隧道工程稳定可靠度计算分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道稳定可靠度评价一直是隧道工程领域所面临的重大问题之一。在此评价过程中,作为可靠度理论不可或缺的组成部分,以及实施可靠性优化设计与风险预测的必要环节,隧道稳定可靠度计算分析方法研究具有至关重要的地位,其计算结果合理性与准确性不仅直接关系到隧道工程安全可靠程度,而且也将对其相应工程决策产生重大影响。为此,本文将在考虑隧道自身具备的有关工程特性基础上,针对其可靠度计算过程中功能函数的构建与不确定因素的描述方式这两个关键性问题,分别从概率与非概率角度对隧道稳定可靠度计算分析方法与理论开展研究,进而在隧道工程中进行应用。
     首先,基于概率可靠度方法,在构建功能函数过程中,针对目前隧道隐式功能函数可靠度计算存在的问题,以常见的锚喷支护为例,依据围岩与支护结构之间相互作用机理,通过采用围岩剪切滑移理论、薄壁圆筒公式以及锚杆与围岩共同变形理论建立了相应的结构功能函数,并在一次二阶矩理论框架内,引入了差分方法替代功能函数偏导运算。在此基础上,通过Taylor级数展开将上述功能函数转化为以可靠指标为未知变量的形式,同时结合复合函数求导法则推导出可靠指标迭代逼近求解公式,进而建立了一种适用于隧道工程隐式功能函数可靠度求解的简便实用方法。
     其次,鉴于隧道工程领域隐式功能函数的复杂性特征,在上章分析方法基础上,对其仍存在的问题通过引入响应面函数建模思路开展相应研究。基于围岩变形判别准则的功能函数,分析了经典二次响应面法试验点选取方式,由统计矩与随机参数分布概型之间关系,并根据随机参数不同分布形式的隧道实际工程特性,指出经典二次响应面法取样方式存在无法反映各参数分布曲线实际特征,而仅适用于其为对称形态的缺陷。由此引入Rosenblueth方法来考虑偏度系数对随机参数分布特征影响,进而采用偏度纠正系数对之实施偏度矫正,据此形成的响应面法能适用于隧道实际工程中随机参数分布形式的多样性特征。工程算例结果表明该方法能使计算结果精度得到较大改善和提高。
     再次,针对以序列响应面技术为主要代表的经典二次响应面法继续进行深入探讨。通过进一步结合隧道工程中参数耦合作用关系(即因素间相互作用),以及各参数对隧道稳定性能不同重要影响程度的实际工程特性,从序列响应面法自身前提条件存在问题入手,提出采用包含交叉项的完全二次函数形式以考虑参数耦合作用,同时,引入回归正交组合试验设计手段,并结合显著性检验原理,探讨了各参数对隧道稳定性能影响程度的判别方法,形成了具有识别参数重要程度的响应面模型优化技术。然后,根据各参数之实际变化范围由可靠指标几何意义求解可靠指标,建立了更具工程合理性的隧道隐式功能函数二次响应面可靠度计算方法。工程实例分析验证了该方法的有效性与合理性。
     为进一步在隧道工程领域探讨利用响应面函数建模手段处理隐式功能函数可靠度问题时的适用性,依据其自身稳定性力学状态高度复杂的基本工程特性,综合考虑了函数表达关系与取样方式。在响应面函数具体表达关系上,针对二次多项式及现有其它函数形式局限性,引入了理论上更趋严谨、对复杂非线性问题处理更有效的支持向量机回归方法;对于试验样本点选取方式,采用对复杂非线性模型估计适应能力更强、计算效率更高的均匀设计试验方法。上述两者结合形成了一种更趋完善的隧道可靠度响应面技术,拓宽了其解决隧道复杂隐式功能函数可靠度问题的工程适用范围。通过举例分析与验证展示了该方法的正确性与工程参考价值。
     最后,在以上概率方法基础上,为更进一步丰富和完善隧道稳定可靠度计算分析方法,针对该领域不确定性数据匮乏、不易获得不确定性因素足够信息而导致概率方法求解之先决条件无法满足的实际状况,基于不确定因素集合描述方式,从非概率评判角度对隧道可靠度分析方法开展研究。通过引进鲁棒可靠性思想,采用Information-Gap(Info-Gap)鲁棒性理论将隧道响应输出模型中不确定参量以Info-Gap集合模型来描述,并基于稳定性力学模式,由输出模型响应值与临界值之间关系构建鲁棒函数,据此将隧道发生失效前可容许不确定参量之最大波动幅度值定义为鲁棒可靠指标,进而建立了新的基于Info-Gap鲁棒性分析模型的隧道非概率可靠度评价体系。通过实例分析与讨论,表明了该模型具有较强的可行性及一定的工程应用前景。
The reliability evaluation of tunnel stability is invariably one of the significant issues encountered in the domain of tunnel engineering. Throughout the whole evaluation process, as an indispensable element of the reliability theory, as well as an essential procedure in performing reliability optimization designs and risk predictions, the investigation on the analysis method of reliability calculations plays a paramount role for the stability of tunnels, in which the rationality and precision of the calculated results are not only directly related to the level of safety and reliability of tunnels, but also have marked influences on the corresponding decision-making in such a field. For that reason, based on the consideration of associated engineering properties residing in the tunnel itself, the explorations of analysis method and theory of reliability calculations for tunnel stability are implemented from the probabilistic and non-probabilistic viewpoint, respectively, aiming at the two critical problems involved in the reliability analysis (i.e., the development of performance functions and the description of uncertainty factors). These outcomes could then have possible applications in tunnel engineering.
     Firstly, in the context of probabilistic methods, when developing the performance function, a difference approximation-based technique used to calculate the derivatives is proposed according to the limitations in reliability calculations for implicit performance functions. Taking the conventional primary support installed by rockbolts and shotcrete lining as an example, a corresponding performance function is built via the shear failure theory, the thin-walled cylinder formula and the consistent deformation theory of the ground-support interaction analysis. Within a framework of the first-order reliability method, a difference approximation is thereby introduced to estimate the partial derivatives of the implicit performance function. On this basis, such a performance function can be transformed into an expression involving a single unknown described as the reliability index with the aid of Taylor's formula, and then the resulting approximate iterative procedure for determining the reliability index can be rendered by incorporating the derivation rule of compound function. A straightforward and practical algorithm for the non-explicit performance functions in tunnel engineering is hence presented.
     Subsequently, in view of the complexity of the implicit performance function in tunnelling, the exploration is carried out in order to circumvent the difficulties still encountered in reliability analysis by introducing the function modelling of the response surface. In conformity with the performance function provided by the deformation principle of the surrounding rock, the sampling strategy of the classical response surface method (RSM) is analyzed. By consideration of the relationships between the statistical moments and the probability distributions of stochastic variables, and according to those various distributions exhibited actually in tunnel engineering, one key limitation of the classical RSM is that the sampling strategy can be incapable of reflecting the actual characteristics of distribution curves, but be only applicable to those curves behaved symmetrically. It is therefore recommended to use the Rosenblueth method to account for the effects of skewness coefficient on the configuration of distribution curves, whose skewness is rectified through certain coefficients. The resulting RSM that has the applicability in practical situations for various distributions of random variables is then presented, the example analysis shows that such a method can, to a certain extent, ameliorate and enhance the accuracy of computational results.
