用户名: 密码: 验证码:
超高强度钢整体模锻全过程微观组织演化及数字化表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代航空制造技术水平的不断发展,越来越多地采用大型复杂整体模锻件制造飞机的关键承力件,以满足飞机不断提高的服役性能指标要求。高合金超高强度钢已成为当今世界用于制造飞机起落架构件的新型材料,其强度性能指标达到1930MPa,晶粒度达到8级(22.5μm),以满足飞机在复杂、重载等极端服役条件下的使用需要。然而,超高强度钢整体模锻件的热加工经历了材料热塑性成形、热处理等多个物理过程,材料微观组织演化机制十分复杂,尤其对于能满足极端服役要求的大型复杂整体起落架模锻件,其晶粒度指标与性能均匀性要求给锻造生产提出了新的挑战。我国在生产大型整体超高强度钢模锻件方面的技术储备与基础研究不足,晶粒度不达标、工艺稳定性差已成为制约我国高性能航空锻件制造的主要瓶颈。本文针对目前我国起落架锻件生产存在的问题,以新一代高合金超高强度钢23Co13Ni11Cr3Mo为对象,系统研究了该材料在加热、热塑性成形、冷却以及热处理等热加工全过程微观组织结构与力学性能演化规律及其数字化表征方法,进一步研究了超高强度钢起落架整体模锻成形过程微观组织演化规律,提出了在800MN巨型液压机上起落架成形新工艺以及获得锻件高性能指标的锻造工艺参数,完成的主要工作与研究成果如下:
     1)开展了超高强度钢23Co13Ni11Cr3Mo等温压缩热模拟实验,研究了热变形过程超高强度钢的高温塑性流变特性与组织演化规律,建立了23Co13Ni11Cr3Mo钢动态再结晶动力学模型与晶粒尺寸模型,提出了采用逐次逼近法建立超高强度钢变形抗力模型的新思路,确定了23Co13Ni11Cr3Mo钢动态再结晶临界应变条件与变形激活能。基于热模拟流变应力实验数据与塑性失稳准则建立了23Co13Ni11Cr3Mo钢材料热加工图,获得了材料稳定高效变形的热加工可行域。研究结果表明,在热加工可行域内增大应变可提高再结晶体积分数,获得均匀细小的晶粒组织。
     2)根据大型整体模锻件热塑性成形过程复杂的组织演化机制、时变的宏观物理场等特征,建立了基于位错驱动力的介观组织演化元胞自动机(CA)模型,提出了组织演化的参数辨识方法;建立了加工硬化指数、二相粒子钉扎效应与宏观变形参数的函数关系,实现了锻件的热塑性成形过程宏观-介观晶粒组织模拟;根据实际热加工特性提出了一系列介观组织CA改进算法,基于DEFORM-3D、QFORM等宏观有限元仿真平台,开发了具有自主知识产权的微观组织可视化模拟机软件。实验结果表明,本文提出的CA模型与分析软件可预测晶粒组织形貌、分布规律以及多轮次动态再结晶的晶粒组织动态演化。
     3)针对大型整体模锻件在转移、等待、冷却及热处理等静置过程易出现晶粒粗化的现象,开展了23Co13Ni11Cr3Mo钢高温静置过程组织演化规律的实验研究,建立了晶粒长大模型、亚动态再结晶及静态再结晶动力学和晶粒尺寸模型,实现了23Co13Ni11Cr3Mo钢热加工全过程微观组织演化数字化表征。研究结果表明,晶粒细化取决于终锻变形及其冷却过程晶粒组织演变;静态再结晶晶粒组织与亚动态再结晶、动态再结晶组织相比更为粗大,是造成23Co13Ni11Cr3Mo钢起落架锻件晶粒度不达标的主要原因。
     4)开展了工业条件下的23Co13Ni11Cr3Mo钢锻造工艺实验,研究了热变形工艺参数对晶粒组织演化、力学性能的影响,获得了满足最终组织性能要求的锻造工艺条件,可实现锻件在热加工全过程中的晶粒组织调控。研究结果表明,锻造晶粒尺寸与热处理晶粒尺寸呈正比关系,锻造晶粒组织需超过8级才能获得8级最终晶粒组织;锻造工艺参数对锻件的力学性能影响较小,在变形温度为980~1140℃、变形程度为12~30%的范围内,强度指标差异为3.5%,断裂韧性KIC差异为8.7%。
     5)对现有整体模锻工艺条件下23Co13Ni11Cr3Mo钢起落架模锻件进行了解剖分析,锻件不同位置的微观组织分析和力学性能参数测试表明,采用整体模锻工艺可将锻件断裂韧性提高20.5%,但晶粒度仅为5~6.5级。23Co13Ni11Cr3Mo冈起落架锻件热加工全过程组织演化模拟与实验研究发现,锻件变形不充分、不连续变形引发的静态再结晶、晶粒长大是造成晶粒粗大及工艺稳定性差的主要原因,低温、高速率、大变形条件有利于获得细小晶粒组织锻件,提出了起落架锻件在800MN巨型液压机上起落架成形新工艺,终锻变形量提高至33.7%可抑制静态再结晶发生,晶粒组织演化机制转变为亚动态再结晶,晶粒显著细化。图105幅,表19个,参考文献190篇。
With the continuous development of modern aviation manufacturing technology, more and more overall die forgings with large size and complex shape are applied for load-bearing structures of aircraft to meeting the extreme mechanical properties. For this goal, high-alloy ultra-high strength steel, which has strength of1930Mpa and grain size of22.5μm (level8), has been developed to manufacture aircraft landing gear. However, the high requirements of grain size and its homogeneity bring big challenge to the overall die forging process, especially for large-sized landing gear. Because, material goes through heating, deformation and heat treatment during the whole forming process, and its microstructure evolution mechanism is very complicated. Meanwhile, China is lack of basic research and technical reserve in the field of overall die forging. Now, grain dissatisfaction and instability of deformation have become the main problem for obtaining high quality aircraft forgings. In this paper, a series of research work were done on newly developed ultra-high strength steel23Co13Ni11Cr3Mo for solving the problem listed above. The evolution of microstructure and mechanical properties during the whole hot forming process, including heating, deformation, cooling and heat treatment, were studied. And, the corresponding models were developed. Then, microstructure evolution of landing gear during the overall die forging process was investigated. Based on these research works, a new forging process on800MN hydraulic press with high stability and efficiency was proposed, and deformation parameters for high quality forgings were acquired. The main conclusions are listed as following:
     (1) Isothermal compression tests of23Co13Ni11Cr3Mo steel were carried out. Deformation behaviors during high temperature and microstructure evolution rules were studied. Dynamic recrystallization models, including recrystallized fraction and grain size, were developed. A new approach for establishing the model of flow stress was developed, wihch is successive approximation method. Consequently, the deformation active energy and critical strain conditions of dynamic recystallization were obtained. Then, hot processing map for 23Co13Ni11Cr3Mo steel was developed on the basis of experimental flow stress and deformation instability rules. Hot deformation zone with high stability and efficiency was recognized through processing map. The results show that in this zone the degree of dynamic recrystallization is increased by increasing deformation degree, and small even grain is achieved.
