用户名: 密码: 验证码:
超声波/零价铁体系降解典型氯代芳香化合物特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代芳香化合物是环境持久性有机污染物,对环境危害大,污染范围广。超声波/零价铁(US/Fe~0)协同技术是近年来发展起来的一种高级氧化技术,在环境中的应用受到广泛的关注。本研究以US/Fe~0体系分别对氯硝基苯、氯苯胺、氯酚等多种典型的氯代有机物进行了降解研究,探索影响因素、反应动力学和降解机理,并对典型氯代芳香化合物的结构性质-降解特性关系(QSPR)进行了研究。得到如下主要结果:
     对氯硝基苯降解的优化条件为pH=3,铁粉投加量2.0g/L。在此优化条件下,测定了7种氯硝基苯降解的准一级反应动力学常数。通过对中间产物的检测,并经理论计算推测,探明其降解途径为对氯硝基苯的硝基逐步加氢,最终生成对氯苯胺,同时中间产物会发生偶合反应,生成4,4-二氯偶氮氧化苯等物质。
     对氯苯胺降解的优化条件为pH=9,铁粉投加量2.0g/L,初始浓度为0.1mmol/L。在此优化条件下,测定了7种氯苯胺降解的准一级反应动力学常数。经中间产物检测和无机阴离子产物检测,推测对氯苯胺降解为热解直接分解和·OH氧化两条主要途径,中间产物会进一步氧化分解为最终产物。
     2,3,4,6-四氯酚降解的优化条件为pH=6,铁粉投加量2.0g/L。在优化条件下对13种氯酚进行了降解速率常数的测定,全部符合一级反应动力学模型,且具有良好的相关性。
     协同机理研究表明,超声空化作用会使体系的pH值降低,但铁粉的加入具有明显的缓冲和稳定pH值的作用;铁粉投加量会影响体系中·OH、H2O2的生成。溶液的初始pH值越高,超声空化作用越强,产生的·OH、H2O2也越多;相反,铁粉的腐蚀较强,体系中Fe2+、Fe3+浓度较高。对氯硝基苯降解主要是由于铁粉的还原作用,超声波对铁粉表面的清洗可强化铁粉的作用;而对氯苯胺降解主要是由于超声空化产生的·OH的作用,铁粉对·OH产生有强化作用,超声波热解作用是对氯苯胺降解的次要原因。
     采用PLS方法分别建立了氯代芳香化合物、氯硝基苯类化合物和氯苯胺类化合物降解的QSPR模型。结果表明,氯代芳香化合物的降解速率与dipole、HOF、IP、Sm、Vm、Mw为正相关,与Elumo、Elumo+1、Ehomo-1、Ehomo、logKow为负相关,降解是以自由基反应为主,降解速率的大小主要取决于氯代芳香化合物的得失电子能力。氯硝基苯类化合物的降解速率与Sm、TE、Vm为正相关,Mw、Elumo+1、Elumo-Ehomo为负相关;氯原子数越少,分子硬度(Elumo-Ehomol)越大,越难降解。氯苯胺类化合物的降解速率与CCR、Elumo、Sm、polar、Vm、Mw正相关,与HOF负相关,氯原子数越多,总的核核排斥能(CCR)越大,最低空轨道能量(Elumo)越低,越容易降解。
Many chlorinated aromatic compounds (CACs) are persistent organic pollutants due totheir resistance to biodegradation and chemical degradation. They are hazardous toenvironment and have a wide range of pollution. The collaborative technology of ultrasonicand zero-valent-iron (US/Fe~0) is an advanced oxidation technology developed in recent years.Its application has been widespread concern in the environment. Many typical chlorinatedaromatic compounds including chloronitrobenzenes (CNBs), chloroanilines (CAs) andchlorophenols (CPs) were degraded in US/Fe~0system in this study. The optimal reactionconditions, the reaction kinetics and degradation mechanism were explored and thequantitative structure-property relationships (QSPR) were researched. As a result, thefollowing main conclusions were obtained:
     The optimal conditions for p-chloronitrobenzene degradation are pH=3and the ironpowder dosage of2.0g/L. The pseudo-first-order kinetic constants of7CNBs were measuredunder the optimum conditions. By the detection of the intermediate product and thetheoretical calculation, the degradation pathway was speculated for the nitro graduallyhydrogenation and ultimately generating chloroanilines. Meanwhile, other substances as4,4-dichloroazoxybenzene were generated by the intermediates coupling reactions.
     The Optimal conditions of p-chloroaniline degradation are pH=9, iron dosage of2.0g/Land the initial concentration of0.1mmol/L. Under these conditions, the pseudo-first-orderkinetic constants of7CAs were measured. By the detection of the intermediates and inorganicanion products, the degradation pathways of p-chloroaniline were speculated that they arepyrolysis and hydroxyl radical oxidation.
     The optimal conditions of2,3,4,6-TeCP degradation are pH=6and the iron dosage of2.0g/L. Under these conditions, the pseudo-first-order kinetic constants of13CPs weremeasured. The degradations of CPs are in conformity with the pseudo-first-order reactionkinetic model and have good correlation.