     Thirdly, much effort continues to direct towards the investigation on the sequential response surface technique, as the major representative of the classical RSM, by combining the engineering properties related to the coupling actions between variables (or interactions between factors) and different levels of the importance among those variables. According to the difficulties arising in the prerequisites for the sequential response surface method, a complete quadratic polynomial including the cross terms is employed to consider the coupling action between those variables. By integrating the regression analysis of orthogonal composite design with the statistical significance testing, a discriminant tool serving to the delineation of the effect of various factors on tunnel stability is provided, and a resulting optimum approach is then proposed for the response surface model to identify the importance level of basic variables. On this basis, the reliability index can be obtained through its geometrical meaning when knowing the actual interval of various variables. Consequently, a more reasonable quadratic RSM for reliability computations of tunnels is established, whose effectiveness and reasonableness are then validated using the illustrative example.
     For the purpose of performing further discussion on the applicability of the response surface modelling treated for the reliability problem, two fundamental issues posed in the RSM, viz., the function expression and the sampling strategy, are both taken into account according to the highly complicated mechanical state in tunnelling. For the expression of the response surface, the support vector regression approach is offered, which is much stricter in theory and more effective for complex nonlinear problems than the quadratic polynomial and some other existing functions. As regards the sampling strategy associated to the experimental design, the uniform design method is introduced, which is more applicable to the nonlinear model estimation and more efficient in computations than other design approaches. Such a combination of the two above devices tends to perfect the response surface technique, thus widening its applicability in solving the tunnel reliability problems of complicated performance functions. The correctness and referential value of the suggested method are demonstrated by the example analysis and verification.
     Eventually, on the basis of the probabilistic treatments in the above chapters, a special attention is devoted to enriching and improving the analysis method of reliability calculations for tunnel stability. Owing to the fact that the data on the uncertainties are quite limited and the uncertainty information is rather unavailable in tunnel engineering, the essential prerequisite in the probabilistic concept is not fulfilled. In this environment, the investigation on the reliability method is performed based on the set model of uncertainties from the non-probabilistic perspective. By introducing the concept of robust reliability, the Information-Gap (Info-Gap) robust theory is provided to handle the uncertain variables quantitatively with the Info-Gap set model. According to the mechanical mode in tunnelling, the robustness function is formulated by correlating the response value with the critical value of the output model. It is then followed by the definition of the robust reliability index, indicating that the tunnel performance could suffer the greatest horizon of the fluctuation of uncertain variables before failure. Therefore, a novel non-probabilistic evaluation methodology is developed based on the Info-Gap robustness model. The example analyses and discussions are presented to demostrate the proposed model with relatively favorable feasibility and a certain perspective of practical applications.
引文
[1]钱七虎,陈志龙.21世纪地下空间开发利用展望.北京:清华大学出版社,1998,162-169
    [2]王梦恕,张梅.铁路隧道建设理念和设计原则.中国工程科学,2009,11(12):4-8
    [3]王光远.工程软设计理论.北京:科学出版社,1992,239-273
    [4]景诗庭,朱永全,宋玉香.隧道结构可靠度.北京:中国铁道出版社,2002,7-28,40-51,61-71,83-131,141-149,174-215
    [5]赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996,18-28,31-71,84-104,105-158,246-257
    [6]胡聿贤,陈汉光.地震危险性估计中不确定性的概率分析.地震工程与工程振动,1991,11(4):1-9
    [7]Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety,1994, 14(4):227-245
    [8]Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures:from A M Freudenthal's criticisms to modern convex modeling. Computers and Structures,1995,56(6):871-895
    [9]Sexsmith R G. Probability-based safety analysis-value and drawbacks. Structural Safety,1999,21(4):303-310
    [10]李世烽.隧道支护设计新论—典型类比分析法应用和理论.北京:科学出版社,1999,1-47,211-216,264-271,298-332
    [11]冯夏庭.智能岩石力学的发展.中国科学院院刊,2002,17(4):256-259
    [12]谢和平.灾害环境下重大工程安全性的基础研究进展.北京:科学出版社,2004,68-73
    [13]徐干成,白洪才,郑颖人,等.地下工程支护结构.北京:中国水利水电出版社,2001,1-7,37-40,87-102,289-303
    [14]李志业,高艳华.地下结构设计原理与方法.成都:西南交通大学出版社,2003,7-17,33-49,280-307