     (2) The overall die forging process of large-size products was characterized for complex microstructure evolution mechanism and varied physical fields. For this reason, cellular automaton(CA) model based on dislocation density was developed to describe grain evolution. During this process, the identification method on the basis of optimization theory was proposed for acquiring parameters of microstructure evolution. The relationships between macroscopic deformation parameters and hardening exponent, two-phase particle pinning effect were developed. Through these measures, the microstructure evolution through macroscopic and mesoscopic was realized. According to the actual forging processing characteristics, a series of CA improving algorithm were developed. Moreover, a software for visualized microstructure simulation was developed coupled with FEM platform, such as DEFORM and QFORM. The experimental results show the proposed CA model and developed software can predict grain shape, distribution and its evolution rule during multiple dynamic recrystallization very well.
     (3) For large-sized forgings, its grain is easily to becoming coarse during static process of transferring, waiting, cooling and heat treatment. Therefore, microstructure evolution of ultra-high strength steel with high temperature during static processes was studied by experimental methods. Models of static behaviors, such as grain growth, meta-dymamic and static recrystallization were established, by which microstructure evolution during the whole deformation process can be expressed quantitatively. The results show that grain refinement is determined by the final forging process and its following cooling process. Grain size of static recrystallization is larger than that of meta-dynamic and dynamic recrystallization, which is the main reason for grain dissatisfaction of landing gear forging.
     (4) Experimental forging of ultra-high strength steel was carried out on the industrial conditions. Influences of deformation parameters on grain evolution and mechanical properties were investigated. Consequently, deformation conditions which could fulfill the demands of grain and mechanical properties were reached, and grain evolution during the whole forming process could be controlled. The results show that a proportional relationship exists between forging grain size and heat treatment grain size, forging grain size should reach level8for the final grain size of level8. Deformation paramaters has little effects on mechanical properties. Under a deformation temperature of980-1140℃, strain of12-30%, the variation of strength is3.5%, and the variation of KIC is8.7%.
     (5) Landing gear under the existing overall die forging process was dissectted and analyzed. The results of microstructure and mechnical properties show KIC can be improved about20.5%by applying overall die forging process. However, grain size can only reach level5-6.5. Microstructure simulation and experimental research during the whole hot forming process of landing gear show that the static recrystallization and grain growth caused by insufficient and discontinous deformation are the main reason for coarse grain and instable deforamtion. Lower temperature, higher strain rate and larger defromation degree lead to smaller grain size. So, a new forging process on800MN hydraulic press with high stability and efficiency was proposed. With the deformation degree of the final forging process increasing to33.7%, static recrystallization can be restrained, and grain evolution mechanism changes to meta-dynamic recrystallization, grain is refined greatly.
引文
[1]丁汉.难加工航空零件的数字化制造基础研究[R].武汉:华中科技大学,2010.
    [2]ASM6532D,航空材料规范[S]. USA:ASTM,2006.
    [3]李晓谦.航空航天用高性能轻合金大型复杂结构件制造的基础研究[R].长沙:中南大学,2009.
    [4]大谷忠幸,塚本進,荒金吾郎,等.超微细粒高强度钢レーザ溶接继手の机械的性质[J].溶接学会论文集,2003,21(3):425-432.
    [6]LEE Hu-Chul, U.M. Kyung-Keun. Ferrite transformation during deformation of super-cooled austenite[J]. ISIJ International,2008,48(8):1050-1055.
