用户名: 密码: 验证码:
生物质热裂解产物收集系统对生物油特性影响及产物应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤和石油等化石燃料的日益减少和温室气体排放导致的全球变暖问题日趋严重,生物质作为一种清洁、可再生能源日益受到人们的重视。生物质热裂解是生物质材料在无氧或缺氧、常压和中低温(300-500℃)条件下发生裂解的一种热化学转换技术,其中快速热裂解可制得生物油,慢速热裂解可制得生物炭。生物油的化学成分和性质与石油燃料截然不同,生物油是一种复杂含氧有机化合物与水组成的混合物,包括了几乎所有化学类别的有机物,如醚、酯、醛、酮、酚、醇和有机酸等。生物油具有含水量高、pH值低、热值低等特点。本文首先采用数值模拟研究方法确定流化床反应器载气流速,研究热裂解产物收集系统(多级冷凝系统和热蒸汽过滤器)对生物油理化特性的影响,然后进行了生物油/柴油乳化和生物油重整制氢应用研究,最后对生物炭制取及生物炭燃烧动力学进行了机理研究。本研究对于提高生物油品质,开拓生物油和生物炭的应用途径具有指导意义。
     使用数值模拟软件FLUENT研究了流化床反应器载气流速与压降之间的关系,结果表明当载气流速较小时砂子流化状况不好,但当流速太大时,砂子会被吹散,在载气流速0.15m/s时,流化床反应器鼓泡良好,可以将砂子的体积分数、载气流速和流化床反应器内部各点的压力图象化,流化床反应器内部压降为1500Pa。流化床反应器冷态试验表明流化床反应器内部压降随着载气流速的增加先是增大,在0.13m/s时出现极大值,为1400Pa,然后呈现下降趋势并趋于稳定;数值模拟方法得到的结果与实际试验相对误差较小,对实际冷态试验具有指导意义。
     使用多级冷凝系统可将生物油中的有机物成分进行初步分离,然后根据各级生物油的性质确定应用途径。本文以松木屑为原料,研究了多级冷凝系统和静电捕集器对生物油特性的影响,其中主要研究的生物油理化性质包括:元素分析、水分含量、pH值、热值、运动粘度和组分,也对常温下不可冷凝气体的组分和生物炭做了详细的测试。结果表明,一级冷凝器得到的生物油最多,占生物油总量的65.3wt/%;前面冷凝器中的生物油具有较高的含水率、低固含量、较低的热值、pH值和运动粘度;通过GC-MS可以发现有102种化合物,其中含量最多的是酮和酚等环状化合物,许多不同的化合物在不同的冷凝器中冷凝;对不可冷凝气体进行GC研究发现,C_2-C_4(52.36%)气体含量最高,其次为CO(26.22%),H_2(1.66%)和CH_4(4.99%)含量较低;生物炭主要含有C、H和O三种元素,红外光谱显示生物炭化学键主要有-NH、-CH-、-C=C-、-CH_3和-C-O-C-,相对于松木屑原料,生物炭表面形貌发生了变化,壁面变薄并且产生了收缩。
     以稻壳粉为原料,在热解温度500℃时,研究了热蒸汽过滤器对生物油特性的影响,结果表明:当采用热蒸汽过滤器时,生物油产率由41.7wt.%下降为39.5wt.%,生物油的平均含水量由41.5wt.%上升到49.0wt.%,生物油具有高含水量、高pH值、低热值、低碱金属含量;GC-MS定量分析可以发现稻壳生物油化合物种类达112种之多,其中,苯酚、3-甲基苯酚、3-乙基苯酚、2,3-二氢苯并呋喃四种化合物在四种生物油中含量最高,热蒸汽过滤器中热裂解蒸汽的二次裂解降低了生物油中化合物的分子量;当采用热蒸汽过滤器后不可冷凝气体进行分析可得C_2-C_4气体含量明显降低,而H_2和CO的含量有很大的提高,这说明二次裂解导致产生了更多的H_2和CO。
     采用稻壳裂解生物油和市售0#柴油为原料进行了乳化燃油的制备,重点考察了乳化温度、乳化剂添加比例、单次能量投入量(乳化时间)和生物油添加比例对乳化燃油稳定性的影响。结果表明:最佳的乳化温度为60℃,适宜的比例为10%,单次能量投入量的增加可明显改善乳化燃油的稳定性,在能耗允许的前提下,综合考虑储存运输时间,可以确定较佳的乳化时间;当生物油添加比例不超过10%时,可以得到稳定时间超过72h的乳化燃油产品。
     采用稻壳制得的两种生物油在固定床反应器上进行水蒸汽重整制氢研究,研究了反应温度对气体产物、液体产物和催化剂积炭量的影响,同时考察了额外添加水蒸汽对三种产物的影响。结果表明:生物随着温度的升高气体产物H_2和CO_2含量升高,CO、CH_4和C_2-C_4的含量降低,气体产物中氢气的含量可达60%。当添加额外水进入反应体系时,生物油的产氢效率提高,最高为45.33%;生物油有机物含量大的生物油在反应过程中能够产生更多的氢气,但是产氢效率会有所降低。催化剂在中温750℃条件下,积炭出现极大值。
     采用固定床反应器以白腊木、倾草和玉米秸秆三种生物质为原料在三个反应温度下进行慢速热裂解研究表明:生物炭和生物油的产率随着反应温度的提高而降低,产生气体的体积随着反应温度的升高而升高,其中生物炭的产率为26-41%之间,其固碳率可达50%以上;生物炭pH值、热值随着反应温度的提高而呈现上升趋势;红外光谱显示生物炭的化学键随着反应温度的提高而呈现减少趋势;SEM-EDS显示生物炭在高温条件下结构呈现规整化趋势,有碳纤维生成,生物炭中的碱金属含量随反应温度的提高呈现上升趋势;可燃气的主要成分为CO、CO_2、H_2和CH_4。其中CO、CO_2、随着反应的进行含量有降低趋势,而H_2和CH_4含量有上升趋势,高温条件下产生更多的H_2和CH_4。