    [15]关宝树.隧道工程设计要点集.北京:人民交通出版社,2003,1-7,108-116,174-189
    [16]周维垣,杨若琼,杨强,等.岩石力学的解析与数值模拟.南京:河海大学出版社,2004,357-386
    [17]ITA working group on general approaches to the design of tunnels. Guidelines for the design of tunnels. Tunnelling and Underground Space Technology,1988, 3(3):237-249
    [1 8]高谦,吴顺川,万林海,等.土木工程可靠性理论及其应用.北京:中国建材工业出版社,2007,398-434
    [19]谭忠盛.隧道支护结构体系可靠度的理论研究及其工程应用:[西南交通大学博士学位论文].成都:西南交通大学,1998,1-3
    [20]赵国藩.建筑结构按照极限状态计算的原理及其系数的确定方法.土木工程学报,1956,3(2):141-174
    [21]Freudenthal A M. The Safety of Structures. Transactions, ASCE,1947,112, 125-180
    [22]Freudenthal A M. Safety and the Probability of Structural Failure. Transactions, ASCE,1956,121,1337-1397
    [23]赵国藩.钢筋混凝土结构按照数理统计法计算的探讨.土木工程学报,1960,7(4):43-48
    [24]赵国藩,曹居易,张宽权.工程结构可靠度.北京:水利水电出版社,1984,1-7
    [25]胡聿贤.结构安全度的统计分析.土木工程学报,1957,4(2):253-265
    [26]胡聿贤.对数正态曲线在结构安全度中的应用.土木工程学报,1959,6(2):122-133
    [27]Wu Y T, Wirsching P H. New algorithm for structural reliability estimation. Journal of Engineering Mechanics, ASCE,1987,113(9):1319-1336
    [28]Cornell C A. A probability-based structural code. Journal of American Concrete Institute.1969,66(12):974-985
    [29]Rosenblueth E, Esteva L. Reliability basis for some Mexican codes. International Concrete Research & Information Portal,1972,31(1):1-42
    [30]Hasofer A M, Lind N. An exact and invariant first-order reliability format. Journal of Engineering Mechanics, ASCE,1974,100(1):111-121
    [31]Shinozuka M. Basic analysis of structural safety. Journal of Structural Engineering, ASCE,1983,109(3):721-740
    [32]Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computers & Structures,1978,9(5):484-494
    [33]Chen X, Lind N C. Fast probability integration by three-parameter normal tail approximation. Structural Safety,1983,1(4):269-276
    [34]Ditlevsen O. Defect and/or truncated normal tail approximation. Structural Safety,1984,2(1):65-70
    [35]Ditlevsen O, Madsen H O. Structural reliability method. Chichester:John Wiley & Sons,1996,111-148
    [36]Rosenblatt M. Remarks on a multivariate transformation. The Annals of Mathematical Statistics,1952,23(3):470-472
    [37]Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety. Journal of the Engineering Mechanics Division, ACSE,1981,107(6): 1227-1238
    [38]Rice S O. Distribution of quadratic forms in normal random variables-evaluation by numerical integration. Journal on Scientific and Statistical Computing, SIAM,1980,1(4):438-448
    [39]Der Kiureghian A, Liu P L. Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics,1986,1(2): 105-112
    [40]吕泰仁,吴世伟.用几何法求构件的可靠指标.河海大学学报,1988,16(5):86-93
    [41]冷伍明.基础工程可靠度分析与设计理论.长沙:中南大学出版社,2000,50-60
    [42]徐军,邵军,郑颖人.遗传算法在岩土工程可靠度分析中的应用.岩土工程学报,2000,22(5):586-589
    [43]张建仁,许福友.两种求解可靠指标的实用算法.工程力学,2002,19(3):159-165
    [44]Low B K, Tang W H. Efficient reliability evaluation using spreadsheet. Journal of the Engineering Mechanics, ACSE,1997,123(7):749-752
    [45]Low B K, Tang W H. Reliability analysis using object-oriented constrained optimization. Structural Safety,2004,26(1):69-89
    [46]Fiessler B, Rackwitz R, Neumann H J. Quadratic limit states in structural reliability. Journal of the Engineering Mechanics Division, ASCE,1979,105(4): 661-676
    [47]Naess A. Bounding approximations to some quadratic limit states. Journal of Engineering Mechanics, ASCE,1987,113(10):1474-1492
    [48]Tvedt L. Distribution of quadratic forms in normal space-application to structural reliability. Journal of Engineering Mechanics, ASCE,1990,116(6): 1183-1197
    [49]Koyluoglu H U, Nielsen S R K. New approximations for SORM integrals. Structural safety,1994,13(4):235-246
    [50]Breitung K. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, ASCE,1984,110(3):357-366
    [51]李云贵,赵国藩.广义随机空间内的结构可靠度渐近分析方法.水利学报,1994,(8):36-41
    [52]Tagliani A. On the existence of maximum entropy distributions with four and more assigned moments. Probabilistic Engineering Mechanics,1990,5(4): 167-170
    [53]陈立周,何晓峰,翁海珊,等.工程随机变量优化设计方法:原理与应用.北京:科学出版社,1997,1-290
    [54]李云贵,赵国藩.结构可靠度的四阶矩分析法.大连理工大学学报,1992,32(4):455-459
    [55]章光,朱维申,白世伟.计算近似失效概率的最大熵密度函数法.岩石力学与工程学报,1995,14(2):119-129
    [56]佟晓利,赵国藩.改进的Rosenblueth方法及其在结构可靠度分析中应用.大连理工大学学报,1997,37(3):316-321
    [57]Stuart A, Ord J K. Distribution theory-Kendall's advanced theory of statistics. London:Charles Griffin & Company Ltd,1987,135-163
    [58]Tichy M. First-order third-moment reliability method. Structural Safety,1994, 16(3):189-200
    [59]Zhao Y G, Ono T. Moment methods for structural reliability. Structural Safety, 2001,23(1):47-75
    [60]Rackwitz R. Reliability analysis-a review and some perspectives. Structural Safety,2001,23(4):365-395
    [61]Rosenblueth E. Point estimates for probability moments. Proceedings of the National Academy of Sciences of the United States of America,1975,72(10): 3812-3814
    [62]Rosenblueth E. Two-point estimates in probabilities. Applied Mathematical Modelling,1981,5(2):329-335
