重庆交通学院学报,1997,16(2):9-12.
    [2]祝晓寅,陈洪凯,翁其能,周富春.山区公路水毁机理与抗毁结构分析[J].重庆交通学院学报,2001,20(2):58-64.
    [3]高冬光.公路与桥梁水毁防治[M].北京:人民交通出版社,2002.
    [4]陈开圣,肖涛,彭小平.贵州省公路地质灾害基本特征及防治对策研究[J].公路,2009,(11):135-139.
    [5]赵丽杰,张茂慧,李淑庆.重庆市国省干线公路灾害分析及防治措施[J].重庆交通学院学报,2007,26(3):116-122.
    [6]杨凌云,王晓谋,张哲,等.秦巴山区软弱变质岩路基填料浸水前后的变形特性[J].岩石力学与工程学报,2010,29(S2):3536-3541.
    [7]陈义军,刘长武,徐进,等.山区公路斜坡填筑路堤应力形变特征及影响因素分析[J].岩土力学,2009,30(4):1051-1056.
    [8]柴贺军,李海平,王俊杰.山区公路斜坡地形路基病害类型及处治方法[J].公路交通技术,2008,(6):1-5/10.
    [9]万智,邓宗伟,刘宝琛,吴亚中.山区拓宽公路挡土墙路基的受力与变形特征分析[J].岩土力学,2007,28(5):921-926/938.
    [10]丁宝晶,康小兵,傅荣华,等.天山公路典型滑坡变形破坏物理模拟研究[J].中外公路,2009,29(1):23-26.
    [11]刘应辉.汶川地震区都汶公路沿线崩塌滑坡灾害特征与评价[D].兰州大学硕士研究生学位论文,2008.
    [12]李世凯.强震作用下岩质边坡崩塌的动力响应分析[D].成都理工大学硕士研究生学位论文,2010.
    [13]赵瑜,王铁成,李维朝,等.高速公路滑坡稳定性评价及其治理模拟[J].岩石力学与工程学报,2008,27(11):2340-2346.
    [14]金培杰,李晓军,戴玉,等.安徽芜(湖)-铜(陵)高速公路高边坡岩体结构特征与稳定性评价[J].中国地质灾害与防治学报,2007,18(3):30-34.
    [15]巨能攀,涂国祥,邓辉.四川某公路崩堆积体稳定性评价[J].地球与环境,2005,33(S):412-416.
    [16]于德海,彭建兵.陕西秦巴山区公路斜坡灾害发育规律的研究[J].公路,2008,(8):136-139.
    [17]王宝亮,彭盛恩,陈洪凯.推移式滑坡形成机制的力学演绎[J].地质灾害与环境保护,2010,21(2):74-77.
    [18]袁从华,童志怡,卢海峰.牵引式滑坡特征及主被动加固比较分析[J].岩土力学,2008,29(10): 2853-2858.
    [19]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,2000,22(1):127-130.
    [20]祝介旺,苏天明,张路青,杨志法.川藏公路102滑坡失稳因素与治理方案研究[J].水文地质工程地质,2010,37(3):43-47.
    [21]黄绍槟,吉随旺,朱学雷,李海清.西攀路昔格达地层滑坡分析[J].公路交通科技,2005,22(6):41-44.
    [22]Ding Yu, Wang Quancai. Remediation and analysis of kinematic behaviour of a roadway landslide in the upper Minjiang River, Southwest China[J]. Environ Geol,2009,(58):1521-1532.
    [23]Nichol D, Graham J R. Remediation and monitoring of a highway across an active landslide at Trevor, North Wales[J]. Engineering Geology,2001(59):337-348.
    [24]Salcedo D A. Behavior of a landslide prior to inducing a viaduct failure, Caracas—la Guaira highway, Venezuela,Engineering Geology,2009,109(1-2):16-30
    [25]Harp L E, Reid M E, Godt J W, etc. Ferguson rock slide buries California State Highway near Yosemite National Park[J]. Landslides,2008,5(3):331-337.
    [26]钟盈,陈洪凯.泥石流淤埋桥梁后的毁损机制分析[J].重庆交通大学学报(自然科学版),2010,29(5):667-669/673.
    [27]徐永年.泥石流冲淤特性的实验研究[D].中国水利水电科学研究院博士学位论文,2001.
    [28]陈洪凯,唐红梅.平川沟泥石流体形成的动力机制研究[J].公路,2003,(12):45-50.
    [29]陈洪凯,唐红梅.公路泥石流水毁概化模式分析[J].公路,2003,(8):143-147.
    [30]次仁拉姆.泽错公路夏果沟泥石流成因及防治[J].山地学报,2006,24(S):240-244.
    [31]吴保生.过路涵洞设计中的泥石流模拟计算[J].泥沙研究,2001,(4):34-40.
    [32]陈洪凯,唐红梅.泥石流两相冲击力及冲击时间计算方法[J].中国公路学报,2006,19(3):19-23.
    [33]陈洪凯,唐红梅,陈野鹰.公路泥石流力学[M].北京:科学出版社,2007.
    [34]陈洪凯,唐红梅,鲜学福.美姑河流域牛牛坝公路泥石流灾害防治[J].兰州大学学报(自然科学版),2009,45(3):18-22/26.
    [35]崔鹏,林勇明,蒋忠信.山区道路泥石流滑坡活动特征与分布规律[J].公路,2007,(6):77-82.
    [36]崔鹏,陈晓清,程尊兰,陈宁生,党超.西藏泥石流滑坡监测与防治[J].自然杂志,2010,32(1):19-25.
    [37]陈洪凯,唐红梅.三峡库区公路缓倾角岩层边坡崩塌机理及警报系统[J].重庆师范大学学报(自然科学版),2009,26(3):26-29.