     采用热重分析仪研究生物炭燃烧动力学表明:随着升温速率的增大,热滞后现象的加重,TG、DTG曲线均向高温侧移动,采用等转化率方法计算活化能,采用主曲线方法确定反应机理,其动力学模型为f(α)=(1-α)~(3.3),指前因子A=6.20×10~(12)s~(-1),活化能E=212.524kJmol~(-1)。
The coal and fossil fuel shortage and globle warming problems have become bigthreats to the sustainable development of our society. With the depletion of fossilenergy reserves in the world, renewable energy sources have attracted significantattention. Biomass is a clean, cost-effective, CO_2neutral and low sulfur contentrenewable material which can be used for heat and fuel production. Thermal pyrolysisis a thermochemical process in the middle temperature (300-500℃) with the absenceof oxygen, atmospheric pressure. Bio-oil was produced using fast pyrolysis andbiochar was produced using slow pyrolysis method. Bio-oil is a complicated mixtureof organic compounds with water containing almost all kinds of organic compoundssuch as aether, ester, aldehyde, ketone, hydroxybenzene, alcoholic, organic acid andetc. As the bio-oil has the characteristic of high water content, high solid, low heatingvalue, it is difficulty to use as liquid fuel. The effects of collection system (selectivecondensation and hot vapor filtration (HVF)) on the characteristic of bio-oil wereinvestigated in this paper. And then bio-oil/desiel emulsion and bio-oil steamingreforming were used to investigate the application of bio-oil. The effect of thetemperature on the characteristic of biochar and the biochar combustion behavie werealso investigated.
     The numerical simulation (FLUENT) was used to simulate the process of fluidizedbed reactor. The solid volume, gas velocity and the pressure drop were simulated. Theresults showed that the pressure drop was1500Pa with the gas velocity of0.15m/s.In the real experiment, the effect of the carrier gas velocity with the pressure drop was also investigated. The results showed that the pressure drop is increased with theincrease of gas velocity at first. It is tending towards stability after0.13m/s and thepressure drop is1400Pa. The numerical simulation result fit the experiment data verywell.