    [63]Li K S. Point-estimate method for calculating statistical moments. Journal of Engineering Mechanics, ASCE,1992,118(7):1506-1511
    [64]李洪双,吕震宙,袁修开.基于Nataf变换的点估计法.科学通报,2008,53(6):627-632
    [65]祝玉学,黄礼富.Rosenblueth方法在排土场边坡可靠性分析中的应用.矿山技术,1990,(3):10-15
    [66]张广文,陈祖煜.Rosenblueth法的探讨及其在工程结构可靠度分析中的应用.南京:河海大学出版社,1992,52-59
    [67]Metropolis N, Ulam S. The Monte Carlo method. Journal of the American statistical association,1949,44(247):335-341
    [68]Schueller G I, Bucher C G, Bourgund U, et al. On efficient computational schemes to calculate structural failure probabilities. Probabilistic Engineering Mechanics,1989,4(1):10-18
    [69]Bjerager P. Probability integration by directional simulation. Journal of Engineering Mechanics, ASCE,1988,114(8):1285-1302
    [70]Ayyub B M, Chia C Y. Generalized conditional expectation for structural reliability assessment. Structural Safety,1992,11(2):131-146
    [71]Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo method. New York:Wiley,2008,1-26
    [72]Astill C J, Imosseir S B, Shinozuka M. Impact loading on structures with random properties. Journal of Structural Mechanics,1972,1(1):63-77
    [73]刘宁.可靠度随机有限元及其工程应用.北京:中国水利水电出版社,2001,1-14,196-206
    [74]秦权,林道锦,梅刚.结构可靠度随机有限元—理论及工程应用.北京:清华大学出版社,2006,1-9
    [75]Box G E P, Wilson K B. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society, Series B (Methodological),1951,13(1): 1-45
    [76]Wong F S. Uncertainties in dynamic soil-structure interaction. Journal of Engineering Mechanics, ASCE,1984,110(2):308-324
    [77]Bjerager P. On computation methods for structural reliability analysis. Structural Safety,1990,9(2):79-96
    [78]Wong F S. Slope reliability and response surface method. Journal of Geotechnical Engineering, ASCE,1985,111(1):32-53
    [79]Faravelli L. Response-surface approach for reliability analysis. Journal of Engineering Mechanics, ASCE,1989,115(12):2763-2781
    [80]Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety,1990,7(1):57-66
    [81]Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability analysis. Structural Safety,1993,12(3):205-220
    [82]董聪,刘西拉.非线性结构系统可靠性理论及其模拟算法.土木工程学报,1998,31(1):33-43
    [83]Shao S, Morutso Y. Structural reliability analysis using a neural network. JSME International Journal, Series A, Mechanics and Material Engineering,1997, 40(3):242-246
    [84]徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用.计算 力学学报,2002,19(2):217-221
    [85]Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization,1998,13(4):455-492
    [86]Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine. Reliability Engineering & System Safety,2002,76(3):237-243
    [87]Huang S P, Mahadevan S, Rebba R. Collocation-based stochastic finite element analysis for random field problems. Probabilistic Engineering Mechanics,2007, 22(2):194-205
    [88]杨成永,张弥,白小亮.用于结构可靠度分析的多响应面法.北方交通大学学报,2001,25(1):1-4
    [89]刘成立,吕震宙.非线性隐式极限状态方程失效概率计算的组合响应面法.工程力学,2006,23(2):29-33
    [90]Zadeh L A.1965, Fuzzy sets. Information and control,1965,8(4):338-353
    [91]黄洪钟.对常规可靠性理论的批判性评述:兼论模糊可靠性理论的产生,发展及应用前景.机械设计,1994,11(3):1-5
    [92]吕震宙,冯蕴雯.结构可靠性问题研究的若干进展.力学进展,2000,30(1):21-28
    [93]Blockley D I. Predicting the likelihood of structural accidents. In:Proceedings Institute Civil Engineers, London,1975,659-668
    [94]Brown C B. A fuzzy safety measure. Journal of the Engineering Mechanics Division, ASCE,1979,105(5):855-872
    [95]Yao J T P. Damage assessment of existing structures. Journal of the Engineering Mechanics Division, ASCE,1980,106(4):785-799
    [96]Blockley D I. The role of fuzzy sets in civil engineering. Fuzzy Sets and Systems,1979,2(4):267-278
    [97]Brown C B. Fuzzy sets and structural engineering. Journal of Structural Engineering, ASCE,1983,109(5):1211-1225
    [98]Yao J T P, Furuta H. Probabilistic treatment of fuzzy events in civil engineering. Probabilistic engineering mechanics,1986,1(1):58-64
    [99]王光远.地震烈度的模糊综合评定及其在抗震结构设计中的应用.地震工程与工程振动,1982,2(4):17-25
    [100]欧进萍,王光远.基于模糊破坏准则的抗震结构动力可靠性分析.地震工程与工程振动,1986,6(1):1-11
    [101]王光远,王文泉.抗震结构的模糊可娜性分析.力学学报,1986,18(5):448-455
    [102]王光远,王文泉,段明珠.具有多种失效模式的抗震结构的模糊可靠性分析.力学学报,1988,20(3):278-282
    [103]赵国藩,李云贵.混凝土结构正常使用极限状态可靠度模糊概率分析.大连理工大学学报,1990,30(2):177-183
    [104]李云贵,赵国藩.基于模糊随机概率理论的可靠度分析模型.大连理工大学学报,1995,35(4):528-531
    [105]唐铁羽赵国藩.钢筋混凝土结构正常使用极限状态可靠性分析.工程力学,1997,14(增刊):212-220
    [106]董安正,赵国藩.建筑结构模糊可靠度置信区间的确定方法.建筑结构学报,2003,24(2):83-85
    [107]吕震宙,冯元生.元件强度可靠性的模糊概率计算模型.航空学报,1996,17(6):752-754
    [108]吕震宙,岳珠峰.结构体系随机模糊失效模式的确定方法.西北工业大学学报,2000,18(2):186-189
    [109]郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法.计算力学学报,2002,19(1):89-93
    [110]郭书祥,吕震宙.结构的失效可能度及模糊概率计算方法.应用数学和力学,2003,24(3):300-304
    [111]Drenick R F. Functional analysis of effects of earthquakes. In:Report,2nd Joint United States-Japan Seminar on Applied Stochastics, Washington D C, 1968,1-10