    [38]向欣.边坡落石运动特性及碰撞冲击作用研究[D].中国地质大学博士学位论文,2010.
    [39]陈洪凯,唐红梅,崔志波,等.公路高边坡地质安全与减灾[M].北京:科学出版社,2010.
    [40]林孝松,陈洪凯,许江,唐红梅,曹卫文.山区公路高切坡岩土安全评价分析[J].土木建筑与环 境工程,2009,31(3):66-71.
    [41]Lin H M, Chang S K, Wu J H, Juang C H. Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area:Pre-and post-earthquake investigation[J]. Engineering Geology,2009,(104):280-289.
    [42]甘建军,黄润秋,李前银,等.都江堰-汶川公路汶川地震次生地质灾害主要特征和形成机理[J].地质力学学报,2010,16(2):146-158.
    [43]庄建琦,崔鹏,葛永刚,等.“5.12”汶川地震崩塌滑坡危险性评价-以都汶公路沿线为例[J].岩石力学与工程学报,2010,29(S2):3735-3742.
    [44]吉随旺,唐永建,胡德贵,汪军,陶双江.四川省汶川地震灾区干线公路典型震害特征分析[J].岩石力学与工程学报,2009,28(6):1250-1260.
    [45]LI Xinpo, HE Siming. Seismically Induced Slope Instabilities and the Corresponding Treatments:the Case of a Road in the Wenchuan Earthquake Hit Region[J]. J. Mt. Sci.,2009,(6):96-100.
    [46]Hubo Cai, William Rasdorf, Chris Tilley. Approach to Determine Extent and Depth of Highway Flooding[J]. Journal of Infrastructure Systems,2007,13(2):157-167.
    [47]Youssef M A, Pradhan B, Hassan A M. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery [J]. Environ Earth Sci, 2010, DOI 10.1007/s12665-010-0551-1
    [48]Dahai R K, Hasegawa S, Masuda T, Yamanaka M. Roadside Slope Failures in Nepal during Torrential Rainfall and their Mitigation[J]. Disaster Mitigation of Debris Flows, Slope Failures and Landslides,2006 by Universal Academy Press, Inc./Tokyo, Japan, pp.503-514.
    [49]Irigaray C, Lamas F, Hamdouni R E, et al. The Importance of the Precipitation and the Susceptibility of the Slopes for the Triggering of Landslides Along the Roads[J]. Natural Hazards, 2000,(21):65-81.
    [50]Chang S K, Lee D H, Wu J H, Juang C H. Rainfall-based criteria for assessing slump rate of mountainous highway slopes:A case study of slopes along Highway 18 in Alishan, Taiwan[J]. Engineering Geology,2011,(118):63-74.
    [51]Mohammadkhan S, Ahmadi H, Jafari M. Relationship between soil erosion, slope, parent material, and distance to road (Case study:Latian Watershed, Iran)[J]. Arab J Geosci,2010, DOI 10.1007/S12517-010-0197-z
    [52]Sidle R C, Furuichi T, Kono Y. Unprecedented rates of landslide and surface erosion along a newly constructed road in Yunnan, China [J]. Nat Hazards,2010, DOI 10.1007/s11069-010-9614-6
    [53]Liu S L, Cui B S, Dong S K, etc. Evaluating the influence of road networks on landscape and regional ecological risk—A case study in Lancang River Valley of Southwest China[J]. Ecological Engineering,2008,(34):91-99.
    [54]郑柯,郑勇.山区复杂地形下路基或桥梁方案判别模型研究[J].湖南大学学报(自然科学版),2009,36(3):22-25.
    [55]U.S.Department of Transportation, Federal Highway Administration. Highway in the River Environment,1990
    [56]U.S.Department of Transportation, Federal Highway Administration. Stream Stability at Highway Structures,1991
    [57]蒋焕章.关于根治公路水毁之我见[J].中国公路学报,1993,6(S1):110-112.
    [58]陈洪凯,唐红梅,白子培.山区公路水毁路基发育机制研究[J].重庆交通学院学报,1994,13(4):34-40.
    [59]方向池,黄润秋.云南山区公路水毁类型及发育机制[J].地质灾害与环境保护,1998,9(3):56-61.
    [60]高冬光,田伟平,张义青,王亚玲.桥台的冲刷机理和冲刷深度[J].中国公路学报,1998,11(1):54-62.
    [61]肖盛燮,等.公路与桥梁抗洪分析[M].北京:人民交通出版社,1999.
    [62]沈波,艾翠玲,吕宏兴.公路排水跌坎急流槽新型消力池出流冲刷试验[J].长安大学学报(自然科学版),2009,29(2):42-45.
    [63]沈波,艾翠玲,田伟平,徐岳.小桥涵自由式出流冲刷试验[J].长安大学学报(自然科学版),2007,27(3):61-66.
    [64]沈波.山区公路排水系统灾害评价方法及指标体系研究[D].西安:长安大学博士学位论文,2006.
    [65]沈波,艾翠玲.我国山区公路排水问题及水毁调查分析[J].公路交通科技,2006,23(10):5-9.
    [66]沈波,田伟平,郭平,徐岳.多雨土石山区高速公路排水系统水毁及防治[J].长安大学学报(自然科学版),2005,25(6):29-33.
    [67]沈波,艾翠玲,徐岳,田伟平.山区公路排水急流槽冲刷试验[J].长安大学学报(自然科学版),2006,26(3):30-34.
    [68]沈波.公路涵洞安全质量综合模糊分析与评价[J].重庆交通学院学报,1999,18(3):95-99.
    [69]刘伟.山区公路小桥涵水毁机理及其抗水灾能力综合评价的研究[D].西安:长安大学硕士学位论文,2004.