    [7]CHOO Wung-Yong. First stage achievement of hipers-21 project and plan of second stage[C]. Proceedings of Second International Conference on Advanced Structural Steels. Shanghai:CSM,2004:15-22.
    [8]翁宇庆.超细晶钢理论与技术进展[J].钢铁,2005,40(3):1-5.
    [9]张立红.创造”新一代钢铁”的神话-超细晶钢强韧化与控制技术取得重大突破[J].中国科技奖励,2006,(1):34-37.
    [10]翁宇庆.钢铁结构材料的组织细化[J].钢铁,2003,38(5):1-10.
    [11]钢铁研究总院.国外超高强度钢[M].北京:北京钢铁研究总院,1992.
    [12]张慧萍,王崇勋,杜煦.飞机起落架用300M超高强钢发展及研究现状[J].哈尔滨理工大学学报,2011,16(6):73-76.
    [13]LEE Woei-Shyan, YEH Gen-Wang. The plastic deformation behaviour of AISI 4340 alloy steel subjected to high temperature and high strain rate loading conditions[J]. Journal of Materials Processing Technology,1997,71(2): 224-234.
    [14]N. Ozdemir. Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed[J]. Materials Letters,2005,59(19-20):2504-2509.
    [15]M.L.A. Graca, C.Y. Hoo, O.M.M. Silva, et al. Failure analysis of a 300M steel pressure vessel [J]. Engineering Failure Analysis,2009,16(1):182-186.
    [16]C. Servant, G. Cizeron. Contribution to the crystallography of the bainite transformation in a high strength low alloy steel 40 NSCD 7-7-3 (AISI 300M)[J]. Acta Metallurgica,1989,37(2):465-476.
    [17]J. Luo, M.Q.Li, Y.G. Liu, H.M. Sun. The deformation behavior in isothermal compression of 300M ultrahigh-strength steel [J]. Materials Science and Engineering:A,2012,534(1):314-322.
    [18]G Malakondaiah, M. Srinivas, P.Rama Rao. Ultrahigh-strength low-alloy steels with enhanced fracture toughness[J]. Progress in Materials Science,1997,42 (1-4):209-242.
    [19]J. David, NICHOLLS. Prediction of fatigue crack growth rates based on crack blunting [J]. Engineering Fracture Mechanics,1994,48(1):9-15.
    [20]M. D. James. Ferrous-base aerospace alloys[J]. Advanced Materials & Processes, 2000,5:34-36.
    [21]孙强,周重光,袁书强,等.超高强度钢研究进展及其在军事上的应用[J].材料导报,2006,20(3):14-17.
    [22]刘宪民,王春旭,刘蕤,等.超高强度结构钢的历史及发展[C].第三届北京冶金年会论文集.北京:中国金属学会,2002:13-20.
    [23]PICHARD Isabeue, GIRODIN Daniel, DUDRAGNE Gilles, et al. Metallurgical and tribologieal evaluation of 32Cr3MoVl3 deep nitrided steel and XD15N[C]. Bearing steel:Into the 21st Century. Philadelphia:ASTM,1998: 391-405.
    [24]武海军,姚伟,黄风雷,等.超高强度钢30CrMnSiNi2A动态力学性能实验研究[J].北京理工大学学报,2010,30(3):258-262.
    [25]云红,申常江,雷小荣.40CrNi2MoA钢大锻件的调质热处理[J].金属热处理,2004,29(12):68-70.
    [26]J. Luo, M.Q.Li, Y.G. Liu, H.M. Sun. The deformation behavior in isothermal compression of 300M ultrahigh-strength steel [J]. Materials Science and Engineering:A,2012,534(1):314-322.
    [27]S.S. Zhang, M.Q. Li, Y.G Liu, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Materials Science and Engineering:A, 2011,528(15):4967-4972.
    [28]M.C. Sun, Y.H. Sun, R.K. Wang. Vibratory stress relieving of welded sheet steels of low alloy high strength steel[J]. Materials Letters,2004,58(7-8):1396-1399.
    [29]陈孝龙.D406A钢焊接工艺研究[J].航天制造技术,2004,(4):12-15.
    [30]B.G Pound. Hydrogen trapping in high-strength steels[J]. Acta Materialia,1998, 46(16):5733-5743.
    [31]SHAHRAM Kheirandish, AHMAD Noorian. Effect of Niobium on microstructure of cast AISI H13 hot work tool steel[J]. Journal of Iron and Steel Research International,2008,15(4):61-66.
    [32]文武,王西彬,龙震海,朱朝阳.4Cr5MOVSi电火花加工试验特征规律研究[J].工具技术,2010,44(1):29-32.
    [33]D. S. Dabkowski, NICKEL, COBALT, et al. Yield Strength. USA: US3502462[P],1970-03-24.
    [34]G.R. Speich, D.S. Dabkowski, L.F. Porter. Strength and toughness of Fe-lONi alloys containing C, Cr, Mo, and Co[J]. Metall.Trans,1973,4(1):303-315.
    [35]R. Ayer, P.M. Machmeier. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels[J]. Metallurgical and Materials Transactions A,1996,27(9):2510-2517.
    [36]H.R. Yang, K.B. Lee. H. Kwon. Effects of austenitizing treatments and inclusions on secondary hardening and fracture behavior for high Co-Ni steels containing W[J]. Materials Science and Engineering:A,1999,265:179-187.