    [112]Shinozuka M. Maximum structural response to seismic excitations. Journal of the Engineering Mechanics Division, ASCE,1970,96(5):729-738
    [113]Ben-Haim Y,Elishakoff I.Convex models of uncertainty in applied mechanics. Amsterdam:Elsevier Science Publishers,1990,1-221
    [114]邱志平.不确定参数结构静力响应和特征值问题的区间分析方法:[吉林工业大学博士学位论文].长春:吉林工业大学,1994,40-75
    [115]Elishakoff I, Lin Y K, Zhu L P. Probabilistic and convex modelling of acoustically excited structures. Amsterdam:Elsevier Science Publishers 1994, 1-296
    [116]Ben-Haim Y. Robust reliability in the mechanical sciences. Berlin: Springer-Verlag,1996,1-233
    [117]邱志平.非概率集合理论凸方法及其应用.北京:国防工业出版社,2005,1-246
    [118]邱志平,王晓军.不确定性结构力学问题的集合理论凸方法.北京:科学出版社,2007,1-141
    [119]苏静波,邵国建.基于区间分析的工程结构不确定性研究现状与展望.力学进展,2005,35(3):338-344
    [120]王德人,张连生,邓乃扬.非线性方程的区间算法.上海:上海科学技术出版社,1987,2-4
    [121]Elishakoff I. Discussion on:a non-probabilistic concept of reliability. Structural Safety,1995,17(3):195-199
    [122]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报,2001,18(1):56-60
    [123]郭书祥,吕震宙.基于非概率模型的结构稳健可靠性设计方法.航空学报,2001,22(5):451-453
    [124]郭书祥,吕震宙.结构体系的非概率可靠性分析方法.计算力学学报,2002,19(3):332-335
    [125]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法.计算力学学报,2002,19(3):260-264
    [126]王晓军,邱志平.结构振动的鲁棒可靠性.北京航空航天大学学报,2003,29(11):1006-1010
    [127]江涛.区间模型非概率可靠性指标的一维优化算法.工程力学,2007,24(7):23-27
    [128]王晓军,邱志平,武哲.结构非概率集合可靠性模型.力学学报,2007,23(5):641-646
    [129]方鹏亚,常新龙,简斌.考虑权重因素的非概率可靠性模型.机械强度,2011,33(2):225-228
    [130]Ben-Haim Y, Elishakoff I. Non-probabilistic models of uncertainty in the nonlinear buckling of shells with general imperfections:theoretical estimates of the knockdown factor. Journal of Applied Mechanics, ASME,1989,56(2): 403-410
    [131]Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety,1994, 14(4):227-245
    [132]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety,1995,17(2):91-109
    [133]Ben-Haim Y. Robust reliability of structures. Advances in Applied Mechanics, 1997,33:1-41
    [134]程远胜,曾广武.结构非概率可靠性优化设计.华中科技大学学报(自然科学版),2002,30(3):30-32
    [135]邱志平,陈山奇,王晓军.结构非概率鲁棒可靠性准则.计算力学学报,2004,21(1):1-6
    [136]李永华,黄洪钟,刘忠贺.结构稳健可靠性分析的凸集模型.应用基础与工程科 学学报,2004,12(4):383-391
    [137]曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究.计算力学学报,2005,22(5):546-549
    [138]易平.对区间不确定性问题的可靠性度量的探讨.计算力学学报,2006,23(2):152-156
    [139]罗阳军,亢战.超椭球模型下结构非概率可靠性指标的迭代算法.计算力学学报,2008,25(6):747-752
    [140]刘成立,吕震宙,罗志清,等.一种通用的稳健可靠性指标.机械工程学报,2011,47(10):192-198
    [141]Matsuo M, Kawamura K. Reliability-based design of supporting system for NATM. In:Proceedings of the 4th International Conference on Applications of Statistics and Probability in Soil and Structural Engineering. Italy,1983, 1517-1530
    [142]Harr M E. Reliability-based design in civil engineering. New York: McGraw-Hill,1987,1-68
    [143]Kohno S. Reliability-based design of tunnel support systems:[dissertation]. Urbana:University of Illinois at Urbana-Champaign,1989,1-18
    [144]Kohno S, Ang A H S, Tang W H. Reliability evaluation of idealized tunnel systems. Structural Safety,1992,11(2):81-93
    [145]Laso E. Application of Level Ⅱ reliability methods to the design of tunnels liners (in Spanish):[dissertation]. Madrid:Universidad Politecnica de Madrid, 1991,1-20
    [146]关宝树.铁路隧道围岩压力的统计分析.铁道标准设计通讯,1979,(6):15-18
    [147]关宝树.隧道结构可靠度研究的几点建议.铁道标准设计通讯,1987,4(4):16-21
    [148]景诗庭.对开展“地下结构可靠性设计”研究之浅见.地下空间,1988,8:48-51
    [149]宋振熊.按可靠性理论修订隧道规范的刍议.铁道标准设计通讯,1990,(9):9-14
    [150]张清,奚毓堃.隧道可靠性分析初探.铁道标准设计通讯,1990,(11):19-20
    [151]谢锦昌.铁路隧道衬砌结构可靠性分析初探.铁道学报,1992,14(1):63-68
    [152]张弥,李国军.明洞填土压力明洞填土压力的离心模型试验和计算模式的不确定性.铁道标准设计,1993,(12):30-33
    [153]高波,关宝树,钟新樵.铁路隧道200号喷混凝土现场实测强度的概率特性统计研究.铁道工程学报专刊,1994,(10):10-14
    [154]武清玺,赵魁芝.水工隧洞结构可靠性分析.河海大学学报,1994,22(1):105-108
    [155]武清玺,刘阿多.隧洞结构截面与体系可靠度计算.河海大学学报,1996,24(2):56-61
    [156]段乐斋.水工隧洞设计规范(DL/T5195-2004)解读.水电站设计,2005,21(3):7-13
    [157]谢锦昌,王效良.复合式衬砌可靠度估算法刍议.兰州铁道学院学报,1991,10(3):25-30
    [158]徐军,郑颖人,刘东升.锚喷支护喷层结构的目标可靠指标和分项系数研究.岩石力学与工程学报,2002,21(5):671-674
    [159]杨林德,萧蕤.复合支护的可靠度分析.地下空间,2003,23(1):45-47
    [160]宋玉香.铁路隧道初期支护结构随机有限元及可靠度分析.石家庄铁道学院学报,2008,21(1):1-5
    [161]胡志平,罗丽娟.管片衬砌结构可靠度分析的优化方法.岩石力学与工程学报,2005,24(22):4145-4150
    [162]袁勇,赵庆丽.盾构隧道衬砌截面的承载能力功能函数.铁道工程学报,2009,(5):59-63
    [163]黄清飞,袁大军,王梦恕.管片衬砌可靠度分析实用方法研究,北京交通大学学报,2009,33(1):104-108
    [164]杨林德,萧蕤,罗立娜.软弱岩层中隧道结构体系的可靠度.同济大学学报(自然科学版),2004,32(6):705-709
    [165]宋玉香,景诗庭,朱永全.隧道结构系统可靠度研究.岩土力学,2008,29(3):780-784
    [166]施成华,雷明锋,彭立敏.隧道衬砌结构体系可靠度研究.铁道科学与工程学报,2010,7(4):20-24
    [167]景诗庭.地下坑道稳定性的模糊概率分析.石家庄铁道学院学报,1989,2(2):33-40
    [168]徐军,郑颖人,刘东升.用模糊概率方法分析隧洞稳定的可靠性.广州:广东科技出版社,1998,168-172
    [169]谭忠盛.隧道结构模糊失效概率计算的改进M-C法.西部探矿工程,2001,(4):65-66.
    [170]赵奎,蔡美峰,饶运章,等.采空区块体稳定性的模糊随机可靠性研究.岩土力学,2003,24(6):987-990
    [171]申玉生,赵玉光.双连拱隧道围岩稳定性的模糊概率分析研究.岩土工程学报,2005,27(11):1358-1361
    [172]宋玉香,朱永全,刘志春.乌鞘岭隧道岭脊段位移稳定性模糊可靠度分析.成都:《四川大学学报(工程科学版)》编辑部,2007,109-115
    [173]许文锋.海底隧道围岩稳定性模糊概率分析.海洋工程,2009,27(3):117-121
    [174]赵延喜,徐卫亚.大变形隧洞稳定性模糊概率分析.中国矿业大学学报,2010,39(2):214-218