     The fast pyrolysis of pine sawdust was conducted in a fluidized bed reactor with aselective condensation system. The selective condensation and electrostaticprecipitator were used to condense the pyrolysis vapours. The average yields ofbio-oil, the gases and the char were41.5%,43.3%,15.2%respectively. It was foundthat the condensed oils in the condenser1#contained higher water content and ratio ofcollected water content of oil was86.2wt%. The bio-oil condensed in the lattercondenser has a lower water content, higher pH value, higher heating value, higherkinetic viscosity compared to the former one. Analysis of1#,4#and5#bio-oil withGC-MS showed that102types of chemical compounds were detected and most of thecompounds were condensed at different condensers. Therefore, the selectivecondensation is useful to separate the water and chemical compounds from bio-oilcompared with direct contacting condensing. The selective condensation andelectrostatic precipitator can condense the pyrolysis vapours selectively. The gasproducts were mainly CO, H_2, CO_2, CH_4and C_2-C_4’s. It was also found that there arelarge amount of hydrogen and oxygen in the bio-char. A lot of bonds such as-NH,-CH-,-C=C-,-CH_3,-C-O-C-were found in the char samples. It was observed that thesurface morphology of pine sawdust particle changed after pyrolysis, and it becamethinner.
     Fast pyrolysis of rice husks in a fluidized-bed reactor was reported in this paper. Theeffect of HVF on the characteristic of bio-oil was investigated. It was found that thetotal bio-oil yield decreased and that the bio-oil has a higher water content, higher pHvalue, and lower alkali metal content when a HVF is used in the system. Analysis ofthe bio-oil with GC-MS showed that the molecular weight of the chemical compoundsdecreased after HVF. The content of C_2-C_4’s gases from gas products was decreasedafter HVF. The bio-char has many chemical bonds and its alkali metal content ishigher compared to the bio-oils.
     Bio-oil from the rice husks was used to emulsion with diesel. The temperature,percentage of the emulsifier, time and the percentage of bio-oil were investigated inthis paper. The results showed that the emulsion temperature should be at60℃andthe suitable percentage of emulsion was10%. The emulsion fuel can get a stable timemore than72h if the bio-oil percentage less than10.
     Steam reforming of two kinds of bio-oil from rice husks fast pyrolysis was conductedfor hydrogen production at three temperatures (650,750and850℃) with Ni-basedcatalyst in a fixed-bed reactor. Mole fractions of H_2and the CO_2increased, while thevolume fraction of CO, CH_4and C_2-C_4gases decreased with the increase of thetemperature from650to850℃. The highest H_2efficiency was45.33%whenadditional water was added at850℃for F1bio-oil. Bio-oil with lower content ofchemical compounds has a higher H_2efficiency, but its hydrogen volume wasdecreased. Analysis of the liquid condensate showed that most of the organiccompounds were circularity compounds. Carbon deposition can decrease the bio-oilconversion, and it was more readily formed at750℃.
     The slow pyrolysis of white ash, switch grass and corn stover were used as thefeedstock at three temperatures (300,400and500℃). The results showed that theyield of the biochar and bio-oil were decreased and the volume of syngas wasincreased with the increase of the temperature. The yield of the biochar was26-41%.The carbon sequestration rates canbe60wt%. The pH, heating value and solid contentof the biochar were increased with the increase of the temperature. FT-IR showed thatthere are a lot of chemical ponds in the biochar, and they were decreased with theincrease of the temperature. The SEM-EDS analysis showed that the structure hascarbon fiber at higher temperature, and the content of alkali metals (Na, K, Ca, Mg)were increased with the increase of temperture. The main content of the syngas wereCO、CO_2、H_2and CH_4.The mole fraction of CO and CO_2were decreased and the molefraction of H_2and CH_4were increased with the time. More H_2and CH_4wereproduced at high temperature.
     The combustion characteristic and kinetic behaviour of the biochar were studied byusing a thermogravimetric analyzer at four heating rates (5,10,20and50K min-1).
     The FWO and KAS methods, two commonly used isoconversional methods, wereapplied to estimate the effective activation energy, and the master plot method wasused for the determination of the kinetic model f(α). The kinetic parameters of biocharcombustion are obtained as follows: f(α)=(1-α)~(3.3), A=6.20×10~(12)s~(-1), E=212.524kJmol~(-1).
引文
[1]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望.可再生能源,2006,02:78-82.
    [2]李志合,易维明.生物质能源利用及发展[J].山东工程学院学报,2000,14(4):34-38.
    [3]骆仲泱,周劲松,王树荣等.中国生物质能利用技术评价[J].中国能源,2004,26(9):39-42.
    [4]隋倩倩,杨忠连,汪娟等.生物质快速热解液化工艺研究进展.化学与生物工程.2012,29(03):1-5.
    [5]胡理乐,李亮,李俊生.生物质能源的特点及其环境效应.能源与环境.2012,01:47-49.