    [37]C.D. Little, P.M. Machmeier. High strength fracture resistant weldable steels. USA:US4076525[P],1978-02-28.
    [38]W.M. Garrison, Ultrahigh-strength steels for aerospace applications[J]. JOM, 1990, (5):20-24.
    [39]M.W. Garrison, N.R. Moody. The influence of inclusion on spacing and microstructure on the fracture toughness of the secondary hardening steel AF1410[J]. Metallurgical Transactions A,1987,18(7):1257-1263.
    [40]G.B. Olson, T.J. Kinkus, J.S. Montgomery. APFIM study of multicomponent M2C carbide precipitation in AF1410 steel[J]. Surface Science,1991,246(1-3): 238-245.
    [41]MICA Grujicic, G.N. Haidemenopoulos. A treatment of paraequilibrium thermodynamics in AF1410 steel using the thermocalc software and database[J]. Calphad,1988,12(3):219-224.
    [42]R.M. Hemphill, D.E. Wert. High strength, high fracture toughness structural alloy. USA:US5087415[P],1992-2-11.
    [43]M. Grujicic. Implication of elastic coherency in secondary hardening of high Co-Ni martensitic steels[J]. Journal of Materials Science,1991,26(5): 1357-1362.
    [44]Z.F. Hu, X.F. Wu. High resolution electron microscopy of precipitates in high Co-Ni alloy steel[J]. Micron,2003,34(1):19-23.
    [45]R. Ayer, P. Machmeier. On the characteristics of M2C carbides in the peak hardening regime of AerMet100 steel[J]. Metallurgical and Materials Transactions A,1998,29(3):903-905.
    [46]M.V. Hopson, C.M. Scott, R. Patel. Computational comparisons of homogeneous and statistical descriptions of AerMet100 steel subjected to high strain rate loading[J]. International Journal of Impact Engineering,2011,38(6):451-455.
    [47]LI Jie, GUO Feng, LI Zhi, et al. Influence of sizes of inclusions and voids on fracture toughness of ultra-high strength steel Aermet100 [J]. Journal of Iron and Steel Research, International,2007,14(5):254-258.
    [48]李志,赵振业.AerMet100钢的研究与发展[J].航空材料学报,2006,26(3):265-269.
    [49]聂宏,魏小辉.大型民用飞机起落架关键技术[J].南京航空航天大学学报,2008,40(4):427-432.
    [50]中国民航.起落架.http://www.china-cam.cn/.中国民航维修网.
    [51]中国民航局.飞机的腿-起落架.http://www.caac.gov.cn.中国民用航空局官网.
    [52]李铭.大型飞机起落架制造技术[J].航空制造技术,2008,(21):68-71.
    [53]李凤梅,王乐安.大型模锻件与航空工业[J].新材料产业,2011,(8):43-45.
    [54]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999.
    [55]房贵如.材料热加工工艺模拟研究的现状与发展趋势(上)[J].机械工艺师,1999,(3):26-29.
    [56]房贵如.材料热加工工艺模拟研究的现状与发展趋势(下)[J].机械工艺师,1999,(4):31-33.
    [57]应上进.材料热加工工艺模拟技术的现状及发展趋势[J].江苏煤炭,2002,(3):22-23.
    [58]汪森文,杭乃勤,王勇.37Mn5钢临界应变数学模型研究[J].武汉科技大学学报:自然科学版,2007,30(5):464-467.
    [59]LUO Hai-Wen, LI Hong, FANG Xu-Dong. Constitutive analysis in hot working of a Nb heavily alloyed stainless steel [J]. Journal of Iron and Steel Research, International,2007,14(5):179-182.
    [60]熊勇刚.基于热力耦合的铸轧辊弹性变形数值模拟[D].长沙:中南大学,2008.
    [61]M.J. Turner, R.W. Clough, H.C. Martin. Stiffness and deflection analysis of complex structures[J]. Materials Science and Engineering,1956,23(9):82-86.
    [62]J.H. Aryris. Energy theorems and structural analysis[M]. London:Butterworth, 1960:122-135.
    [63]M.J. Turner, R.W. Clough, H.C. Martin, et al. Stiffness and deflection analysis of complex structure[J]. Journal of the Aeronautical Sciences,1956,23(9): 82-86.
    [64]R.W. Clough. The finite element method in plane stress analysis[C]. Proc.2nd Conf Electronic Computation. Pittsburg:ASCE, 1960:87-89.
    [65]O.C. Zienkiewicz, Y.K. Cheung. The finite element method in structural and continuum mechanics[M]. London:McGraw-Hill,1967:25-32.
    [66]J.T. Oden. Finite element for nolinear continua[M]. New York:McGraw-Hill, 1972:6-8.
    [67]刘扬.汽车轮毂轴承单元精锻成形工艺分析及有限元模拟[D].武汉:武汉理工大学,2009.
    [68]C. Lee, S. Kobayashi. New solutions to rigid plastic deformation problems using a matrix method[J]. Journal of Engineering for Industry,1973,95:865-878.
    [69]K. Osakada, J. Nakano, K. Mori. Finite element method for rigid-plastic analysis of metal forming-formulation for finite deformation[J]. International Journal of Mechanical Sciences,1982,24(8):459-468.