    [70]孙东坡,杨慧丽,张晓松,等.桥墩冲刷坑的三维流场测量与数值模拟[J].水科学进展,2007,18(5):711-716.
    [71]梁锴,方理刚,段靓靓.冲刷对桥墩稳定性影响的有限元分析[J].岩土力学,2006,27(9):1643-1645.
    [72]高冬光,田伟平,张义青,王亚玲.桥台的冲刷机理和冲刷深度[J].中国公路学报,1998,11(1): 54-62.
    [73]凌建明,林小平,赵鸿铎.圆柱形桥墩附近三维流场及河床局部冲刷分析[J].同济大学学报(自然科学版),2007,35(5):582-586.
    [74]肖盛燮,陈洪凯,吴国松,杨斌.桥梁受洪灾异相耦合破坏作用的形态及仿真雏议[J].重庆交通学院学报,1999,18(4):66-71/78.
    [75]孙进.天山公路路基水毁凹岸挡墙冲刷深度计算水工模型公式的建立[J].国防交通工程与技术,2010,(4):28-31.
    [76]田伟平,李惠萍,高冬光.沿河路基的冲刷机理和冲刷深度[J].长安大学学报(自然科学版),2002,22(4):39-42.
    [77]田伟平,李惠萍,高冬光.弯道环流与沿河路基冲刷试验研究[J].重庆交通学院学报,2002,21(3):94-97.
    [78]张天翔,丁加明,芮继东.极端气候事件对膨胀土路基水毁影响的研究[J].铁道科学与工程学报,2011,8(2):68-70.
    [79]邹苏华,丁加明,丁力行,等.膨胀土路基水毁灾害的预测模型[J].铁道科学与工程学报,2009,6(5):26-30.
    [80]崔云,孔纪名,田述军,等.强降雨在山地灾害链成灾演化中的关键控制作用[J].山地学报,2011,29(1):87-94.
    [81]张家明,徐则民,刘华磊.云南省公路水毁时空分布与态势[J].山地学报,2011,29(1):109-115.
    [82]赵翠英,高方翠.天山独库公路水毁的成因及防护[J].公路,2002,(1):105-107.
    [83]孙新军,宗爱王君.新疆干线公路水毁成因及防治[J].公路,2002,(1):107-110.
    [84]朱平一,汪阳春.西藏公路水毁灾害[J].自然灾害学报,2001,10(4):148-152.
    [85]蒙华.重庆市公路水毁防治对策研究[D].重庆交通大学,2007.
    [86]秦建平.秦岭山区沿河公路水毁类型与判断[J].中外公路,2008,28(2):71-74.
    [87]杨燕,王慧觉,杨运娥,等.湖北省公路水毁因子与降雨因子的关系分析[J].交通环保,2004,25(4):8-11.
    [88]艾南山,陈洪凯,李后强.从新构造应力场论公路水毁问题—兼论地貌发育的对抗性原理[J].地理科学,1996,16(4):298-304.
    [89]陈洪凯,唐红梅,吴承平,等.四川省公路水毁与地质环境的关系探讨[J].重庆交通学院学报,1994,13(4):24-33.
    [90]方向池.公路水毁与地质环境[J].公路,1999,(11):56-62.
    [91]马保成,黄丽珍,董卫卫,崔娥.山区沿河公路路基水毁原因及防洪措施[J].交通企业管理,2009,(4):54-55.
    [92]田伟平,李惠萍.沿河路基的护坦冲刷防护试验研究[J].中国公路学报,2002,15(4):11-13/52.
    [93]黄志才.山区公路沿河路基冲刷机理和防治技术研究[D].重庆:重庆交通大学硕士学位论文, 2004.
    [94]黄志才,吴国雄,程尊兰.川藏公路沿河路基水毁成因分析与工程防护[J].水土保持通报,2003,23(4):21-23/27.
    [95]林小平,凌建明,苏华才,赫航程.弯道水流的数值模拟及沿河路基冲刷机理分析[J].同济大学学报(自然科学版),2007,35(11):1492-1496.
    [96]朱伟,山村和也.雨水、洪水渗透时河堤的稳定性[J].岩土工程学报,1999,21(4):414.-419.
    [97]王延贵.冲积河流岸滩崩塌机理的理论分析及试验研究[D].中国水利水电科学研究院博士学位论文,2003.
    [98]黄河.河岸崩塌机理及其流固耦合模型研究[D].南昌大学硕士研究生学位论文,2008.
    [99]董颖.地质灾害风险评估理论与实践[M].北京:地质出版社,2009.
    [100]刘传正.四川汶川地震灾害与地质环境安全[J].地质通报,2008,27(11):1907-1912.
    [101]张惠清,岳平七,李海军.天水-定西公路路域地质环境安全评价与灾害防治对策研究(1):地质环境安全现状评价[J].冰川冻土,2008,30(1):183-188.
    [102]张惠清,王世武,岳平七,李海军.天水-定西公路路域地质环境安全评价与灾害防治对策研究(2):地质灾害综合评估与防治对策[J].冰川冻土,2008,30(5):896-902.
    [103]Lysandros Pantelidis. A critical review of highway slope instability risk assessment systems[J]. BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT,2010,70(3):395-400.
    [104]周建昆,李罡.高速公路滚石风险评估[J].地下空间与工程学报,2009,5(2):354-363.
    [105]Nichol D. Rockfall geohazard assessment and protection measures on the highway network, North Wales[J]. IAEG2006 Paper number 320,2006,1-15.
    [106]Baillifard F, Jaboyedoff M, Sartori M. Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach[J]. Natural Hazards and Earth System Sciences,2003,(3):431-438.