    [175]尚新生,余启华,赵震英.用修正FOSM方法分析隧洞稳定的可靠性.岩石力学与工程学报,1997,16(1):43-50
    [176]赵会香,张广键,张思俊.无压隧洞围岩稳定可靠度分析.合肥工业大学学报(自然科学版),1998,21(1):65-70
    [177]何满潮,苏永华,景海河.块状岩体的稳定可靠性分析模型及其应用.岩石力学与工程学报,2002,21(3):343-348
    [178]何满潮,苏永华.地下软岩工程可靠度研究.岩土工程学报,2003,25(1):55-57
    [179]金丰年.隧洞围岩稳定及其复合支护的可靠度分析.上海:同济大学出版社,1990,73-86
    [180]朱永全,刘勇,宋玉香.隧道工程结构可靠度计算方法分析.石家庄铁道学院学报,1997,10(4):41-47
    [181]Hoek E. Reliability of Hoek-Brown estimates of rock mass properties and their impact on design. International Journal of Rock Mechanics and Mining Sciences,1998,35(1):63-68
    [182]Kalamaras G S, Xu S, Russo G, et al. Estimating the reliability of the primary support for a given tunnel section. In:The 37th U.S. Symposium on Rock Mechanics. Rotterdam,1999,1-8
    [183]徐军,雷用.地下隧洞稳定的可靠性分析.地下空间,2000,20(2):100-104
    [184]苏永华,何满潮,高谦.Rosenblueth方法在软破围岩锚喷支护系统评价中的应用.岩土工程学报,2004,26(3):378-382
    [185]Li H Z, Low B K. Reliability analysis of circular tunnel under hydrostatic stress field. Computers and Geotechnics,2010,37(1-2):50-58
    [186]谭忠盛,谢锦昌.用蒙特卡罗法分析隧道衬砌荷载效应的统计特征.铁道标准设计通讯,1991,(2):1-4
    [187]宋玉香,景诗庭,刘勇.单线电气化铁路隧道衬砌结构目标可靠指标的试算分析.岩石力学与工程学报,1999,18(1):46-49
    [188]边亦海,黄宏伟,高军.可靠度理论在确定隧道衬砌合理参数中的应用.地下空间与工程学报,2005,1(1):129-132
    [189]Oreste P. A probabilistic design approach for tunnel supports. Computers and Geotechnics,2005,32(7):520-534
    [190]张道兵,杨小礼,朱川曲.基于可靠度理论与Matlab的隧道衬砌结构设计与分析.采矿与安全工程学报,2011,28(2):323-327
    [191]Celestino T B, Aoki N, Silva R M, et al. Evaluation of tunnel support structure reliability. Tunnelling and Underground Space Technology,2006,21(3-4):311
    [192]毕继红,张鹏飞,杜玉东.大型地下洞室施工过程中的可靠性分析.岩土力学,2007,28(11):2415-2420
    [193]王建华.基于蒙特卡罗法的公路隧道初期支护可靠度分析.公路隧道,2007,(2):11-14
    [194]张清,王东元,李建军.铁路隧道衬砌结构可靠度分析.岩石力学与工程学报,1994,13(3):209-218
    [195]谭忠盛,高波,关宝树.偏压隧道衬砌结构可靠度分析.西南交通大学学报,1991,31(6):595-601
    [196]王兵,谢锦昌.偏压隧道模型试验及可靠度分析.工程力学,1998,15(1):85-93
    [197]谭忠盛,王梦恕.隧道衬砌结构可靠度分析的二次二阶矩法.岩石力学与工程学报,2004,23(13):2243-2247
    [198]徐军,郑颖人.隧道围岩弹塑性随机有限元分析及可靠度计算.岩土力学,2003,24(1):70-74
    [199]佘健.隧道结构实态可靠度评定应用研究.工程力学,1999,(a01):820-827
    [200]武清玺,赵魁芝.随机有限元法分析水工隧洞结构的可靠度.岩土力学,1995,16(4):13-19
    [201]武清玺,张玉惠.地下结构开裂问题可靠度分析.河海大学学报,1997,25(6):31-36
    [202]张弥,沈永清.用响应面方法分析铁路明洞结构荷载效应.土木工程学报,1993,26(2):58-66
    [203]张弥,杨成永.地下工程喷锚支护系统的不确定性研究.西部探矿工程,1996,8(1):5-9
    [204]高波,蔺安林,赵万强.隧道衬砌结构可靠指标计算方法的研究.西南交通大学学报,1996,31(6):583-589
    [205]赵旭峰,严松宏.响应面法在隧道衬砌结构可靠度分析中的应用.岩石力学与工程学报,2003,22(增2):2853-2856
    [206]宋玉香,刘勇,朱永全.响应面方法在整体式隧道衬砌可靠性分析中的应用.岩石力学与工程学报,2004,23(11):1847-1851
    [207]李兆平,聂楠,杨成永,等.矿山法地铁隧道二衬结构安全系数及可靠度计算方法研究.北京交通大学学报,2011,35(1):39-43
    [208]Laso E, Gomez Lera M S, Alarcon E. A level Ⅱ reliability approach to tunnel support design. Applied Mathematical Modelling.1995,19(6):371-382
    [209]赵旭峰,王春苗.应用有限元响应面法分析地下结构可靠度.地下空间与工程 学报,2006,2(4):551-555
    [210]吴德兴,汪波,黄强,等.基于有限元响应面法的隧道衬砌可靠度分析.铁道建筑,2007,(3):53-56
    [211]侯公羽,韩茹,黄祥忠.基于响应面法的隧道可靠度分析及其指标确定.地下空间与工程学报,2009,5(5):965-971
    [212]颜立新,康红普,高谦.基于响应面函数的可靠度分析及其应用.岩土力学,2001,22(3):327-329
    [213]苏永华,方祖烈,高谦.用响应面方法分析特殊地下岩体空间的可靠性.岩石力学与工程学报,2000,19(1):55-58
    [214]徐军,张利民,郑颖人.基于数值模拟和BP网络的可靠度计算方法.岩石力学与工程学报,2003,22(3):395-399
    [215]Goh A T C, Kulhawy F H. Neural network approach to model the limit state surface for reliability analysis. Canadian Geotechnical Journal,2003,40(6): 1235-1244
    [216]陈建康,朱殿芳,赵文谦,等.基于响应面法的地下洞室结构可靠度分析.岩石力学与工程学报,2005,24(2):351-356
    [217]华渊,周太全,吕宝华.基于响应面法的软岩隧道湿喷纤维混凝土支护结构可靠度分析.岩土力学,2008,29(增刊):232-236
    [218]Mollon G, Dias D, Soubra A H. Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology. Journal of Geotechnical & Geoenvironmental Engineering, ASCE,2009,135(9):1314-1325
    [219]苏永华,罗正东,伍文国.隧道围岩变形破坏概率的SVM分析方法.应用力学学报,2010,27(4):804-808
    [220]Lii Q, Low B K. Probabilistic analysis of underground rock excavations using response surface method and SORM. Computers and Geotechnics,2011,38(8): 1008-1021
    [221]邓建,朱合华.基于神经网络的岩土工程结构随机有限元分析.同济大学学报,2002,30(3):269-272
    [222]邓建,李夕兵,赵国彦,等.不等跨连拱隧道衬砌结构可靠度分析.岩石力学与工程学报,2003,22(增1):2231-2235
    [223]邓建,韩斌.不等跨连拱隧道衬砌结构可靠度及敏感性分析.地下空间与工程学报,2005,1(6):841-843
    [224]谢楠,王大力,张弥,等.隧道复合衬砌运营期可靠性评价方法.工程力学,2007,24(S1):119-122
    [225]赵洪波,茹忠亮,张士科.SVM在地下工程可靠性分析中的应用.岩土力 学,2009,30(2):526-530
    [226]Mollon G, Dias D, Soubra A H. Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2011,137(4):385-397
    [227]李典庆,蒋水华,周创兵.基于非侵入式随机有限元法的地下洞室可靠度分析.岩土工程学报,2012,34(1):123-129
    [228]Russo G, Kalamaras G S, Xu S, et al. Reliability analysis of tunnel support systems. In:Preparation for Proceedings of the 9th ISRM Congress. Paris,1999, 1-6
    [229]Lilly P A, Li J. Estimating excavation reliability from displacement modelling. International Journal of Rock Mechanics and Mining Sciences,2000,37(8): 1261-1265
    [230]苏永华,何满潮.利用统计矩点估计法简化响应面可靠度指标的计算.工程力学,2007,24(7):11-15
    [231]祁长青,许人平,吴继敏,等.基于遗传算法的隧道围岩变形稳定可靠性分析.工程地质学报,2008,16(2):258-262
    [232]李志华,康海贵.隧道初期支护结构可靠度计算方法研究.武汉理工大学学报,2009,31(10):63-67
    [233]何涛,李杰.基于概率密度演化方法的地下结构可靠度分析.力学季刊,2009,30(4):530-536.