    [70]李培武,有限元基计算机模拟技术在美国金属成形中的应用[J].锻压技术,1991,16(4):2-9
    [71]S.I. Oh, W.T. Wu, J.P. Tang. Capabilities and application of FEM Code deform:the perspective of developer [J]. Journal of Materials Processing Technology,1991,27:25-42.
    [72]S.I. Oh, W.T. Wu, J.P. Tang. Simulation of cold forging processes by the DEFORM system[J]. Journal of Materials Processing Technology,1992,35: 357-370.
    [73]H. Doi. Analysis of metal forming processes by the finite element code[C]. Advanced Technology of Plasticity-proceedings of the third ICTP.1999:1769-1772.
    [74]赵国群,阮雪榆.轴对称锻造过程金属流动规律的有限元模拟[J].模具技术,1991,5:1-8.
    [75]刘庆斌.模拟技术和人工神经网络在锻造过程中的应用[D].西安:西北工业大学,1996.
    [76]C.M. Sellars, J.A. Witeman. Recrystallization and grain growth in hot rolling[J]. Metal Science,1979,13(3-4):187-194.
    [77]H.Yada, T. Senuma. Resistance to hot deformation of steel[J]. Journal of Japan Society of Technology Plasticity,1986,27(7):34-44.
    [78]W. Roberts, A. Sandberg, T. Siwecki, et al. hit. Conf. on Technology and Applications of HSLASteels. Philadelphia:ASM,1983:67.
    [79]P.D. Hodgson, R.K. Gibbs. A mathematical model to predict the mechanical propertiesof hot rolled C-Mn and microalloyed steels[J]. ISU International,1992, (32):1329-1338.
    [80]C. Perdrix. Characteristic of plastic deformation of metals during hot working[C]. The Institute de Rechearches de la Siderurgie Francaise (IRSID). France:Saint Germainen-Laye,1987.
    [81]J. Andorfer, D. Auzinger, M.Hirsch, et al. VAIQ-Strip:Anew integrated quality control system for hot rolled strip[J]. Revue de metallurgie,1998,95(7-8): 883-892.
    [82]CHOO Wung-Yong, LEE Chang-Sun, CHOO Se-Don. Development of quality prediction and monitoring system for plate production[C]. European Rolling Conference. Sweden:Vasteras,2000:24-26.
    [83]A.J. Trowsdale, I.C. Randerson, P.Morris, et al. MetModel:Microstructural evolution model for hot rolling and prediction of final product properties[J]. Iron making and Steel making,2001,28(2):170-174.
    [84]H.U. Leffler, R. Dell. Commercial application of microstructure modelling in hot strip mills[C]. Gottstein G, Molodov D A. Recrystallization and Grain Growth Proceedings of the First Joint International Conference. Springer Verlag,2001.
    [85]A.J. Trowsdale, J.P. Tunstall, I.L. Randerson, et al. Modeling of metal rolling processes[C]. London:IOM Communications Ltd,1999:12-21.
    [86]T. Siwecki. Modeling of microstructure evolution during recrystallization controlled rolling[J]. ISIJ International,1992,32(3):368-376.
    [87]I.V. Samarasekera, M.A.Wells, D.Jin, et al. Application of microstructural engineering to the processing of lightweight material [J]. Materials Characterization,1995,35(1):69-79.
    [88]R. Kopp, R. Karnhausen, M.M.Souza. Numerical simulation method for designing thermomechanical treatment, illustrated by bar rolling scand[J]. Journal of Metallurgy,1991,20(6):351-360.
    [89]J. W. Brooks. Three-dimensional finite element modeling of a titanium aluminide aerofoil forging[J]. Journal of Materials Processing Technology,1998,80: 149-155.
    [90]G.Shen, R. Shivpuri, S.L. Semiatin, et al. Investigation of micro structure and thermomechanical history in the hammer forging of an incoloy 901 disk[J]. CIRP Annals-Manufacturing Technology,1993,42(1):343-346.
    [91]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [92]U.F. Kocks, H. Meching. Strength of metals and alloys[M]. P. Haasen, V. Gerold, G.Kostorz. Oxford:Pergamon Press,1979:345.
    [93]M.P.Anderson, D.J. Srolovitz, G.S. Grest, et al. Computer simulation of grain growth-Ⅰ. Kinetics[J]. Acta Metallurgica,1984,32(5):783-791.
    [94]D.J. Srolovitz, M.P. Anderson, P.S. Sahni, et al. Computer simulation of grain growth-Ⅱ. Grain size distribution, topology, and local dynamics[J]. Acta Metallurgica,1984,32(5):793-802.
    [95]D.J. Srolovitz, M.P.Anderson, G.S. Grest, et al. Computer simulation of grain growth-Ⅲ. Influence of a particle dispersion[J]. Acta Metallurgica,1986,32(9): 1429-1438.
    [96]B. Radhakrishnan, G.B. Sarma. Modeling the kinetics and microstructural evolution during static recrystallizaion-Monte Carlo simulation of recrystallization[J]. Acta Metallurgica,1998,46(12):4415-4433.
    [97]B. Radhakrishnan, G.B. Sarma. Simulations of deformation and recrystallization of single crystals of aluminum containing hard particles[J]. Modeling and Simulation in Materials Science and Engineering,2000,8(5):737-750.