     The research of synergy mechanism showed that the ultrasonic cavitation causes the pHvalue reducing, but the addition iron powder can significant stabilize the pH value of system.The dosage iron powder will affect hydroxyl radical and Hydrogen peroxide generation. Thehigher the initial pH value of the solution, the stronger the effect of ultrasonic cavitation andmore hydroxyl radical and Hydrogen peroxide generation. In contrast, the corrosion of ironpowder is stronger and the concentrations of Fe2+and Fe3+are higher in system. The study showed that the chloronitrobenzene degradation is mainly due to the reduction of the ironpowder and the ultrasonic cleaning of the iron powder surface can enhance the role of the ironpowder. However, p-chloroaniline degradation was mainly due to the role of hydroxyl radicalgenerating from ultrasonic cavitations and it can be strengthen with iron powder added intothis system. Ultrasonic pyrolysis is the secondary cause of p-chloroaniline degradation.
     The QSPR models of CACs, CNBs and CPs degradation in US/Fe~0system wereestablished using partial least squares (PLS), respectively. The QSPR model of CACs showsthat the degradation rate is positively correlated with dipole moment(dipole), final heat offormation(HOF), ionization potential(IP), molecular surface area(Sm), molecular Volume(Vm),molecular weight(Mw) and is negative correlation with the energy of the lowest unoccupiedmolecular orbital (Elumo), the energy of the second lowest unoccupied molecular orbital(Elumo+1), the energy of the second highest occupied molecular orbital(Ehomo-1), the energy ofthe highest occupied molecular orbital(Ehomo), the logarithm of the partition coefficient forn-octanol/water(logKow). It explains the degradation of CACs is mainly due to the radicalreaction and the degradation rate depends primarily on the capability of CACs capturingelectronic. The QSPR model of CNBs shows that the degradation rate is positively correlatedwith Sm, total energy(TE), Vm and is negative correlation with Mw, Elumo+1, molecularhardness (Elumo-Ehomo). It explains that the degradation of CNBs is harder with less chlorineatoms and greater molecular hardness. The QSPR model of CAs shows that the degradationrate is positively correlated with the core–core repulsion energy (CCR), Elumo, Sm, averagemolecular polarizability (polar), Vm, Mwand is negative correlation with HOF. It explains thatthe degradation of CAs is easier with more chlorine atoms, greater CCR and lower Elumo.
引文
[1] Xia, S., Li, H., Zhang, Z., et al., Bioreduction of para-chloronitrobenzene in drinking water using acontinuous stirred hydrogen-based hollow fiber membrane biofilm reactor. Journal of HazardousMaterials,2011.192(2): p.593-598.
    [2.] Olaniran, A.O. and E.O. Igbinosa, Chlorophenols and other related derivatives of environmentalconcern: Properties, distribution and microbial degradation processes. Chemosphere,2011.83(10): p.1297-1306.
    [3] Ramkumar, A., V.K. Ponnusamy, J.-F. Jen, Rapid analysis of chlorinated anilines in environmentalwater samples using ultrasound assisted emulsification microextraction with solidification of floatingorganic droplet followed by HPLC-UV detection. Talanta,2012.97(0): p.279-284.
    [4]瞿福平,张晓健,吕昕,等.氯代芳香化合物的生物降解性研究进展.环境科学,1997.18(2): p.74-79.
    [5]吴海珍,何勤聪,韦朝海,等.邻氯硝基苯降解菌OCNB-1的分离鉴定与降解质粒.华南理工大学学报(自然科学版),2008.36(3): p.83-88.
    [6] Hong, S.K., Anestis,D.K.,Ball, J., et al., In vitro nephrotoxicity induced by chloronitrobenzenes inrenal cortical slices from Fischer344rats. Toxicology Letters,2002.129(1–2): p.133-141.
    [7]吴飞,夏俊鹏.高效液相色谱法测定工作场所空气中硝基氯苯.中国卫生检验杂志,2011.21(10):p.2385-2386.
    [8]张兰英.现代环境微生物技术.2005:清华大学出版社.
    [9] Mason, T.J., J.P. Lorimer, An introduction to sonochemistry. Endeavour,1989.13(3): p.123-128.
    [10] Suslick, K.S., The Chemical Effects of Ultrasound. Science American,1989(2): p.8.
    [11] Hao, H., Wu, M., Chen, Y., et al., Cavitation-induced pyrolysis of toxic chlorophenol byhigh-frequency ultrasonic irradiation. Environmental Toxicology,2003.18(6): p.5.
    [12] Chowdhury, P., T. Viraraghavan, Sonochemical degradation of chlorinated organic compounds,phenolic compounds and organic dyes–A review. Science of The Total Environment,2009.407(8): p.2474-2492.
    [13]赵朝成,陆晓华,张英,等.超声-双氧水和亚铁离子体系处理含酚废水研究.四川环境,2004.23(1): p.11-14.
    [14] Nakui, H., Okitsu,K., Maeda,Y., et al., Effect of coal ash on sonochemical degradation of phenol inwater. Ultrasonics Sonochemistry,2007.14(2): p.191-196.
    [15] Hung, H.-M., F.H. Ling, M.R. Hoffmann, Kinetics and Mechanism of the Enhanced ReductiveDegradation of Nitrobenzene by Elemental Iron in the Presence of Ultrasound. Environmental Science&Technology,2000.34(9): p.1758-1763.
    [16] Hung, H.M., M.R. Hoffmann, Kinetics and Mechanism of the Enhanced Reductive Degradation ofCCl4by Elemental Iron in the Presence of Ultrasound. Environ. Sci. Technol.,1998.32(19): p.3011-3016.
    [17] Colussi, A.J., H.M. Hung, M.R. Hoffmann, Sonochemical Degradation Rates of Volatile Solutes. J.Phys. Chem. A,1999.103(15): p.2696-2699.