    [6] Scheffer, K.Biomass–gespeicherte Sonnenenergie aus der Vielfalt derPflanzenarten–Potentiale, Bereitstellung, Konversion, in: ForschungsVerbundSonnenenergie Themenheft2000,34–39.
    [7] Kaltschmitt, M; Vogel, A. Alternative Biofuels in Europe–Status and Prospects,Vortrag: Berg-und Hüttenm nischer Tag2004.
    [8]万仁新.生物质能工程.北京:中国农业出版社,1995:1-10.
    [9]胡长娥,周敏,宋利强.煤与生物质共气化研究现状.煤碳加工与综合利用.2012,1:44-49.
    [10]史立山.中国能源现状分析和可再生能源发展规划.可再生能源,2004,5:1-5.
    [11] Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils-stateof the artfor the end users[J].Energy and Fuels,1999,13(4):914-921.
    [12]朱锡锋,郑继鲁,郭庆祥等.生物质热解油的性质精制与利用[J].中国工程科学,2005,7(9):83-87.
    [13]唐汝江,陈汉平,王贤华等.生物质油应用技术[J].能源技术,2005,26(2):66-69.
    [14]王树荣,骆仲映,董良杰.生物质闪速热裂解制取生物油的试验研究.太阳能学报,2002,23(1):5-8.
    [15] Moslem Only, O. Mete Kockar. Slow, fast and flash pyrolysis of rapeseed.Renewable Energy,2003(28):2417-2424.
    [16]王擎,侯凤云,孙东红.糠醛渣热解特性的研究.燃料化学学报,2004(4):230-234.
    [17]徐保江,李美玲,曾忠.旋转锥式闪速热解生物质试验研究.环境过程工程,1999,17(5):71-74.
    [18] A.V. Bridgwater. Upgrading biomass fast pyrolysis liquids. Environmentalprocess&sustainable energy.2012,31(2):261-268.
    [19]廖艳芬,骆仲浊,王树荣.纤维素快速热裂解试验研究及分析.燃料化学学报,2003(4):133-138.
    [20] A.V. Bridgwater. Review of fast pyrolysis of biomass and product upgradingBiomass and Bioenergy.2012,38:68–94.
    [21] Zhang,Jie Chang,Tiejun Wang,Ying Xu. Review of biomass pyrolysis oilproperties and upgrading research. Energy Conversion and Management,2007,48:87-92.
    [22] Raveendran K, Ganesh A. Pyrolysis characteristics of biomass and biomasscomponents.Fuel,1996,75(8):987-998.
    [23] Diebold J P. A review of the toxicity of biomass pyrolysis liquids formed at lowtemperature. In: Bridgwater A V,Czernik S, Diebold J P,et n1. Fast pyrolysis ofbiomass: a handbook[M]. Newbury, UK: CPL Press,1999.135-144.
    [24]董良杰.生物质热裂解技术及其反应动力学研究.沈阳农业大学博士学位论文,1997.
    [25]王树荣,骆仲侠,董良杰.几种农林废弃物热裂解制取生物油的研究.农业工程学报,2004:20(2),246-247.
    [26]曾忠.生物质热解液化试验研究.应用科学学报,2002,20(2):215-217.
    [27]常杰.生物质液化技术的研究进展.现代化工,2003,9,13-16.
    [28] Maschio, G.,Koufopanos, C. and Lucchesi, A. pyrolysis, a promising route forbiomass utilization. Bioresource technology,1994,42:218-230.
    [29]李志合,易维明,李永军.等离子体加热流化床反应器的设计与实验[J].农业机械学报,2007,4,38(4),66-69.
    [30]易维明,柏雪源,李志合等.利用层流炉研究玉米秸秆粉末的快速热解特性[J].可再生能源,2003,5,111-115.
    [31]李伍刚,李瑞阳,郁鸿凌.生物质热解技术研究现状及其进展.能源研究与信息.2001:17(4):210-214.
    [32] Xiaoling Miao, Qingyu Wu. High yield bio-oil production from fast pyrolysis bymetabolic controlling of Chlorella protothecoides. Journal of Biotechnology,2004(1l0):85-93
    [33] M Garc a-Pe′rez, A Chaala, H Pakdel, et al. Vacuum pyrolysis of softwood andhardwood biomass: Comparison between product yields and bio-oil properties [J]. J.Anal. Appl. Pyrolysis,2007,78(1):104-116.