    [98]B. Radhakrishnan, G.B. Sarma. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical[M]. Warrendale:TMS,1998:267-278.
    [99]P. Peczak, M.J. Luton. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization[J]. Acta Metallurgica et Materialia,1993,41(1): 59-71.
    [100]S.M. Hafez Haghighat, A. Karimi Taheri. Investigation of limiting grain size and microstructure homogeneity in the presence of second phase particles using the Monte Carlo method[J]. Journal of Materials Processing Technology,2008, 195(1-3):195-203.
    [101]M. Kazeminezhad, A. Karimi Taheri. A. Kiet Tieu Utilization of the finite element and Monte Carlo model for simulating the recrystallization of inhomogeneous deformation of copper[J]. Computational Materials Science, 2007,38(4):765-773.
    [102]D. Rabbe.计算材料学[M].北京:化学工业出版社,2002:254.
    [103]张继祥.基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D].济南:山东大学,2006.
    [104]H.W. Hesselbarth, I.R. Gobel. Simulation of recrystallzation by cellular automata[J]. Acta Metallurgica et Materialia,1991,39(9):2135-2143.
    [105]V. Marx, F.R. Reher. Simulation of primary recrystallization using a modified three-dimensional cellular automaton[J]. Acta Materialia,1999,47(4): 1219-1230.
    [106]G. Gottstein, V. Marx, R. Sebald. Integral recrystallization modeling:from cellular automata to finite element analysis[C]. The fourth International Conference on Recrystallization and Related Phenomena. Japan:The Japan Institute of Metals,1999:15-24.
    [107]R. Ding, Z.X. Guo. Microstructural modeling of dynamic recrystallization using an extendedcellular automaton approach[J]. Computational Materials Science, 2002,23(1-4):209-219.
    [108]M. Qian, Z.X. Guo. Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel[J]. Materials Science and Engineering:A,2004,365(1-2):180-185.
    [109]HAKAN Hallberg, MATHIAS Wallin, MATTI Ristinmaa. Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton[J]. Computational Materials Science,2010,49(1):25-34.
    [110]G. Kugler, R. Turk. Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model[J]. Computational Materials Science,2006,37(3):284-291.
    [111]R.L. Goetz. Particle stimulated nucleation during dynamic recrystallization using a cellular automata model[J]. Scripta Materialia,2005,52(9):851-856.
    [112]LEE Ho Won, IM Yong-Taek. Numerical modeling of dynamic recrystallization during nonisothermal hot compression by cellular automata and finite element analysis[J]. International Journal of Mechanical Sciences,2010,52(10): 1277-1289.
    [113]李殿中,杜强,胡志勇.金属成形过程组织演变的Cellular Automaton模拟技术[J].金属学报,1999,35(1):1201-1205.
    [114]肖宏.采用Cellular automaton法模拟动态再结晶过程的研究[J].机械工程学报,2005,41(2):148-151.
    [115]GB/T 6394-2002,金属平均晶粒度测定方法[S].北京:中国标准出版社,2002.
    [116]C. Imbert, N.D.Ryan. H.J. Mcqueen. Hot workability of three grades of tool steel[J]. Metallurgical and MaterialsTransactions A,1984,15(10):1855-1864.
    [117]R. Milovic, D. Manojlovic, M. Andjelic. Hot workability of M2 type high speed steel[J]. Steel Research,1992,63(2):78-84.
    [118]F. Siciliano, K. Minami, T.M. Maccagno. Mathematical modeling of the mean flow stress,fractional softening and grain size during the hot strip rolling of C-Mn steels[J]. ISIJ International,1996,36(12):1500-1506.
    [119]H. Takuda, H. Fujimoto, N. Hatta. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures[J]. Journal of Materials Processing Technology,1998, 80-81:513-516.
    [120]F.R. Castro-Fernandez, C.M. Sellars, J.A. Whiteman. Changes of flow stress and micro-structure during hot deformation of Al-1Mg-1Mn[J]. Materials Science and Technology,1990,6(5):453-460.
    [121]C. Imbert, N.D. Ryan, H.J. Mcqueen. Hot workability of three grades of tool steel[J]. Metallurgical and Materials Transactions A,1984,15(10):1855-1864.
    [122]K. Karhausen, R. Kopp. Model for integrated process and microstructure simulation in hot forming[J]. Steel Research,1992,63(6):247-256.
    [123]韩宝军.奥氏体动态再结晶晶粒超细化及其马氏体相变研究[D].上海:上海交通大学,2008.
    [124]G.Q. Zhao, S.B. Xu, Y.G Luan, et al. Grain refinement mechanism analysis and experimental investigation of equal channel angular pressing for producing pure aluminium ultra-fine grained materials[J]. Materials Science and Engineering:A,2006,437(2):281-292.
    [125]郭强,严红革,陈振华,张辉.多向锻造技术研究进展[J].材料导报,2007,21(2):105-108.
    [126]吴瑞恒,朱洪涛,张鸿冰,等.0.95C218W24Cr21V高速钢动态再结晶的数学模型[J].上海交通大学学报,2001,35(3):339-343.
    [127]H. Mirzadeh, A. Najafizadeh. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials & Design,2010,31(3):1174-1179.
    [128]刘丹,杭乃勤,黄灿.82B高碳钢临界应变的数学模型[J].特钢,2004,25(4):19-23.