    [18]杨湘政.超声波/零价铁协同降解氯代芳香化合物与其构效关系研究,2007,湘潭大学.
    [19] suslick, K.S., sonochemistry. science,1990.247(3): p.7.
    [20] Avvaru, B.,Patil, M.N., Gogate,P. R., et al., Ultrasonic atomization: Effect of liquid phase properties.Ultrasonics,2006.44(2): p.146-158.
    [21] A., S.V., Fundamental Physics of Ultrasound.1998, New York: Gordon&Breach Science Publishers.
    [22] Statnikov, E.S., O.V. Korolkov, V.N. Vityazev, Physics and mechanism of ultrasonic impact.Ultrasonics,2006.44(Supplement1): p. e533-e538.
    [23] Beckett, M.A., I. Hua, Enhanced sonochemical decomposition of1,4-dioxane by ferrous iron. WaterResearch,2003.37(10): p.2372-2376.
    [24]李廷盛,尹其光.超声化学.1995,北京:科学出版社.
    [25] Drijvers, D., H. Van Langenhove, M. Beckers, Decomposition of phenol and trichloroethylene by theultrasound/H2O2/CuO process. Water Research,1999.33(5): p.1187-1194.
    [26] Adewuyi, Y.G., Sonochemistry: Environmental Science and Engineering Applications. Industrial&Engineering Chemistry Research,2001.40(22): p.4681-4715.
    [27] J.M., W., H. H.S., L. C.D.. Ultrasonic Destruction of Chlorinated Compounds in Aqueous Solution.Environmental Progress,1992.11(1): p.195-201.
    [28] Petrier, C., Y. Jiang, M.-F. Lamy, Ultrasound and Environment: Sonochemical Destruction ofChloroaromatic Derivatives. Environmental Science&Technology,1998.32(9): p.1316-1318.
    [29] Stavarache, C.,Yim, B., Vinatoru, M., et al., Sonolysis of chlorobenzene in Fenton-type aqueoussystems. Ultrasonics Sonochemistry,2002.9(6): p.291-296.
    [30] Kim, Y.H., E.R. Carraway, Dechlorination of Pentachlorophenol by Zero Valent Iron and ModifiedZero Valent Irons. Environ. Sci. Technol.,2000.34(10): p.2014-2017.
    [31] Sayles, G.D., You, G., wang,M., et al., DDT, DDD, and DDE Dechlorination by Zero-Valent Iron.Environ. Sci. Technol.,1997.31(12): p.3448-3454.
    [32] Fei-Wen, C., L. R.A., W. M.S., Zero-Valent iron-promoted dechlorination of polychlorinated biphenyls.Environ. Sci. Technol.,1995.29(2): p.2460-2463.
    [33] Roberts, A.L., Totten, L.A., Arnold,W.A., et al., Reductive Elimination of Chlorinated Ethylenes byZero-Valent Metals. Environ. Sci. Technol.,1996.30(8): p.2654-2659.
    [34] Liang, J., Komarov,S., Hayashi,N., et al., Improvement in sonochemical degradation of4-chlorophenolby combined use of fenton-like reagents. Ultrasonics Sonochemistry,2007.14.
    [35] Zhang, H., Duan,L., Zhang,Y., et al., The use of ultrasound to enhance the decolorization of the C.I.Acid Orange7by zero-valent iron. Dyes and Pigments,2005.65(1): p.39-43.
    [36]汤心虎,黄丽莎,莫测辉,等.中性条件下超声波/零价铁协同降解活性艳红X-3B.环境化学,2006.25(2): p.199-202.
    [37]胡文勇,郑正.超声波辐照下零价铁处理硝基氯苯废水的研究.工业用水与废水,2005.36(4): p.20-23.
    [38]张选军,戴友芝,曹建平,等.纳米铁协同超声降解氯苯的研究.环境污染治理技术与设备,2004.5(8): p.32-34.
    [39]戴友芝,张选军,宋勇.超声波/纳米铁协同降解氯代苯酚的试验.环境污染治理技术与设备,2005.6(11): p.19-22.
    [40]宋勇,戴友芝.超声波与零价铁联合降解五氯苯酚的初步研究.湖南工程学院学报:自然科学版,2005.15(2): p.76-79.
    [41] Dai, Y.Z., Li, F,F., Ge,F., et al., Mechanism of the enhanced degradation of pentachlorophenol byultrasound in the presence of elemental iron. Journal of Hazardous Materials,2006.137(3): p.1424-1429.
    [42]王亚南.典型有机污染物与·OH反应速率常数的QSAR研究,2011,大连理工大学.
    [43]陈景文.有机污染物定量结构-性质关系与定量结构-活性关系.1999,大连:大连理工大学出版社.
    [44] www.tandfonline.com/loi/gsar20.
    [45]王连生,韩朔睽.有机物定量结构-活性相关.1993,北京:中国环境科学出版社.
    [46]王连生.有机污染物化学.2004,北京:高等教育出版社.
    [47] Chen, J., Quan,X., Peijnenburtg, W.J.G.M, et al., Quantitative structure-property relationships (QSPRs)on direct photolysis quantum yields of PCDDs. Chemosphere,2001.43(2): p.235-241.
    [48] Chen, J., Quan,X,. Schramm,K.W., et al., Quantitative structure-property relationships (QSPRs) ondirect photolysis of PCDDs. Chemosphere,2001.45(2): p.151-159.