    [34] Rick Vix. Product standards for pyrolysis products for use as fuel in industrialfiring plants[M]. London&New York: Elsevier Applied Science.1991,24(3):177-218.
    [35]何芳,易维明,柏雪源.国外利用生物质热解生产生物油的装置[J].山东工程学院学报,1999:13(3),61~64.
    [36]刘荣厚,张春梅.我国生物质热解液化技术的现状[J].可再生能源,2004(3):11-14.
    [37] Liu Ronghou, Niu Weisheng, Yu Xiaofang et al. Effects of biomass fast pyrolysiskey parameters on yields and distributions of products. Transactions of the CSAE,2003,19(5):204-206.
    [38]廖艳芬,王树荣,洪军.生物质热裂解制取液体燃料的实验研[J].能源工程,2002:(3):1-3.
    [39] Milne T A, Agblevor F, Davis M. Developments in thermochemical biomassconversion [M]. London: Blackie Academic&Professional,1997,12(4):409-424.
    [40]张新云.气固流化床反应器内多相流CFD的研究进展[J].化工装备技术,2009,30(2):35-37.
    [41] Soo.S.L.Fluid Dynamics of Multiphase Systems[M].Blais.dell,W altham,MA,1967.
    [42] Ishii M.Thermo fluid dynamic theory of two-phase plow[M].Eyrolles,PariS,1975.
    [43] Lun C K K,Savage S B,Jeffrey D J.Kinetic theories forgranular flow:Inelasticparticles in a general flow field[J]. Fluid Mech,1984,140:223-256.
    [44]陆慧林,何玉荣,刘阳.多组分颗粒稠密气固两相流动的数值模拟[J].工程热物理学报,2002,23(3):369-372.
    [45] Zhang S J,Yu A B.Computational investigation of slugging behavior ingas-fluidized beds[J].Powder Tech,2002,123:l47-l65.
    [46] C. Di Blasi, Kinetic and heat transfer control in the slow and flash pyrolysis ofsolids[J]. Industrial and Engineering Chemistry Research.1996,35:37–46.
    [47] C. Di Blasi, Comparison of semi-global mechanisms for primary pyrolysis oflignocellulosic fuels[J]. Journal of Analytical and Applied Pyrolysis.1998,47:43–64.
    [48] W.R. Chan, M. Kelbon, B.B. Krieger, Modelling and experimental verification ofphysical and chemical processes during pyrolysis of large biomass particle[J]. Fuel.1985,64:1505–1513.
    [49] P. Grammelis, E. Kakaras. Biomass combustion modelling in fluidized beds.Energy Fuels.2005,19:292–297.
    [50] C.H. Bamford, J. Crank, D.H. Malan, The combustion of wood. Part I,Proceedings of the Cambridge Philosophical Society.1946,42:166–182.
    [51] C. Di Blasi, Modelling the fast pyrolysis of cellulosic particles in fluid-bedreactors, Chemical Engineering Science.2000,55:5999–6013.
    [52] C. Di Blasi,Heat,momentumandmass transport through a shrinking biomassparticle exposed to thermal radiation, Chemical Engineering Science.1996,51:1121–1132.
    [53] C. Di Blasi, Analysis of convection and secondary reaction effect effectswithinporous solid fuels undergoing pyrolysis, Combustion Science Technology90(1993):315–339.
    [54] C. Di Blasi, Numerical simulation of cellulose pyrolysis[J]. Biomass andBioenergy.1994,7:87–98.
    [55] C. Di Blasi, Predictions of wind-opposed flame spread rates and energy feedbackanalysis for charring of solids in a microgravity environment[J]. Combustion andFlame100(1995):332–340.
    [56] L.A. Brown, C.D. Dayton, R.M. Nimlos, W., Design and characterization of anentrained flow reactor for the study of biomass pyrolysis chemistry at high heatingrates[J]. Energy and Fuels15(2001):1276–1285.
    [57]Papadikis.K, S. Gu, A.V. Bridgwater et al. Application of CFD to model fastpyrolysis of biomass[J]. Fuel Processing Technology,2009,90:504–512.
    [58]Papadikis,K. Gerhauser, A.V.Bridgwater et al. CFD Modelling of the fastpyrolysis of anin-flight cellulosic particle subjected to convective heat transfer[J].Biomass and bioenergy,2009,33:97–107.