    [129]A.J. Brand, K. Karhansen, R. Kopp. Microstrural simulation of nickel base alloy Lnconel 718 in production of turbine discs [J]. Materials Science and Technolog,1996,12:963-969.
    [130]谢章龙,刘振宇,王国栋.低碳9Ni钢的动态再结晶数学模型[J].东北大学学报:自然科学版,2010,31(1):51-55.
    [131]SUN Weihua, LU Cheng, A. Kiet Tieu, et al. Influence of Nb, V and Ti on peak strain of deformed austenite in Mo-based micro-alloyed steels[J]. Journal of Materials Processing Technology,2002,125-126:72-76.
    [132]魏洁,唐广波,刘正东.碳锰钢热变形行为及动态再结晶模型[J].钢铁研究学报,2008,20(3):31-35.
    [133]W.A. Johnson, R.F. Mehi. Reaction kinetics of nucleation and growth[J]. Transactions AIME,1939:614-622.
    [134]M. Avrami. Kinetics of phase change Ⅰ:general theory [J]. The Journal Chemical Physics,1939,7(12):1103-1107.
    [135]M.Avrami. Kinetics of phase change Ⅱ:transformation-time relations for random distribution of nuclei [J]. The Journal Chemical Physics,1940,8: 212-219.
    [136]P. Fabregue. Advances in hot deformation texture and microstructure[C]. New York:The Materials Metals&Materials Society,1994:75.
    [137]陈良生,徐有容,王德英,等.高钼不锈钢热加工特性与综合流变应力模型钢铁[J].2000,35(5):55-59.
    [138]C.M. Sellars. The physical metallurgy of hot working[C]. The Proceeding of the International Conference on Hot Working and Forming Process. London: 1980:3-15.
    [139]A.D. Rollett, M.J. Luton, D.J. Srolovitz. Microstructural simulation of dynamic recrystallization[J]. Acta Metallurgica et Materialia,1992,40(1):43-55.
    [140]刘鹏飞,刘东,罗子健,等.GH761合金的热变形行为与动态再结晶模型[J].稀有金属材料与工程,2009,38(2):275-280.
    [141]V.G. Krishna, Y.V.R.K. Prasad, N.C. Birla. Processing map for the hot working of near-a titanium alloy 685 [J]. Journal of Materials Processing Technology, 1997,71(3):377-383.
    [142]S.V.S.N. Murty, B.N. Rao. On the development of instability criteria during hotworking with reference to IN718[J]. Materials Science and Engineering:A, 1998,254:76-82.
    [143]刘娟.材料加工工程镁合金锻造成形性研究及数值模拟[D].上海:上海交通大学,2008.
    [144]李鑫.材料加工工程TC11钛合金的热态变形行为及其锻造工艺优化研究[D].南京:南京航空航天大学,2008.
    [145]陈春,易幼平,李蓬川.23Co13Ni11Cr3Mo超高强度钢模锻件锻造工艺研究[J].热加工工艺,2011,40(17):15-18.
    [146]V.V. Balasubrahmanyam, Y.V.R.K. Prasad. Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging[J]. Materials Science and Engineering:A,2002,336(1-2):150-158.
    [147]Y.V.R.K. Prasad, T. Seshacharyulu. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering:A,1998,243(1-2): 82-88.
    [148]鲁世强,李鑫,王克鲁,等.基于动态材料模型的材料热加工工艺优化方法[J].中国有色金属学报,2007,17(6):890-896.
    [149]S. Ramanathan, R. Karthikeyan, K.V. Deepak, et al. Hot deformation behavior of 2124 Al alloy [J]. Journal of Materials Science and Technology,2006,22(5): 611-615.
    [150]G. Jagan Reddy, N. Srinivasan, A.A. Gokhale, et al. Processing map for hot working of spray formed and hot isostatically pressed Al-Li alloy (UL40)[J]. Journal of Materials Processing Technology,2009,209(18-19): 5964-5972.
    [151]H. Mecking. Dislocation Modelling of Physical Systems[M]. Oxford: Pergamon Press,1981:197.
    [152]U.F. Kocks. The theory of an obstacle-controlled yield strength-Report after an international workshop[J]. Materials Science and Engineering,1997,27(3): 291-298.
    [153]H. Mecking, U.F. Kocks. Kinetics of flow and strain-hardening[J]. Acta Metallurgica,1981,29(11):1865-1875.
    [154]李依依,李殿中,朱苗勇,等.金属材料制备工艺的计算机模拟[M].北京:科学出版社,2006.
    [155]D. McLean. Grain boundaries in Metals[M]. Oxford:Oxford University Press,1957.
    [156]H.P. Stuwe, B. Ortner. Recrystallization in hot working and creep[J]. Metal Science,1974,8(1):161-167.
    [157]P. Peczak, M.J. Luton. The effect of nucleation models on dynamic recrystallization Ⅰ-Homogeneous stored energy distribution[J]. Philosophical Magazine Part B,1993,68(1):115-144.
    [158]P. Peczak, M.J. Luton. The effect of nucleation models on dynamic recrystallization II-Homogeneous stored-energy distribution[J].Philosophical Magazine Part B,1994,70(4):817-849.
    [159]P. Peczak, M.J. Luton. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization[J]. Acta Metallurgica et Materialia, 1993,41(1):59-71.