    [49] Chen, J.,Quan, X., Yang, F., et al., Quantitative structure-property relationships on photodegradation ofPCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). The Science of The TotalEnvironment,2001.269(1-3): p.163-170.
    [50] Chen, J., Xue, X., Schramm, K., et al., Quantitative structure-property relationships for octanol-airpartition coefficients of polychlorinated biphenyls. Chemosphere,2002.48(5): p.535-544.
    [51] Chen, J., Xue,X., Schramm,K., et al., Quantitative structure-property relationships for octanol-airpartition coefficients of polychlorinated naphthalenes, chlorobenzenes and p,p′-DDT.Computational Biology and Chemistry,2003.27(3): p.165-171.
    [52] Cheng, Y.-Y., H. Yuan, Quantitative study of electrostatic and steric effects on physicochemicalproperty and biological activity. Journal of Molecular Graphics and Modelling,2006.24(4): p.219-226.
    [53] Shi, J., Zhang,X., Qu,R., et al., Synthesis and QSPR study on environment-related properties ofpolychlorinated diphenyl sulfides (PCDPSs). Chemosphere,2012.88(7): p.844-854.
    [54] Hu, R.-J., Liu, H.-X., Zhang, R.-X., et al., QSPR prediction of GC retention indices fornitrogen-containing polycyclic aromatic compounds from heuristically computed moleculardescriptors. Talanta,2005.68(1): p.31-39.
    [55] Ding, G., Chen, J., Qiao,X., et al., Quantitative relationships between molecular structures,environmental temperatures and solid vapor pressures of PCDD/Fs. Chemosphere,2006.62(7): p.1057-1063.
    [56] Yao, X., Liu, M., Zhang,X., et al., Radial basis function network-based quantitative structure-propertyrelationship for the prediction of Henry’s law constant. Analytica Chimica Acta,2002.462(1):p.101-117.
    [57] Li, X., Zhang,G., Dong,J., et al., Estimation of critical micelle concentration of anionic surfactantswith QSPR approach. Journal of Molecular Structure: THEOCHEM,2004.710(1-3): p.119-126.
    [58] Liu, H., Li,G., Qu,J., et al., Prediction of gas-phase reduced ion mobility constants (K0) based on themultiple linear regression and projection pursuit regression. Talanta,2007.71(1): p.258-263.
    [59] Dai, Y., Yang,D., Zhu,F., et al., The QSPR (quantitative structure-property relationship) study about theanaerobic biodegradation of chlorophenols. Chemosphere,2006.65(11): p.2427-2433.
    [60] OECD. Report form the Expert Group on (Quantitative) structure-Activity Relationships [(Q)SARs]models. http://www.oecd.org/dataoecd/55/22/38131728.pdf2004.
    [61] Tunkel, J.,Mayo,K., Austin,C., et al., Practical Considerations on the Use of Predictive Models forRegulatory Purposes. Environmental Science&Technology,2005.39(7): p.2188-2199.
    [62]张良长.超声波/零价铁协同降解氯代有机物特性及QSAR研究,2008,湘潭大学.
    [63] Chemoffice. http://www.cambridgesoft.com.
    [64] DRAGON, http://www.vcclab.org/lab/edragon/.
    [65] CODESSA, http://www.codessa-pro.com/.
    [66] Gaussian, http://www.gaussian.com.
    [67]百度百科. http://baike.baidu.com/.
    [68] SCRC, http://www.srcinc.com/.
    [69] WebBook, C., http://webbook.nist.gov/chemistry.
    [70] ECDIN, http://ulisse.etoit.eudra.org/Ecdin/Ecdin.html.
    [71]化工词典, http://www.chemyq.com/xz.htm.
    [72]陈景文.有机污染物定量结构-性质关系与定量结构-活性关系.1999,大连:大连理工出版社.1-2.
    [73] Livingstone, D.J., D.W. Salt, Judging the significance of multiple linear regression models. Med.Chem.,2005.48(3): p.661-663.
    [74] SpSS. http://www.spss.com.cn.
    [75] Wold, S., M. Sj str m, L. Eriksson, PLS-regression: a basic tool of chemometrics. Chemometrics andIntelligent Laboratory Systems,2001.58(2): p.109-130.
    [76] SIMCA. http://www.umetrics.com/simca.
    [77] Mghazli, S., Jaouad,A., Mansour,M., et al., Neural networks studies: quantitative structure–activityrelationships of antifungal1-[2-(substituted phenyl)allyl]imidazoles and related compounds.Chemosphere,2001.43(3): p.385-390.
    [78] Chen, Y., Chen,D., He,C., et al., Quantitative structure–activity relationships study of herbicides usingneural networks and different statistical methods. Chemometrics and Intelligent Laboratory Systems,1999.45(1–2): p.267-276.
    [79]维基百科. http://zh.wikipedia.org/wiki/.
    [80] NNX. http://www.aitech.cn/download/.
    [81] Shahlaei, M. and A. Pourhossein, Modeling of CCR5antagonists as anti HIV agents using combinedgenetic algorithm and adaptive neuro-fuzzy inference system (GA–ANFIS). Medicinal ChemistryResearch,2013: p.1-14.
    [82] Shahlaei, M., Madadkar-sobhani,A., Saghaie,L., et al., Application of an expert system based onGenetic Algorithm–Adaptive Neuro-Fuzzy Inference System (GA–ANFIS) in QSAR of cathepsin Kinhibitors. Expert Systems with Applications,2012.39(6): p.6182-6191.
    [83]遗传算法. http://baike.baidu.com/view/45853.htm.