    [107]张路青,杨志法,张英俊.公路沿线遭遇滚石的风险分析-方法研究[J].岩石力学与工程学报,2005,24(S2):5543-5548.
    [108]叶四桥,陈洪凯.隧道洞口坡段落石灾害危险性等级评价方法[J].中国铁道科学,2010,31(5):59-65.
    [109]黄丽珍,李家春,万利.公路崩塌灾害等级划分初步研究[J].中国地质灾害与防治学报,2009,20(3):44-46.
    [110]Budetta P. Assessment of rockfall risk along roads[J]. Natural Hazards and Earth System Science,2004,(4):71-81.
    [111]苏凤环,崔鹏,韩用顺,等.基于遥感技术的都汶公路地质次生山地灾害分布规律分析[J].地质科技情报,2009,28(2):29-32.
    [112]牟顺,王亮,马保成.山区公路路基沉陷风险识别方法研究[J].路基工程,2011,(1):54-56.
    [113]田伟平,马保成,刘春焕,李朋丽.沿河公路水毁灾害风险识别[J].交通企业管理,2009,(6):66-67.
    [114]D.J.Wilford. M.E.Sakals. J.L.Innes. R.C.Sidle. W.A.Bergerud. Recongnition of debris flow, debris flood and flood hazard through watershed morphometrics[J]. Landslides,2004,(1):61-66.
    [115]Thomas K.collins. Debris flows caused by failure of fill slopes:early detection, warning, and loss prevention[J]. Landslides,2008,(5):107-120.
    [116]R.M.CARRASCO, J.PEDRAZA, J.F.MARTIN-DUQUE, M.MATTERA, M.A.SANZ and J.M.BODOQUE. Hazard Zoning for Landslides Connected to Torrential Floods in the Jerte Valley(Spain) by using GIS Techniques[J]. Natural Hazards,2003,30:361-381.
    [117]Maria Yanina Esper Angillieri. Morphometric analysis of Colanguil river basin and flash flood hazard,San Juan, Argentina[J]. Environ Geol,2008,55:107-111.
    [118]曾蓉,陈洪凯,李俊业.熵权模糊综合评价法在公路洪灾危险性评价中的应用田.重庆交通大学学报(自然科学版),2010,29(4):587-591.
    [119]覃庆梅,林孝松,唐红梅,等.重庆市万州区公路洪灾孕灾环境分区[J].重庆交通大学学报(自然科学版),2011,30(1):89-94.
    [120]阳丘龙,何文勇,林剑.贵州三贵高速公路地质灾害危险度分段评价[J].公路,2009,(3):52-57.
    [121]程尊兰,耿学勇,党超,等.川藏公路G317线路基水毁危险度分段研究[J].灾害学,2006,21(4):18-23.
    [122]凌建明,官盛飞,崔伯恩.重庆市公路水毁环境区划指标的研究[J].水土保持通报,2008,28(3):141-147.
    [123]崔伯恩,凌建明,赵鸿铎,赵志华.公路水毁毁损等级划分体系研究[J].同济大学学报(自然科学版),2006,34(9):1180-1184.
    [124]赵鸿铎,凌建明,赵志华,官盛飞.公路工程水毁环境区划的研究[J].公路交通科技(应用技术版),2007,(8):23-24/27.
    [125]李家春.公路边坡降雨灾害评价方法与指标研究[D].西安:长安大学博士学位论文,2005.
    [126]李家春,董卫卫,崔娥,等.山区公路水灾害评价体系框架的研究[J].重庆交通大学学报(自然科学版),2009,28(2):259-263.
    [127]李家春,田伟平,陈建状.公路边坡水毁灾害等级快速评估方法[J].长安大学学报(自然科学版),2006,26(2):27-30.
    [128]马保成,王效华,周兵.公路小桥涵水毁灾害评价研究[J].公路交通科技,2009,(3):15-17/30.
    [129]王亚玲,田伟平小桥涵水灾综合评价指标[J].长安大学学报(自然科学版),2005,25(5):51-53.
    [130]沈波,艾翠玲,徐岳.山区公路路基排水系统灾害评价体系研究[J].路基工程,2007,(2):34-36.
    [131]方向池.云南省公路水毁灾害经济损失评估[J].中国地质灾害与防治学报,1998,9(S):428-431.
    [132]崔伯恩,凌建明,赵鸿铎,赵志华.沿河公路抗水毁能力评价方法研究[J].公路交通科技,2006,23(9):6-9/19.
    [133]刘伟.山区公路小桥涵水毁机理及其抗水灾能力综合评价的研究[D].西安:长安大学硕士学位论文,2004.
    [134]丁继新,尚彦军,杨志法,尹俊涛.川藏公路然乌-鲁郎段地质灾害影响因素定量分析[J]水文地质工程地质,2005,(4):1-5.
    [135]丁继新,周圣华,杨志法,尚彦军,尹俊涛.川藏公路然乌-东久段地质灾害定量评价[J]自然灾害学报,2005,14(4):79-84.
    [136]苏永华.岩土参数模糊隶属函数的构造方法及应用[J].岩土工程学报,2007,29(12):1772-1779.
    [137]苏永华,封立志,蒋德松.西南山区公路建设场地模糊分类系统研究[J].湖南大学学报(自然科学版),2008,35(3):19-23.
    [138]苏永华,李翔,李志勇,赵明华.山区公路建造环境级别的模糊粗糙评价方法[J].湖南大学学报(自然科学版),2010,37(5):1-7.
    [139]程根伟.山区暴雨泥石流风险估计及其发生规模预测[J].中国科学E辑技术科学,2003,33(增刊):10-16.
    [140]国务院.公路安全保护条例[S].2011.