    [234]苏永华,何满潮,曹文贵.岩体地下结构围岩稳定非概率可靠性的凸集合模型分析方法.岩石力学与工程学报,2005,24(3):377-383
    [235]曹文贵,张永杰.基于区间截断法的地下结构模糊能度可靠性模型研究.岩土工程学报,2007,29(10):1455-1459
    [236]张永杰.基于不确定性理论的隧道围岩稳定性及风险分析研究:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2010,78-101
    [237]董陇军,李夕兵.地下硐室节理岩体区间非概率可靠性分析方法及应用.岩土工程学报,2011,33(7):1007-1013
    [238]苏永华,何满潮,赵明华,等.基于区间变量的响应面可靠性分析方法.岩土工程学报,2005,27(12):1408-1413
    [239]苏静波.工程结构不确定性区间分析方法及其应用研究:[河海大学博士学位论文].南京:河海大学土木工程学院,2006,120-137
    [240]Fiessler B, Rackwitz R, Neumann H. Quadratic limit states in structural reliability. Journal of the Engineering Mechanics Division, ASCE,1979,105(4): 661-676
    [241]Elishakoff I, Hasofer A M. Exact versus approximate determination of structural reliability. Applied scientific research,1987,44(3):303-312
    [242]Casciatti F, Roberts J B. Reliability problems:general principles and applications in mechanics of solids and structures. New York:Springer-Verlag, 1991,59-121
    [243]张明.结构可靠度分析-方法与程序.北京:科学出版社,2009,19-67,143-180
    [244]Hoek E, Brown E T. Underground excavations in rock. London:The Institution of Mining and Metallurgy,1980,1-37,87-366
    [245]Brown E T, Bray J W, Ladanyi B, et al. Ground response curves for rock tunnels. Journal of Geotechnical Engineering, ASCE,1983,109 (1):15-39
    [246]Rabcewicz L V, Gosler J. Principles of dimensioning the support system for the New Austrian Tunnelling Method. Water Power,1973,25(3):88-93
    [247]Peila I D, Oreste P P. Axisymmetric analysis of ground reinforcing in tunnelling design. Computers and Geotechnics,1995,17(2):253-274
    [248]Daemen J J K. Problems in tunnel support mechanics. Underground Space, 1977,1(3):163-172
    [249]Lombardi G. Some Comments on the convergence-confinement method. Underground Space,1980,4(4):249-258
    [250]Verman M, Singh B, Jethwa J L, et al. Determination of support reaction curve for steel-supported tunnels. Tunnelling and Underground Space Technology, 1995,10(2):217-224
    [251]Brown E T. Putting the NATM into perspective. Tunnels & Tunnelling,1981, 13(10):13-17
    [252]Hoek E. Big tunnels in bad rock. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(9):726-740
    [253]Azzouz A S, Germaine J T. Behavior of cylindrical openings in strain-softening ground. In:Proceedings of the 22nd U.S. Symposium on Rock Mechanics. Cambridge, MA,1981,258-263
    [254]Kovari K. Erroneous concepts behind NATM. In:Lecture given at the Rabcewicz-Geomechanical Colloquium. Salzburg,1993,1-20
    [255]Muller L. Removing misconceptions on the new Austrian tunnelling method. Tunnels & Tunnelling,1978,10(8):29-32
    [256]Roussev P. Calculation of the displacements and Pacher's rock pressure curve by the associative law for the fluidity-plastic flow. Tunnelling and Underground Space Technology,1998,13(4):441-451
    [257]Rabcewicz L V. The new Austrian tunnelling method-part 1. Water Power,1964, 16(11):453-456
    [258]Rabcewicz L V. Stability of tunnels under rock load-part 2. Water Power,1969, 21(8):266-273
    [259]潘家铮.评《围岩力学分析中的解析方法》.中国图书评论,1995,(8):23
    [260]Xu S Q, Yu M H. The effect of the intermediate principal stress on the ground response of circular openings in rock mass. Rock Mechanics and Rock Engineering,2006,39 (2):169-181
    [261]Panet M. Recommendations on the convergence-confinement method. Paris: AFTES,2001,1-11
    [262]Panet M, Guenot A. Analysis of convergence behind the face of a tunnel. In: Tunnelling'82:Third International Symposium, The Institution of Mining and Metallurgy. London,1982,197-204
    [263]Oreste P P. Analysis of structural interaction in tunnels using the covergence-confinement approach. Tunnelling and Underground Space Technology,2003.18(4):347-363
    [264]Indraratna B, Kaiser P K. Design for grouted rock bolts based on the convergence control method. International Journal of Rock Mechanics and Mining Science,1990,27(4):269-281
    [265]Grasso P, Mahtab A, Pelizza S, et al. On the diverse geotechnical and tunnel construction problems in the La Spezia-Parma link in Italy. In:Proceedings of the International Congress on Tunnel and Underground Works Today and Future, ITA Annual Meeting. Chengdu,1990,41-48
    [266]Labiouse V. Ground response curves for rock excavations supported by ungrouted tensioned rockbolts. Rock Mechanics and Rock Engineering,1996, 29(1):19-38
    [267]Mostyn G R, Li K S. Probabilistic slope analysis-state of play. In:Proceedings of the Conference on Probabilistic Methods in Geotechnical Engineering. Canberra,1993,89-109
    [268]He J. Discussion of "Rational polynomial technique in slope-reliability analysis". Journal of Geotechnical Engineering, ASCE,1995,121(4):381-382
    [269]张小庆,康海贵,王复明.求解隐式功能函数可靠度的一种新方法.大连理工大学学报,2003,43(5):650-653
    [270]周道成,段忠东,欧进萍.具有隐式功能函数的结构可靠指标计算的改进矩法. 东南大学学报(自然科学版),2005,35(增刊Ⅰ):139-143
    [271]苏永华,赵明华,张月英,等.利用差分法计算基于Spencer分析模式的边坡稳定可靠度.岩石力学与工程学报,2006,25(增1):2572-2576
    [272]Karpuz D. A probabilistic design approach for rock slope. Mining Planning and Equipment Selection. Balkema Rotterdam:1998,179-184
    [273]Baecher G B, Christian J T. Reliability and statistics in geotechnical engineering. New Jersey:John Wiley Publications,2003,303-322
    [274]祝玉学.边坡可靠性分析.北京:冶金工业出版社,1993,54-60
    [275]Krahn J. Stability modelling with SLOPE/W:An engineering methodology. Alberta:2004,388
    [276]李庆扬,王能超,易大义.数值分析.武汉:华中理工大学出版社,2001,101-106
    [277]徐芝纶.弹性力学.北京:高等教育出版社,1990,194-198
    [278]张弥.支护体系设计、隧道施工方法.北京:中国铁道出版社,1990,51-174
    [279]王建宇.隧道工程监测和信息化设计原理.北京:中国铁道出版社,1990,1-159
    [280]李世烽.围岩-支护动态系统稳定性判据——变形速率比值判别法.水电站设计,1992,8(3):20-25
    [281]Sakurai S. Lessons learned from field measurements in tunnelling. Tunnelling and Underground Space Technology,1997,12(4):453-460
    [282]孙钧,杜世开.隧道围岩稳定的时间效应及其设计判据.北京:知识出版社,1989,150-159