    [84] Ku i, H., Rasulev,B., Leszczynska,D., et al., Prediction of rate constants for radical degradation ofaromatic pollutants in water matrix: A QSAR study. Chemosphere,2009.75(8): p.1128-1134.
    [85]李雪花.有毒有机污染物正辛醇/空气分配系数(K_(OA))的定量预测方法,2008,大连理工大学.
    [86]张彭义,余刚,蒋展鹏.苯甲酸类光催化降解和羟基自由基反应的关系.中国环境科学,1999.19(3): p.193-196.
    [87]于秀娟,王鹏,龙明策,等.有机化学品点价自相关拓扑指数与生物降解性的定量关系.环境科学学报,2000.20(1): p.93-96.
    [88]杨绍贵,陆光华,赵无慧,等.取代苯胺及苯酚类化合物定量结构-生物降解相关性(QSBR)研究.化学通报,2001(9): p.586-589.
    [89]夏凤毅,郑平,周琪,等.邻苯二甲酸酯化合物生物降解性与其化学结构的相关性.浙江大学学报(农业与生命科学版),2004.30(2): p.141-146.
    [90]程荣,戚道铎,王建龙.用纳米铁降解氯酚的分子结构—性质相关性.清华大学学报(自然科学版),2010.50(6): p.873-876.
    [91]赵慧敏.氯代有机物在辽河沉积物中缺氧脱氯特性及QSPR研究,2002,大连理工大学.
    [92] Zhou, T., Lu,X., Lim,T., et al., Degradation of chlorophenols (CPs) in an ultrasound-irradiatedFenton-like system at ambient circumstance: The QSPR (quantitative structure–property relationship)study. Chemical Engineering Journal,2010.156(2): p.347-352.
    [93] Ohura, T., T. Amagai, M. Makino, Behavior and prediction of photochemical degradation ofchlorinated polycyclic aromatic hydrocarbons in cyclohexane. Chemosphere,2008.70(11): p.2110-2117.
    [94]戴友芝,朱飞,李芬芳,等.超声波/零价铁(US/Fe)协同降解氯酚类化合物的QSPR研究.环境科学学报,2007.27(2): p.252-256.
    [95]杨湘政,戴友芝,欧胜华,等.超声波/零价铁协同降解氯代芳香化合物定量结构与性质关系的研究.计算机与应用化学,2008.25(2): p.253-256.
    [96] Wu, H., Wei,C., Wang,Y., et al., Degradation of o-chloronitrobenzene as the sole carbon and nitrogensources by Pseudomonas putida OCNB-1. Journal of Environmental Sciences,2009.21(1): p.89-95.
    [97]李炳智,徐向阳,朱亮.氯代硝基苯类废水臭氧化动力学和机理.化工学报,2008.59(8): p.2111-2120.
    [98]邱罡,谢凝子,陈少瑾,等. Fe0对土壤中对氯硝基苯和对硝基甲苯的还原.生态环境,2008.17(4):p.1509-1513.
    [99]林海转,徐向阳,杨燕妮,等. ZVI固定床-SBR耦合工艺强化氯代硝基苯的降解.环境科学学报,2008.28(9): p.1777-1784.
    [100]. Zhang, X., Wei,C., He,Q., et al., Enrichment of chlorobenzene and o-nitrochlorobenzene onbiomimetic adsorbent prepared by poly-3-hydroxybutyrate (PHB). Journal of Hazardous Materials,2010.177(1–3): p.508-515.
    [101] He, M.-c.,Sun,Y., Li,X.-r., et al., Distribution patterns of nitrobenzenes and polychlorinated biphenylsin water, suspended particulate matter and sediment from mid-and down-stream of the Yellow River(China). Chemosphere,2006.65(3): p.365-374.
    [102] Gao, J., Liu,L., Liu,X., et al., Occurrence and distribution of organochlorine pesticides–lindane,p,p′-DDT, and heptachlor epoxide–in surface water of China. Environment International,2008.34(8): p.1097-1103.
    [103] Li, Q., M. Minami, H. Inagaki, Acute and subchronic immunotoxicity of p-chloronitrobenzene inmice. I. Effect on natural killer, cytotoxic T-lymphocyte activities and mitogen-stimulatedlymphocyte proliferation. Toxicology,1998.127(1–3): p.223-232.
    [104] Li,Q., Minami,M., Hanaoka,T., et al., Acute immunotoxicity of p-chloronitrobenzene in mice: II.Effect of p-chloronitrobenzene on the immunophenotype of murine splenocytes determined by flowcytometry. Toxicology,1999.137(1): p.35-45.
    [105]徐金球,贾金平,徐晓军,等.超声空化效应降解焦化废水中有机物的研究.高校化学工程学报,2004.18(3): p.344-350.
    [106] Jiang, Y., C. Petrier, T.D. Waite, Sonolysis of4-chlorophenol in aqueous solution: Effects of substrateconcentration, aqueous temperature and ultrasonic frequency. Ultrasonics Sonochemistry,2006.13(5): p.415-422.
    [107] Yim, B., Okuno,H., Nagata,Y., et al., Sonochemical degradation of chlorinated hydrocarbons using abatch and continuous flow system. Journal of Hazardous Materials,2001.81(3): p.253-263.
    [108] Xu, X., H. Zhou, M. Zhou, Catalytic amination and dechlorination of para-nitrochlorobenzene(p-NCB) in water over palladium–iron bimetallic catalyst. Chemosphere,2006.62(5): p.847-852.