    [141]陈洪凯,等.公路泥石流防治工程技术指南[R].2010,12.
    [142]陈宁生,崔鹏,姚令侃,等.山区道路泥石流工程防治原则与模式[J].中国地质灾害与防治学报,2009,20(1):1-5.
    [143]崔鹏,杨坤,朱颖彦,马东涛.西部山区交通线路的泥石流灾害及减灾对策[J].山地学报,2004,22(2):326-331.
    [144]崔鹏.我国泥石流防治进展[J].中国水土保持科学,2009,7(5):7-13.
    [145]石文慧.中国铁路地质灾害与防治[J].铁道工程学报,2005,(S):272-277.
    [146]陈洪凯,唐红梅,周富春,等.墙后路基填土分层碾压打桩侧向压实技术[J].中国公路学报,2000,13(2):5-7/12.
    [147]杨志法,张路青,祝介旺.四项边坡加固新技术[J].岩石力学与工程学报,2005,24(21):3828-3834.
    [148]罗维宏,方向池,李鑫,等.预应力锚索桩板式高挡墙的设计与应用[J].公路,2004,(12):116-120.
    [149]陈华,房锐,赵有明,等.高轻型支挡结构在山区高速公路上的应用研究[J].昆明理工大学学报(理工版),2009,34(6):66-72
    [150]冯靖.支撑渗沟在滑坡处治中的应用[J].西南公路,2009,(2):5-7.
    [151]Megan Hall, Steve Moler. Mimicking Mother Nature[J/OL]. PUBLIC ROADS,JANUARY/ FEBRUARY,2006:34-39 [2011-09-11]. http://www.fhwa.dot.gov/publications/publicroads/06jan/05. cfm
    [152]乔国文.国道217线天山公路沿河路基水毁防护优化工程[J].山地学报,2010,28(6):747-752.
    [153]林小平,凌建明,赵鸿铎,崔伯恩.丁坝群和挡土墙配合防护沿河公路路基的机理分析[J].中南公路工程,2007,32(2):45-48/60.
    [154]朱方海,林小平,赵鸿铎.丁坝防护沿河公路路基的合理形式分析[J].同济大学学报(自然科学版),2007,35(7):919-923.
    [155]凌建明,朱文强,李若灵.浅议水毁防治措施选择[J].西部交通科技,2007,(1):6-8.
    [156]凌建明,赵鸿铎.公路水毁防治技术的研究简介[J].公路交通科技(应用技术版),2007,(8):22.
    [157]凌建明,官盛飞,赵鸿铎.西部地区公路水毁防治技术浅议[J].公路交通科技(应用技术版),2007,(8):28-30.
    [158]王庆珍,唐伯明,凌建明.国道319重庆山洞段公路水毁处治技术研究[J].公路交通技术,2004,(5):25-29.
    [159]王操.山区公路沿河路基防护结构的工程特性研究[D].重庆:重庆交通大学硕士学位论文,2008.
    [160]王玉萍.山区公路水毁路基防护设计[J].长安大学学报(自然科学版),2003,23(5):37-39.
    [161]程尊兰,梁光模,张正波.藏东南高山区沿河公路路基水毁防护工程对策—以川藏公路中坝段为例[J].山地学报,2003,21(Sup):157-160.
    [162]朱文强,凌建明,李若灵.公路水毁抢修优先性排序[J].西部交通科技,2006(6):5-7.
    [163]刘霁,陈建宏,李云,等.基于主客观赋权法的山区高速公路边坡防护决策与生态环境[J].中南大学学报(自然科学版),2009,40(4):1059-1065.
    [164]尹江涛,何政伟,杨斌.天山公路地质灾害评价与决策支持信息系统设计[J].人民长江,2009,40(3):49-51.
    [165]赵鸿铎,凌建明,赵志华,杜小平.公路水毁防治地理信息系统的研究[J].公路交通科技(应用技术版),2007,(8):25-27.
    [166]唐川,黄润秋,黄达,等.金沙江美姑河牛牛坝水电站库区泥石流对工程影响分析[J].工程地质学报,2006,14(2):145-151.
    [167]张伟峰,黄润秋,唐川,等.四川美姑河牛牛坝水电站库区泥石流成因分析[J].中国地质灾害与防治学报,2007,18(3):18-22.
    [168]黄达,唐川,黄润秋,等.美姑河尔马洛西沟泥石流特征及危险性研究[J].成都理工大学学报(自然科学版),2006,33(2):162-167.
    [169]唐川,张伟峰,黄达.美姑河牛牛坝水电站库区泥石流基本特征[J].防灾减灾工程学报,2006,26(2):129-135.
    [170]刘希林,倪化勇,赵源,等.四川凉山州美姑县“6.1”泥石流灾害研究[J].工程地质学报,2006, 14(2):152-158.
    [171]尹洪峰,冯志仁,薄景山.美姑河洛渣滑坡稳定性分析[J].自然灾害学报,2007,16(6):70-73.
    [172]李后强,丁晶,艾南山.攀西地区滑坡发育的理论研究[J].中国地质灾害与防治学报,1997,8(1):12-16.
    [173]刘恒一,乔建平.四川省攀西地区滑坡的分类及其特征[J].中国水土保持,1986,(10):27-30.
    [174]刘恒一.攀西地区的滑坡和泥石流的关系[J].水土保持通报,1987,7(1):21-26.
    [175]翁其能,周建庭,赖勇,等.凉山地区公路沿线滑坡、泥石流发育的基本特性及治理[J].重庆交通学院学报,2000,19(4):42-46.
    [176]孙东,王道永,吴德超,等.美姑河断裂活动性研究及对水电工程影响评价[J].水文地质工程地质,2007,(4):13-17.