    [283]Kim S H, Na S W. Response surface method using vector projected sampling points. Structural Safety,1997,19(1):3-19
    [284]包承纲.可靠度分析方法在岩土工程中的应用.人民长江,1996,27(5):1-5
    [285]Pradlwarter H J, Schueller G I, Jehlicka P, et al. Structural failure probabilities of the HDR-containment. Nuclear Engineering and Design,1991,128(2): 237-246
    [286]Bayer V, Schueller G I. Discussion on:A new look at the response safe approach for reliability analysis. Structural Safety,1994,16(1-2):227-234
    [287]光耀华.岩土工程参数概率统计的几个问题.南京:河海大学出版社,1992,435-441
    [288]光耀华.坝基岩石抗剪断参数的统计特征.岩石力学与工程学报,1989,8(2):151-162
    [289]严春风,陈洪凯,张建辉.岩石力学参数的概率分布的Bayes推断.重庆建筑大学学报,1997,19(2):65-71
    [290]谭忠盛,高波,关宝树.隧道围岩抗剪强度指标C,tanφ的概率特征.岩土工程学 报,1999,21(6):760-762
    [291]陈炜韬,王玉锁,王明年.黏土质隧道围岩抗剪强度参数的概率分布及优化实例.岩石力学与工程学报,2006,25(增2):3782-3787
    [292]潘别桐,徐光黎.岩体节理几何特征的研究现状及趋向.工程勘察,1989,(5):23-26
    [293]陈祖煜,汪小刚,杨健,等.岩质边坡稳定分析:原理、方法、程序.北京:中国水利水电出版社,2005,290-372
    [294]Hudson J A.岩石力学原理.岩石力学与工程学报,1989,8(3):252-268
    [295]杨英杰,张清.人工神经网络在岩石工程系统RES中的应用.铁道学报,1997,19(2):65-72
    [296]杨英杰,张清.岩石工程相互作用矩阵的神经网络编码方法.土木工程学报,1998,31(2):21-29
    [297]祝玉学,赵学龙.岩石工程系统理论与应用——第2讲RES交互作用矩阵的建立.金属矿山,2000,(8):50-52
    [298]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001,13-17,83-135
    [299]杨效华,祝玉学,蒙立军.岩石工程系统理论与应用——第1讲岩石工程系统概论.金属矿山,2000,(7):46-50
    [300]Zheng Y, Das P K. Improved response surface method and its application to stiffened plate reliability analysis. Engineering Structures,2000,22(5): 544-551
    [301]Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis. Structural Safety,2004, 26(1):49-67
    [302]苏永华,赵明华,刘晓明.用遗传算法搜索验算点的复杂响应面函数可靠度分析方法.岩石力学与工程学报,2005,24(S2):5868-5873
    [303]杨合,詹梅.材料加工过程实验建模方法.西安:西北工业大学出版社,2008,147-170
    [304]李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社,2008,171-202
    [305]中华人民共和国标准.公路隧道设计规范(JTG D70-2004).北京:人民交通出版社,2004,36-37
    [306]李世烽.隧道围岩稳定系统评价.北京:中国铁道出版社,1991,1-18
    [307]Bauer J, Pula W. Reliability with respect to settlement limit-states of shallow foundations on linearly-deformable subsoil. Computers and Geotechnics,2000, 26(3):281-308
    [308]窦毅芳,刘飞,张为华.响应面建模方法的比较分析.工程设计学 报,2007,1 4(5):359-363
    [309]曾金平.数值计算方法.长沙:湖南大学出版社,2004,114-220
    [310]Hurtado J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory. Structural Safety, 2004,26(3):271-293
    [311]张鹏.基于Kriging模型的隧道围岩稳定性分析:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2009,54-70
    [312]张学工.关于统计学习理论与支持向量机.自动化学报,2000,26(1):32-42
    [313]Li K S, White W. Rapid evaluation of the critical slip surface in slope stability problems. International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(5):449-473
    [314]Li K S, Lumb P. Probabilistic design of slopes. Canadian Geotechnical Journal, 1987,24(4):520-535
    [315]Li K S. Discussion of "Rational polynomial technique in slope-reliability analysis". Journal of Geotechnical Engineering, ASCE,1995,121(4):382-384
    [316]Guan X L, Melchers R E. Effect of response surface parameter variation on structural reliability estimates. Structural Safety,2001,23(4):429-444
    [317]程进,肖汝诚.大跨度悬索桥颤振可靠度分析的改进响应面法.土木工程学报,2006,39(7):69-73
    [318]方开泰,马长兴,李久坤.正交设计的最新发展和应用-回归分析在正交设计中的应用.数理统计与管理,1999,18(2):44-49
    [319]Vapnik V.统计学习理论的本质.张学工译.北京:清华大学出版社,2000,126-156
    [320]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机.北京:科学出版社,2004,224-273
    [321]方开泰.均匀设计与均匀设计表.北京:科学出版社,1994,35-52
    [322]梅松华,盛谦,冯夏庭.均匀设计在岩土工程中的应用.岩石力学与工程学报,2004,23(16):2694-2697
    [323]董辉.基于支持向量机的岩土非线性变形行为预测研究:[中南大学博士学位论文].长沙:中南大学土木建筑学院,2007,58-82
    [324]Chang C C, Lin C J. LIBSVM:A library for support vector machines. Transactions on Intelligent Systems and Technology,2011,2(3):1-39
    [325]Starfield A M, Cundall P A. Towards a methodology for rock mechanics modelling. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1988,25(3):99-106
    [326]Elishakoff I. How to introduce the imperfection sensitivity concept into design. In:Collapse:Buckling of Structures in Theory and-practice. Cambridge: Cambridge University Press,1983,345-357
    [327]安伟光.结构可靠性几种计算方法的比较.强度与环境,1988,(4):51-58
    [328]Freudenthal A M. Introductory remarks. In:Proceedings of the International Conference on Structural Safety and Reliability. Oxford,1972,5-6
    [329]Christian J T. Geotechnical engineering reliability:How well do we know what we are doing? Journal of Geotechnical & Geoenvironmental Engineering,2004, 130(10):985-1003
    [330]Freudenthal A M. Fatigue sensitivity and reliability of mechanical systems, especially aircraft structures. In:WADD Technical Report 61-53, Wright Patterson,1961,1-18
    [331]Gardenfors P, Sahlin N E. Unreliable probabilities, risk taking and decision making. Synthese,1982,53(3):361-386
    [332]Levi I. Ignorance, probability and rational choice. Synthese,1982,53(3): 387-417.
    [333]Skilling J. Prior probabilities. Synthese,1985,63(1):1-34
    [334]De Finetti B. Initial probabilities:A prerequisite for any valid induction. Synthese,1969,20(1):2-16
    [335]Suppes P, Zanotti M. On using random relations to generate upper and lower probabilities. Synthese,1977,36(4):427-440
    [336]Taguchi G, Elsayed E A, Hsiang T C. Quality engineering in production systems. New York:McGraw-Hill,1989,1-39
    [337]Ben-Haim Y. Uncertainty, probability and information-gaps. Reliability Engineering and System Safety,2004,85(1-3):249-266
    [338]Ben-Haim Y. Information-gap decision theory:decisions under severe uncertainty. San Diego:Academic Press,2006,1-330
    [339]Ben-Haim Y. Convex models of uncertainty:applications and implications. Erkenntnis,1994,41(2):139-156
    [340]常亮明.稳健可靠性理论的数学基础-凸集和凸模型.质量与可靠性,2001,(2):21-24
    [341]袁和生.煤矿巷道锚杆支护技术.北京:煤炭工业出版社,1997,1-325
    [342]宋宏伟,牟彬善.破裂岩石锚固组合拱承载能力及其合理厚度探讨.中国矿业大学学报,1997,26(2):33-36