    [109]陆泉芳,俞洁,刘永军,等.接触辉光放电等离子体降解水体中的对氯硝基苯.西北师范大学学报(自然科学版),2003.39(1): p.49-53.
    [110] Weavers, L.K., F.H. Ling, M.R. Hoffmann, Aromatic Compound Degradation in Water Using aCombination of Sonolysis and Ozonolysis. Environmental Science&Technology,1998.32(18): p.2727-2733.
    [111] Jiang, Y., C. Pétrier, T. David Waite, Kinetics and mechanisms of ultrasonic degradation of volatilechlorinated aromatics in aqueous solutions. Ultrasonics Sonochemistry,2002.9(6): p.317-323.
    [112]陈静波.几种化学反应机理的量子化学计算,2009,中南大学.
    [113]糜骏.乙烯酮(CH2CO)与H、CN自由基反应机理的量子化学研究,2004,北京化工大学.
    [114]屈小辉.量子化学方法研究典型有毒有机污染物的形成与降解机理,2009,山东大学.
    [115]陈少瑾,陈宜菲,张二华,等.土壤中取代硝基苯化合物被零价铁还原的机理.环境化学,2006.25(3): p.288-293.
    [116]包德才,赵岷.催化还原对氯硝基苯制备对氯苯胺的研究进展.内蒙古民族大学学报(自然科学版),2001.16(1): p.96-100.
    [117] Liang, H.-y., Zhang,Y.-q., Huang,S.-b., et al., Oxidative degradation of p-chloroaniline by copperoxidate activated persulfate. Chemical Engineering Journal,2013.218(0): p.384-391.
    [118]杜肖哲.基于热活化过硫酸盐新型高级氧化技术深度处理水中对氯苯胺的研究,2012,华南理工大学.
    [119]杜肖哲,张永清.常温下过硫酸盐氧化降解水中对氯苯胺.环境化学,2012.31(6): p.880-884.
    [120] Jiang, Y., C. Pétrier, T.D. Waite, Effect of pH on the ultrasonic degradation of ionic aromaticcompounds in aqueous solution. Ultrasonics Sonochemistry,2002.9(3): p.163-168.
    [121]刘亚男,薛罡,董娟,等.高铁酸钾降解苯胺的效能与机理.东华大学学报(自然科学版),2010.36(3): p.288-293.
    [122] Zhang, T., Hua-Feng, R., Ying,L., et al., A novel degradation pathway of chloroaniline inDiaphorobacter sp. PCA039entails initial hydroxylation. World Journal of Microbiology andBiotechnology,2010.26(4): p.665-673.
    [123] Jin-zhang, G., Zhong-ai, H., Peng-jun,Na., et al., Degradation of Chloroanilines in Aqueous Solutionby Contact Glow Discharge Electrolysis. Plasma Sclence Technology,2003.5(2): p.1721-1727.
    [124] Hongsawat, P., A.S. Vangnai, Biodegradation pathways of chloroanilines by Acinetobacter baylyistrain GFJ2. Journal of Hazardous Materials,2011.186(2–3): p.1300-1307.
    [125]罗茜,查金苗,雷炳莉,等.三种氯代酚的水生态毒理和水质基准.环境科学学报,2009.29(11): p.2241-2249.
    [126] Wennrich, L., P. Popp, M. M der, Determination of chlorophenols in soils using accelerated solventextraction combined with solid-phase microextraction. Analytical chemistry,2000.72(3): p.546-551.
    [127] Wang, L.,4-Chlorophenol degradation and hydrogen peroxide formation induced by DC diaphragmglow discharge in an aqueous solution. Plasma Chemistry and Plasma Processing,2009.29(3): p.241-250.
    [128] Lu, M.-C., Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite.Chemosphere,2000.40(2): p.125-130.
    [129] Ghaly, M.Y., H rtel, G., Mayer,R., et al., Photochemical oxidation of p-chlorophenol by UV/H2O2and photo-Fenton process. A comparative study. Waste Management,2001.21(1): p.41-47.
    [130]李芬芳.超声波/零价铁协同降解氯酚类有机物的机理及其构性关系研究,2006,湘潭大学.
    [131]吴兰艳.超声波/零价铁体系降解五氯酚的作用机理及动力学研究,2007,湘潭大学.
    [132] Allen, A.O.,Hochanadel,C.J., Ghormley,J.A., et al., Decomposition of Water and Aqueous Solutionsunder Mixed Fast Neutron and gamma-Radiation.1952.56(5): p.575-586.
    [133] Iida, Y., Yasui,K., Tuziuti,T., et al., Sonochemistry and its dosimetry. Microchemical Journal,2005.80(2): p.159-164.
    [134]罗刚,黄君礼. Fe(phen)32+光度法研究Fenton试剂体系中· OH生成率的影响因素.化学工程师,2001(6): p.23-25.
    [135]张乃东,郑威. UV-Vis*草酸铁络合物—H2O2体系产生羟自由基的Fe(phen)2+3光度法测定.分析测试学报,2002.21(5): p.36-39.
    [136]付燕,王爱香,马东平,等. Fe(phen)2+3光度法测定辉光放电等离子体中产生的羟基自由基.西北师范大学学报:自然科学版,2007.43(3): p.49-52.
    [137] Kidak, R. N.H. Ince, Ultrasonic destruction of phenol and substituted phenols: A review of currentresearch. Ultrasonics Sonochemistry,2006.13(3): p.195-199.
    [138] Dean, J.A., Lange's handbook of chemistry.1985.