    [177]罗忠新.凉山州泥石流形成原因及防范对策[J].气象,1991,17(12):27-29.
    [178]张京红,韦方强,邓波,等.凉山州短临泥石流预报模型与方法的研究[J].气象科学,2007,27(S):15-20.
    [179]晋玉田.攀西地区泥石流滑坡灾害与降水关系的分析和预报[J].四川气象,1999,19(3):34-38/26.
    [180]余承君,刘希林.自然灾害风险管理中社会因素的探讨[J].灾害学,2010,25(4):120-126.
    [181]张家明,王志奇,张勇,等.云南省公路水毁时空分布宏观约束机制[J].灾害学,2011,26(3):35-40.
    [182]沈水进,孙红月,孙新民.山区公路坡面冲刷引起的路基水毁机理[J].江南大学学报:自然科学版,2011,10(3):293-297.
    [183]向延念,徐志胜,王薇.沿海高速公路风险评价体系构建[J].中国安全科学学报,2008,18(5):142-147.
    [184]D'andrea A, Cafiso S, Condorelli A.Methodological Considerations for the Evaluation of Seismic Risk on Road Network[J]. Pure and Applied Geophysics,2005,(162):767-782.
    [185]Tung Y K.On the optimal risk based design of highway drainage structures[J]. Stochastic Hydrology and Hydraulics,1990,4(4):295-308.
    [186]袁素凤.模糊综合评价高速公路建设工程地质灾害危险性[J].灾害学,2009,24(2):57-60.
    [187]Wastl M, Stotter J, Kleindienst H. Avalanche risk assessment for mountain roads:a case study from Iceland[J]. Nat Hazards,2011,56(2):465-480.
    [188]崔鹏,林勇明.自然因素与工程作用对山区道路泥石流、滑坡形成的影响[J].灾害学,2007,22(3):11-16.
    [189]马保成,王亮,牟顺.公路滑坡灾害链式反应阶段性识别方法研究[J].灾害学,2011,26(2):54-58.
    [190]Zhou W F, Beck B F, Adams A L. Application of matrix analysis in delineating sinkhole risk areas along highway(I-70 near Frederick, Maryland)[J].Environmental Geology,2003,44(7):834-842.
    [191]兰日清,丰彪,王自法.震后公路桥梁通行能力快速评估技术研究[J].世界地震工程,2009,25(2):81-87.
    [192]张会平,杨农,张岳桥,等.岷江水系流域地貌特征及其构造指示意义[J].第四纪研究,2006,26(1):126-135.
    [193]Abdel-Lattif A,Sherief Y.Morphometric Analysis and Flash Floods of Wadi Sudr and Wadi Wardan, Gulf of Suez,Egypt:Using Digital Elevation Model[J]. Arab J Geosci,2010, DOI 10.1007/ s12517-010-0156-8
    [194]Bali R, Agarwal K K, Nawaz Ali S, et al. Drainage Morphometry of Himalayan Glacio-fluvial Basin, India:Hydrologic and Neotectonic Implications[J]. Environmental Earth Sciences,2011,DOI 10.1007/s12665-011-1324-1
    [195]Sreedevi P D, Owais S, Khan H H, et al. Morphometric Analysis of a Watershed of South India Using SRTM Data and GIS[J]. Journal Geological Society of India,2009,73:543-552.
    [196]Magesh N S, Chandrasekar N, et al. Morphometric Evaluation of Papanasam and Manimuthar Watersheds.Parts of Western Ghats,Tirunelveli District,Tamil Nadu,India:a GIS Approach[J]. Environmental Earth Sciences,2011,64(2):373-381.
    [197]四川美姑河水电开发有限公司.流域概况[Z].http://www.meiguhe.com/Project.asp,2012-2-1.
    [198]唐红梅,陈洪凯,金发均,等.美姑河流域公路泥石流物源成因[J].山地学报,2005,23(6):714-718.
    [199]攀西地质队.美姑县牛牛坝泥石流调查报告[R].2003.
    [200]陈静.暴雨导致我州公路严重损毁[Z].http://www.lsglw.net/hynews/65.htm,2012-2-4.
    [201]Youssef A M, Pradhan B, Gaber A F D, et al. Geomorphological Hazard Analysis along the Egyptian Red Sea Coast between Safaga and Quseir[J]. Natural Hazards and Earth System Sciences, 2009,(9):751-766.
    [202]Mesa L M. Morphometric Analysis of a Subtropical Andean Basin (Tucuman, Argentina)[J]. Environ Geol,2006,50:1235-1242.
    [203]马保成,田伟平,李家春.山区沿河公路水毁危险性评价方法的研究[J].自然灾害学报,2012,21(3):224-229.
    [204]倪晋仁,刘仁志.突发性泥沙灾害危险性快速区划方法[J].应用基础与工程科学学报,2004,12(4):333-345.
    [205]陈远川,陈洪凯.山区沿河公路地质风险形成机制[J].灾害学,2012,27(3):6-11.
    [206]刘仁志,倪晋仁.中国滑坡崩塌危险性区划[J].应用基础与工程科学学报,2005,13(1):9-18.
    [207]刘希林,余承君,尚志海.中国泥石流滑坡灾害风险制图与空间格局研究[J].应用基础与工程科学学报,2011,19(5):721-731.
    [208]程强.汶川强震区公路沿线地震崩滑灾害发育规律研究[J].岩石力学与工程学报,2011,30(9):1747-1760.
    [209]邱骋,王纯祥,江崎哲郎,等.基于边坡单元的公路沿线滑坡危险度概率分析[J].岩土力学,2005,26(11):1731-1736.