    [59]Papadikisa.K, A.V.Bridgwater, S.Gu. CFD modelling of the fast pyrolysis ofbiomass in fluidised bed reactors. Part A: Eulerian computation of momentumtransport in bubbling fluidised beds[J]. Chemical Engineering Science,2008,63:4218-4227.
    [60]Papadikisa.K, S.Gu, A.V. Bridgwater. CFD modelling of the fast pyrolysis ofbiomass in fluidised bed reactors. Part B: Heat momentum and mass transport inbubbling fluidised beds[J]. Chemical Engineering Science,2009,64:1036-1045.
    [61] Henrich E, Weirich F. Pressurized entrained flow gasifiers for biomass [J].Environmental engineering science,2004,21(1):53-64.
    [62] Wang D, Czerinik S, Montane D et al. Biomass to hydrogen via fast pyrolysisand catalytic steam reforming of the pyrolysis oil or its fractions[J].Ind. Eng. Chem.Res.,1997,36(5):1507-1518.
    [63] Michio Ikura, Maria Stanciulescu, Ed Hogan. Emulsification of pyrolysisderived bio-oil in diesel fuel [J].Biomass and Bioenergy2003;24:221-232.
    [64] Papadikis.K, Gu. S, Bridgwater.A.V. Computational modelling of the impact ofparticle size to the heat transfer coefficient between biomass particles and a fluidisedbed[J]. Fuel Processing Technology.2010(91):68–79.
    [65]Chiaramonti D. Development of emulsions from biomass pyrolysis liquid anddiesel and their use in engines—Part1: emulsion: production. Biomass andBioenergy[J].2003;25:85-99.
    [66] Chiaramonti D, et.al. Development of emulsions from biomass pyrolysis liquidand diesel and their use in engines—Part2: Test in diesel engines[J].2003;25:101-111.
    [67]吴汉靓.流化床反应器生物质快速热裂解生物油特性的试验研究[D].上海交通大学硕士论文.2009,05.
    [68]于济业,彭艳丽,李燕飞.生物油/柴油乳化燃油稳定性试验[J].山东理工大学学报,2007,21(5):101-103.
    [69]张健,李文志,陆,强,朱锡锋.复配乳化剂乳化生物油/柴油技术[J].农业机械学报.2009,40(2):103-106.
    [70] Wang D, Montane′D, Chornet E. Catalytic steam reforming of biomass-derivedoxygenates: acetic acid and hydroxyacetaldehyde[J]. Applied Catalysis A,1996,143:245-270.
    [71] Wang D, Czernik S, Chornet E. Production of hydrogen from biomass bycatalytic steam reforming of fast pyrolysis oils[J]. Energy Fuels.1998,12:19-24
    [72] Vagia EC, Lemonidou AA. Thermodynamic analysis of hydrogen production viasteam reforming of selected components of aqueous bio-oil fraction[J]. InternationalJournal of Hydrogen Energy.2007,32(2):1133-1142.
    [73] Garcia L, French R, Czernik S, et al. Catalytic steam reforming of bio-oils for theproduction of hydrogen: effects of catalyst composition[J]. Applied Catalysis A,2000,201:225-239.
    [74] Rioche C, Kulkarni S, Meunier F, et al. Steam reforming of model compoundsand fast pyrolysis bio-oil on supported nobel metal catalysts[J]. Applied Catalysis B.2005,61:130-139.
    [75] Takanabe K, Aika K, Seshan K, et al. Sustainable hydrogen from bio-oil-steamreforming of acetic acid as a model oxygenate[J]. Journal of Catalysis.2004,227:101-108.
    [76] Takanabe K, Aika K, Inazu K, et al. Steam reforming of acetic acid as a biomassderived oxygenate: Bifunctional pathway for hydrogen formation over Pt/ZrO2catalysts[J]. Journal of Catalysis.2006,243:263-269.
    [77] Takanabe K, Aika K, Seshan K, et al. Catalyst deactivation during steamreforming of acetic acid over Pt/ZrO2[J]. Chemical Engineering Journal.2006,120:133-137.
    [78] Auroux A, Gervasini A. Microcalorimetric study of the acidity and basicity ofmetal oxide surfaces[J]. Journal of Physical Chemistry.1990,94:6371-6379.