    [129]刘定富,李世静.氨水分步沉淀法分离混合溶液中的铁.涂装与电镀,2008(2): p.43-45.
    [140]鲁思伽,洪军,祁士华,等. UV/Fenton体系中Fe2+/Fe3+的相互转化规律.环境科学学报,2009.29(6): p.1258-1262.
    [141] Ste-Marie, L., Boismenu,D., Vachon,L., et al., Evaluation of sodium4-hydroxybenzoate as anhydroxyl radical trap using gas chromatography–mass spectrometry and high-performance liquidchromatography with electrochemical detection. Analytical biochemistry,1996.241(1): p.67-74.
    [142]杨芬,张瑞萍,贺玖明,等.羟自由基的产生,捕集及检测方法[J].药学学报,2007.42(7): p.692-697.
    [143]夏凤毅,郑平,周琪,等.邻苯二甲酸酯化合物生物降解性与其化学结构的相关性.浙江大学学报(农业与生命科学版),2004.30(2): p.141-146.
    [144] Kaliszan, R., Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography. Journal of Chromatography A,1993.656(1–2): p.417-435.
    [145] Liu, H., Tan,J., Yu,H., et al., Determination of the apparent reaction rate constants for ozonedegradation of substituted phenols and QSPR/QSAR analysis. Int. J. Environ. Res,2010.4(3): p.507-512.
    [146] Zhou, Z. R.G. Parr, New measures of aromaticity: absolute hardness and relative hardness. Journal ofthe American Chemical Society,1989.111(19): p.7371-7379.
    [147] Zhou, Z. R.G. Parr, Activation hardness: new index for describing the orientation of electrophilicaromatic substitution. Journal of the American Chemical Society,1990.112(15): p.5720-5724.
    [148] Mohajeri, A. M.H. Dinpajooh, Structure–toxicity relationship for aliphatic compounds using quantumtopological descriptors. Journal of Molecular Structure: THEOCHEM,2008.855(1–3): p.1-5.
    [149]刘万强,王学业,李新芳,等.量子化学参数研究聚苯乙烯类玻璃化温度的定量构效关系.计算机与应用化学,2005.22(9): p.753-753.
    [150]闫春丽,陈景文,高丽娜,等.醛类化合物在气相条件下与. OH反应的速率常数的QSPR研究.
    [151] Chen, J., Peijinenbury, W.J.G.M., Quan,X., et al., Is it possible to develop a QSPR model for directphotolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution,2001.114(1): p.137-143.
    [152] Basak, S.C., D. Mills, Development of quantitative structure-activity relationship models for vaporpressure estimation using computed molecular descriptors. Arkivoc,2005.10: p.308-320.
    [153] Niu, J., X. Long, S. Shi, Quantitative structure–activity relationships for prediction of the toxicity ofhydroxylated and quinoid PCB metabolites. Journal of molecular modeling,2007.13(1): p.163-169.
    [154] Drijvers, D., H. Van Langenhove, V. Herrygers, Sonolysis of fluoro-, chloro-, bromo-andiodobenzene: a comparative study. Ultrasonics Sonochemistry,2000.7(2): p.87-95.
    [155]赵慧敏,全燮,陈硕,等. PLS和PM3算法对缺氧沉积物中卤代芳烃还原脱卤QSPR研究.Journal of Dalian University of Technology,2003.43(3).
    [156]袁传能,许旋,徐志广. C (4)取代紫杉醇类似物的定量构效关系研究.分子科学学报:中英文版,2009.24(6): p.416-421.
    [157]杨湘奎,阴秀琦,李洪文.氯苯类化合物定量结构生物降解相关性.黑龙江水专学报,2006.33(1): p.97-99.
    [158]李玉梅.卤代苯类化合物对江水细菌的毒性及其QSAR研究,2005,河海大学2002级硕士生毕业论文.
    [159] Shemer, H., N. Narkis, Sonochemical removal of trihalomethanes from aqueous solutions.Ultrasonics Sonochemistry,2005.12(6): p.495-499.
    [160] Nagata, Y., Nakagawa,M., Okuno,H., et al., Sonochemical degradation of chlorophenols in water.Ultrasonics Sonochemistry,2000.7(3): p.115-120.
    [161] Petrier, C., E. Combet, T. Mason, Oxygen-induced concurrent ultrasonic degradation of volatile andnon-volatile aromatic compounds. Ultrasonics Sonochemistry,2007.14(2): p.117-121.
    [162] Braekevelt, E., S.A. Tittlemier, G.T. Tomy, Direct measurement of octanol-water partition coefficientsof some environmentally relevant brominated diphenyl ether congeners. Chemosphere,2003.51(7):p.563-567.
    [163] Puzyn, T., Suzuki,N., Noriyuki, M., et al., Calculation of quantum-mechanical descriptors for QSPRat the DFT level: is it necessary? Journal of chemical information and modeling,2008.48(6): p.1174-1180.
    [164]王惠文.偏最小二乘回归方法及其应用.1999,北京:国防工业出版社.
    [165]王惠文,朱韵华. PLS回归在消除多重线性中的作用.数理统计与管理,1996.15(6): p.48-52.
    [166]罗世霞,张笑一,杨廷美,等.苏丹红TiO2光催化降解活性与分子电子结构相关性研究.食品科学,2008.29(09).
    [167]张笑一,兰薇,潘渝生,等.偶氮染料分子的电子结构与生物降解活性(Ⅰ)——电荷分布对偶氮键还原裂解的影响.高等学校化学学报,1998.19(8): p.1283-1287.