    [210]赵立冬,傅荣华,张博.天山公路沿线地质灾害危险性模糊综合评判[J].防灾减灾工程学报,2007,27(1):96-100.
    [211]谢全敏,边翔,夏元友.滑坡灾害风险评价的系统分析[J].岩土力学,2005,26(1):71-74.
    [212]Biswajeet Pradhan, Saro Lee. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression,and artificial network models[J]. Environ Earth Sci,2010,60(5):1037-1054.
    [213]Hasan Ozdemir, Huseyin Turoglu. Landslide Susceptibility Assessment Using GIS and RS in The Havran River Basin (Bahkesir-TURKEY)[C]//12th Conference of Int. Association for Mathematical Geology,Beijing,China,August 26-31,2007:185-189.
    [214]Biswajeet Pradhan,Youssef A M. Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models[J]. Arab J Geosci,2010,3(3):319-326.
    [215]曾忠平,汪华斌,张志,等.地理信息系统/遥感技术支持下三峡库区青干河流域滑坡危险性评价[J].岩石力学与工程学报,2006,25(S1):2777-2784.
    [216]Saro Lee,Biswajeet Pradhan.Probability landslide hazards and risk mapping on Penang Island, Malaysia[J]. J.Earth Syst.Sci.,2006,115(6):661-672.
    [217]高克昌,崔鹏,赵纯勇,等.基于地理信息系统和信息量模型的滑坡危险性评价-以重庆万州为例[J].岩石力学与工程学报,2006,25(5):991-996.
    [218]牛全福,程维明,兰恒星,等.基于信息量模型的玉树地震次生地质灾害危险性评价[J].山地学报,2011,29(2):243-249.
    [219]杨宗佶,乔建平.基于信息熵的典型滑坡危险度评价研究[J].四川大学学报:工程科学版,2008,40(4):47-52.
    [220]许湘华.用Logistic回归模型编制滑坡灾害敏感性区划图的方法研究[J].铁道科学与工程学报,2010,7(5):87-91.
    [221]王卫东,陈燕平,钟晟.应用CF和Logistic回归模型编制滑坡危险性区划图[J].中南大学学报:自然科学版,2009,40(4):1127-1132.
    [222]兰恒星,伍法权,周成虎,等.基于GIS的云南小江流域滑坡因子敏感性分析[J].岩石力学与工程学报,2002,21(10):1500-1506.
    [223]解传银.基于权重模型的滑坡灾害敏感性评价[J].中南大学学报:自然科学版,2011,42(6):1772-1779.
    [224]Jenness J.Topographic Position Index (tpi_jen.avx) extension for Arc View 3.x,v.1.2.Jenness Enterprise.2006[EB/OL].[2012-06-06].http://www.jennessent.com/arcview/tpi.htm.
    [225]Van Westen CJ. Statistical landslide hazard analysis[EB/OL]. [2012-05-04]. http://www.itc.nl/ ilwis/applications/application05.asp.
    [226]陈洪凯,唐红梅,叶四桥.中国公路泥石流研究[J].中国地质灾害与防治学报,2008,19(1):1-5.
    [227]刘希林.沟谷泥石流危险度计算公式的由来及其应用实例[J].防灾减灾工程学报,2010,30(3):241-245/261.
    [228]刘希林.我国泥石流危险度评价研究:回顾与展望[J].自然灾害学报,2002,11(4):1-8.
    [229]刘光旭,戴尔阜,吴绍洪,等.泥石流灾害风险评估理论与方法研究[J].地理科学进展,2012,31(3):383-391.
    [230]Lin J W, Chen C W, Peng C Y. Kalman filter decision systems for debris flow hazard assessment[J]. Nat Hazards,2012,60(3):1255-1266.
    [231]Kung H Y, Chen C H, Ku H H. Designing intelligent disaster prediction models and systems for debris-flow disasters in Taiwan[J]. Expert Systems with Applications,2012,39(5):5838-5856.
    [232]王春山,巴仁基,刘宇杰,等.低频泥石流特征及其危险性的模糊综合评判[J].人民长江,2012,43(5):42-46.
    [233]Strahler A N. Quantitative slope analysis[J]. Geological Society of America Bulletin,1956,67: 571-596.
    [234]艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-7.
    [235]张强,陈洪凯.川藏公路德达-波戈溪沿线沟谷信息熵的探讨[J].重庆交通大学学报(自然科学版),2011,30(增1):686-690.
    [236]张盈,郝伟.关于沿河(溪)公路的选线讨论[J].水利与建筑工程学报,2011,9(1):156-159.
    [237]吴华金.高原山区沿水公路水文流态地质选线[J].云南现代交通,2005,2(5):1-4.
    [238]黄玉和.沿河土质路基稳定性影响因素分析[J].重庆交通大学学报(自然科学版),2008,27(S):960-963.
    [239]韩涛,毛雪松,任占伟.沿河公路路基坡脚冲刷致灾因子的模糊识别[J].路基工程,2010,(3):93-95.
    [240]吴国雄,黄志才.沿河路基局部冲刷深度计算研究[J].中国公路学报,2005,18(4):12-15\53.
    [241]田伟平,李惠萍,高冬光.沿河路基冲刷机理与冲刷深度[J].长安大学学报(自然科学版),2002,22(4):39-42.
    [242]钟亮,许光祥,童思陈.山区沿河公路弯道岸坡泥沙起动规律研究[J].水运工程,2009,(10):14-19.
    [243]龚波,林小平,甘明星.沿河公路弯道水流的数值模拟[J].昆明理工大学学报(理工版),2006,31(1):98-102.
    [244]陈洪凯,唐红梅.川藏公路地质灾害危险性评价[J].公路,2011,9:17-23.