    [160]P. Peczak. A Monte Carlo study of influence of deformation temperature on dynamic recrystallization[J]. Acta Metallurgica et Materialia,1995,43(3): 1279-1291.
    [161]M. Gardner. The fantastic combinations of john conway's new solitaire game of "Life"[J]. Scientific American,1970,223(4):120-123.
    [162]S. Wolfram. Statistical Mechanics of Cellular Automata[J]. Rev. Mod. Phys., 1983,55(3):601-622.
    [163]S. Wolfram. Cellular automata as a models of complexity [J]. Nature,1984, 311:419-424.
    [164]S. Wolfram. Universality and complexity in cellular automata[J]. Physica D, 1984,10(1-2):1-35.
    [165]熊守美.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004.
    [166]孙明月.大型船用曲轴热加工工艺模拟和组织性能控制[D].沈阳:中国科学院金属研究所,2009.
    [167]陶佑卿,吴大兴,杨川.氮化铝析出量“峰值温度”理论推算[J].四川冶金,1987,(4):41-45.
    [168]A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation[J]. Materials Science and Engineering:A,2008,485(1-2):664-672.
    [169]S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, et al. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy[J]. Materials Science and Engineering:A,2000,293(1-2):198-207.
    [170]J.H. Bianchi, L.P. Karjalainen. Modelling of dynamic and metadynamic recrystallisation during bar rolling of a medium carbon spring steel[J]. Journal of Materials Processing Technology,2005,160(3):267-277.
    [171]C. Roucoules, I. Boyadjev, P.D. Hodgson, et al. Use of lead to develop models for the deformation behaviour of steel at elevated temperature [J]. Journal of Materials Processing Technology,1994,45(1-4):447-452.
    [172]HYUNBO Shim. Optimal preform design for the free forging of 3D shapes by the sensitivity method[J]. Journal of Materials Processing Technology,2003, 134(1):99-107.
    [173]ZHAO Guo-Qun, ZHAO Zhen-Duo, WANG Tong-Hai, et al. Preform design of a generic turbine disk forging process [J]. Journal of Materials Processing Technology,1998,84(1-3):193-201.
    [174]YANG Yan-Hui, LIU Dong, HE Zi-Yan, et al. Optimization of preform shapes by rsm and fern to improve deformation homogeneity in aerospace forgings[J]. Chinese Journal of Aeronautics,2010,23(2):260-267.
    [175]GB/T 228-2002,金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002.
    [176]GB/T 4161-2007,金属材料平面应变断裂韧度KIC试验方法[S].北京:中国标准出版社,2007.
    [177]F.S. Du, M.T. Wang, X.T. Li. Research on deformation and microstructure evolution du ring forging of large-scale parts[J]. Journal of Materials Processing Technology,2007,187-188:591-594.
    [178]J. Majta, A. Bator. Mechanical behaviour of hot and worm formed microalloyed steels [J]. Journal of Materials Processing Technology,2002, 125-126:77-83.
    [179]吕知清,赵军,王振华,等.热压缩变形不均匀性的有限元模拟与试验研究[J].钢铁,2007,42(12):53-56.
    [180]钟斌.35CrNi3MoV钢组织遗传消除工艺研究[J].大型铸锻件,2007,(5):3-8.
    [181]T. Karthikeyan, V. Thomas Paul, S. Saroja, et al. Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization treatment[J]. Journal of Nuclear Materials,2011,419(1-3):256-262.
    [182]S.J. Zhao, Q.F. Wang, T. Pan, et al. Fundamental evaluations on microstructure and mechanical properties of on-line normalizing processed V-N microalloyed N80 class oil casings[J]. Journal of Iron and Steel Research, International, 2007,14(5):227-233.
    [183]孙念光,杨合,孙志超.大型钛合金隔框等温闭式模锻成形工艺优化[J].稀有金属材料与工程,2009,38(7):1296-1300.
    [184]王淑云,李惠曲,东赞鹏,等.大型模锻件和模锻液压机与航空锻压技术[J].锻压装备与制造技术,2009,44(5):31-34.
    [185]L.A.L. Franco, N.J. Lourenco, M.L.A. Graca, et al. Fatigue fracture of a nose landing gear in a military transport aircraft[J]. Engineering Failure Analysis, 2006,13(3):474-479.
    [186]N. Eliaz, H. Sheinkopf, G. Shemesh, et al. Cracking in cargo aircraft main landing gear truck beams due to abusive grinding following chromium plating[J]. Engineering Failure Analysis,2005,12(3):337-347.
    [187]F. Bagnoli, F. Dolce, M. Colavita, et al. Fatigue fracture of a main landing gear swinging lever in a civil aircraft[J]. Engineering Failure Analysis,2008, 15(6):755-765.
    [188]Z.J. Zhang, G.Z. Dai, S.N. Wu, et al. Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D[J]. Materials Science and Engineering:A,2009,499(1-2): 49-52.
    [189]XUE Yong-Dong, HAN Jing-Tao. Application of deform in the field of metal press-working[C]. The Fifth International Conference on Physical and Numerical Simulation of Materials Processing. Zhengzhou:China Academic Journal Electronic Publishing House,2007:401-406.
    [190]庞克昌.航空锻件精化的重要途径-等温锻造技术[J].金属学报,2002,38(z1):356-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700