    [168]李钦铃,生成热在有机化学中的应用.陕西师范大学继续教育学报,2001.18(004): p.108-109.
    [169]余菁,张幸川,王遵尧,等.多溴二苯并呋喃的热力学性质和稳定性的密度泛函理论研究.化学学报,2006.64(19): p.1961-1968.
    [170] Wang, Y.-n., Chen,J.-w.,Li,X.-h., et al., Predicting rate constants of hydroxyl radical reactions withorganic pollutants: Algorithm, validation, applicability domain, and mechanistic interpretation.Atmospheric Environment,2009.43(5): p.1131-1135.
    [171]陈宜菲,陈少瑾.利用零价铁还原土壤中硝基苯类化合物的研究.环境科学学报,2007.27(2): p.241-246.
    [172] Arora, P.K., C. Sasikala, C.V. Ramana, Degradation of chlorinated nitroaromatic compounds. Appliedmicrobiology and biotechnology,2012: p.1-13.
    [173] Arora, P.K., R.K. Jain, Pathway for Degradation of2-Chloro-4-Nitrophenol in Arthrobacter sp.SJCon. Current microbiology,2011.63(6): p.568-573.
    [174] Ye, M., Chen,Z., Liu,X., et al., Ozone enhanced activity of aqueous titanium dioxide suspensions forphotodegradation of4-chloronitrobenzene. Journal of hazardous materials,2009.167(1): p.1021-1027.
    [175]陆光华,王凤杰,赵元慧.有机化合物结构与生物降解性的定量关系研究.东北师大学报:自然科学版,2001.33(2): p.60-60.
    [176] Fang, L., Huang,J., Yu,G., et al., Abstracts of QSAR-related Publications: Agrochemistry. QSAR&Combinatorial Science,2009.28(9): p.1033-1038.
    [177] Xianga, X., L. Xian-Guob, QSAR for Predicting Biodegradation Rates of Polycyclic AromaticHydrocarbons in Aqueous Systems. JIEGOU HUAXUE,2012.31(8).
    [178] Damborsky, J., T. Wayne Schultz, Comparison of the QSAR models for toxicity and biodegradabilityof anilines and phenols. Chemosphere,1997.34(2): p.429-446.
    [179] Jiang, J.L., Yue,X.A., Chen,Q.F., et al., Determination of ozonization reaction rate constants ofaromatic pollutants and QSAR study. Bulletin of environmental contamination and toxicology,2010.85(6): p.568-572.
    [180] Gramatica, P., E. Papa, Screening and Ranking of POPs for Global Half-Life: QSAR Approaches forPrioritization Based on Molecular Structure. Environmental Science&Technology,2007.41(8): p.2833-2839.
    [181] Goulon, A., Faraj,A., Pirngruber,G., et al., Novel graph machine based QSAR approach for theprediction of the adsorption enthalpies of alkanes on zeolites. Catalysis Today,2011.159(1): p.74-83.
    [182] Bellifa, K., S.M. Mekelleche, QSAR study of the toxicity of nitrobenzenes to Tetrahymenapyriformis using quantum chemical descriptors. Arabian Journal of Chemistry, in press(0).
    [183] Wold, S., Data analysis for chemists, applications to QSAR and chemical product design: DavidLivingstone, Oxford University Press, Oxford,1996.
    [184] Eriksson, L., Gottfries,J., Johansson,E., et al., Time-resolved QSAR: an approach to PLS modellingof three-way biological data. Chemometrics and Intelligent Laboratory Systems,2004.73(1): p.73-84.
    [185] LI, X., Fang,L., Huang,J., et al., Photolysis of mono-through deca-chlorinated biphenyls byultraviolet irradiation in n-hexane and quantitative structure-property relationship analysis. Journal ofEnvironmental Sciences,2008.20(6): p.753-759.
    [186] Bao, Y., Huang,Q., Wang,W., et al., Application of quantum chemical descriptors into quantitativestructure-property relationship models for prediction of the photolysis half-life of PCBs in water.Frontiers of Environmental Science&Engineering in China,2011.5(4): p.505-511.
    [187]戴友芝,朱飞,李芬芳,等.超声波/零价铁(US/Fe)协同降解氯酚类化合物的QSPR研究[J].环境科学学报,2007.27(2): p.252-256.
    [188] Basak, S., Mills,., Gute,B., et al., Predicting pharmacological and toxicological activity ofheterocyclic compounds using QSAR and molecular modeling. QSAR and Molecular ModelingStudies in Heterocyclic Drugs I,2006: p.39-80.
    [189]徐兰,黄丽萍,陈景文,等.蒽醌化合物的光解动力学及定量结构-性质关系.环境化学,2007.26(3): p.294-297.
    [190] Li, H., Zhu,X., Jiang,Y., et al., Comparative electrochemical degradation of phthalic acid esters usingboron-doped diamond and Pt anodes. Chemosphere,2010.80(8): p.845-851.
    [191] Jiang, G., Niu,J., Zhang,Z., et al., Prediction of biodegradation rate constants of hydroxylatedpolychlorinated biphenyls by fungal laccases from Trametes versicolor and Pleurotus ostreatus.Bulletin of environmental contamination and toxicology,2008.81(1): p.1-6.
    [192]陈景文,王帅杰.应用PM3算法对部分有机锡化合物的QSPR和QSAR研究.大连理工大学学报,2000.40(3): p.305-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700