    [245]周美林,肖政,蒋昌波.沿河公路丁坝群水毁防护平面二维水流数值模拟研究[J].水运工程,2007,(8):17-20.
    [246]王俊杰,柴货军.车辆荷载下饱和路基挡墙主动土压力计算[J].岩土工程学报,2008,30(3):372-378.
    [247]刘丽,何光春,陈洪凯.新疆315国道公路水毁病害形成机制与治理[J].自然灾害学报,2011,20(5):204-209.
    [248]田伟平,黄丽珍,万利.沿河路基冲刷的综合防护效果[J].长安大学学报(自然科学版),2010,30(2):10-14.
    [249]袁捷,林小平,凌建明,等.丁坝与挡土墙配合防护沿河公路路基机理分析[J].同济大学学报(自然科学版),2008,36(3):330-334.
    [250]张麒蛰.山区沿河路基边坡冲刷崩塌模式与稳定性计算分析[J].水利与建筑工程学报,2010,8(6):49-51.
    [251]杨树清.论河渠边界和水流阻力的计算[J].水利学报,1996,(6):62-69.
    [252]唐存本.泥沙起动规律[J].水利学报,1963,(2):1-12.
    [253]王光谦,李铁键.流域泥沙动力学模型[M].北京:中国水利水电出版社,2009:62-75.
    [254]Osman A M, Thorne C R. Riverbank stability analysis I:theory[J]. Journal of Hydraulic Engineering, ASCE,1988,114(2):134-150.
    [255]蒋焕章.公路水文勘测设计与水毁防治[M].北京:人民交通出版社,2002.
    [256]张迎春.铁路泥石流灾害风险评价与防治研究[D].北京交通大学,2007.
    [257]赵思健,黄崇福,郭树军.情景驱动的区域自然灾害风险分析[J].自然灾害学报,2012,21(1):9-17.
    [258]黄崇福,刘安林,王野.灾害风险基本定义的探讨[J].自然灾害学报,2010,19(6):8-16.
    [259]黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,8(2):21-30.
    [260]陈远川,陈洪凯.山区沿河公路地质风险形成机制[J].灾害学,2012,27(3):6-11.
    [261]孙绍骋.灾害评估研究内容与方法探讨[J].地理科学进展,2001,20(2):122-130.
    [262]黄崇福.风险分析基本方法探讨[J].自然灾害学报,2011,20(5):1-10.
    [263]黄崇福.综合风险评估的一个基本模式[J].应用基础与工程科学学报,2008,16(3):371-381.
    [264]Maskrey A.Disaster Mitigation:A Community Based Approach [M].Oxford:Oxfam,1989.
    [265]UNDRO. Mitigating Natural Disasters:Phenomena,Effects and Options—a Manual for Policy Makers and Planners [M]. New York:United Nations,1991.
    [266]Okada N, Tatano H, Hagihara Y, et al. Integrated research on methodological development of urban diagnosis for disaster risk and its applications. Annuals of Disast. Prev. Res. Institute, Kyoto Univ,2004:1-8.
    [267]张继权,刘兴朋,佟志军.草原火灾风险评价与分区-以吉林省西部草原为例[J].地理研究, 2007,26(4):755-762.
    [268]史培军.三论灾害研究的理论与实践[J].自然灾害学报,2002,11(3):1-9.
    [269]陈香.福建省暴雨洪涝灾害风险评估与管理[J].水土保持研究,2007,14(4):180-185.
    [270]交通运输部科学研究院,重庆交通大学,重庆市公路局.西南地区公路洪灾风险评估关键技术研究及示范应用[R].2012,1.
    [271]中华人民共和国交通运输部.公路交通突发事件应急预案.2009,4.
    [272]我国公路应急和风险管理机制初成体系[J].交通建设与管理,2010,(11):92.
    [273]陈洪凯,何晓英,陈远川,方艳.公路养护工作创新意识分析[R].2012,6.
    [274]Thomas K.Collins. Debris flows caused by failure of fill slopes:early detection, warning, and loss prevention[J]. Landslides,2008,(5):107-120.
    [275]Tiranti D, Bonetto S, Mandrone G. Quantitative basin characterisation to refine debris-flow triggering criteria and processes:an example from the Italian Western Alps[J]. Landslides,2008,(5): 45-57.
    [276]陈洪凯,唐红梅,翁其能,等.地质灾害防治系统工程方法论及散体滑坡研究[J].重庆师范学院学报(自然科学版),2001,18(2):62-65.
    [277]NORMAN FERRIER, C. EMDAD HAQUE. Hazards Risk Assessment Methodology for Emergency Managers:A Standardized Framework for Application[J]. Natural Hazards,2003,(28): 271-290.
    [278]HERMAN VAN DER MOST, MARK WEHRUNG. Dealing with Uncertainty in Flood Risk Assessment of Dike Rings in the Netherlands[J].Natural Hazards,2005,(36):191-206.
    [279]Sebastiaan N.Jonkman, Matthijs Kok, Johannes K.Vrijling. Flood Risk Assessment in the Netherlands:A Case Study for Dike Ring South Holland[J].Risk Analysis,2008,28(5):200-218.
    [280]王绍玉,唐桂娟.综合自然灾害风险管理理论依据探析[J].自然灾害学报,2009,18(2):33-38.
    [281]殷杰,尹占娥,许世远,等.灾害风险理论与风险管理方法研究[J].灾害学,2009,24(2):7-11/15.
    [282]徐为,胡瑞林,吴菲,等.浅谈我国的地质灾害风险评估[J].中国地质灾害与防治学报,2010,21(4):126-129.
    [283]李宁,胡爱军,崔维佳,等.风险管理标准化述评[J].灾害学,2009,24(2):110-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700