    [79] Salem I. Recent studies on the catalytic activity of titanium, zirconium, andhafnium oxides[J]. Catalysis Review.2003,45(2):205-296.
    [80] Yakerson VI, Fedorovskaya EA, Klyachko-Gurvich AL. Vapor phase catalyticketonation of CH3COOH over oxides of quadrivalent metals and BeO[J]. KinetikaKataliz.1961,2:828-835.
    [81] Parida K, Mishra HK. Catalytic ketonisation of acetic acid over modifiedzirconia1. Effect of alkali-metal cations as promoter[J]. Journal of MolecularCatalysis A.1999,139:73-80.
    [82] Panov AG, Fripiat JJ. Acetone condensation reaction on acid catalysts[J]. Journalof Catalysis.1998,178:188-197.
    [83] Chang CD, Silvestri AJ. The conversion of methanol and other O-compounds tohydrocarbons over zeolite catalysts[J]. Journal of Catalysis.1977,47:249-259.
    [84] Hutchings GJ, Johnston P, Lee DF, et al. The conversion of methanol and otherO-compounds to hydrocarbons over zeolite β[J]. Journal of Catalysis.1994,147:177-185.
    [85] Gayubo AG, Aguayo AT, Atutxa A. Transformation of oxygenate components ofbiomass pyrolysis oil on a HZSM-5zeolite. II. Aldehydes, ketones, and acids[J].Industrial&Engineering Chemistry Research.2004,43:2619-2626.
    [86] Lippert S, Baumann W, Thomke K. Secondary reactions of the basecatalyzedaldol condensation of acetone[J]. Journal of Molecular Catalysis.1991,69:199-214.
    [87] Pestman R, Koster RM, Duijne A,et al. Reaction of carboxylic acids on oxides (2.Bimolecular reaction of aliphatic acids to ketones)[J]. Journal of Catalysis.1997,168:265-272.
    [88] Rajadurai S. Pathways for carboxylic acid decomposition on transition metaloxides[J]. Catalysis Reviews–Science and Engineering.1994,36(3):385-403.
    [89] Bitter JH, Seshan K, Lercher JA. Mono and bifunctional pathways of CO2/CH4reforming over Pt and Rh based catalysts[J]. Journal of Catalysis.1998,176:93-101.
    [90] Wei J, Iglesia E. Mechanism and site requirements for activation and chemicalconversion of methane on supported Pt clusters and turnover rate comparisons amongnoble metals[J]. Journal of Physical Chemistry B.2004,108:4094-4103.
    [91] Davidian T, Guihaume N, Iojoiu E, et al. Hydrogen production from crudepyrolysis oil by a sequential catalytic process[J]. Applied Catalysis B.2007,73:116-127.
    [92] Basagiannis AC, Verykios XE. Reforming reactions of acetic acid on nickelcatalysts over a wide temperature range[J]. Applied Catalysis A.2006,308:182-193.
    [93] Zhang R, Wang Y, Brown CR. Steam reforming of tar over Ni/olivine catalystsdoped with CeO2[J]. Energy Conversion and Management.2007,48:68-77.
    [94] Devi L, Ptasinski KJ, Janssen FJJG. A review of the primary measures for tarelimination in biomass gasification processes[J]. Biomass Bioenergy.2003,4:125-140.
    [95] Arauzo J, Radlein D, Piskorz J. Catalytic pyrogasification of biomass. Evaluationof modified nickel catalysts[J]. Industrial&Engineering Chemistry Research.1997,36:67-75.
    [96] Corella J, Ory’o A, Aznar MP. Biomass gasification with air in fluidized bed:reforming of the gas composition with commercial steam reforming catalysts[J].Industrial&Engineering Chemistry Research.1998,37:4617-4624.
    [97] Medrano JA, Oliva M, Ruiz J, et al. Catalytic steam reforming of modelcompounds of biomass pyrolysis liquids in fluidized bed reactor with modified Ni/Alcatalysts[J]. Journal of Analytical and Applied Pyrolysis.2009,85:214-225.
    [98] Medrano JA, Oliva M, Ruiz J,et al. Catalytic steam reforming of acetic acid in afluidized bed reactor with oxygen addition[J]. International Journal of HydrogenEnergy.2008,33:4387-4396.
    [99]张忠河,林振衡,付娅琦等.生物炭在农业上的应用[J].安徽农业科学.2010,38(22):11880-11882.
    [100]Michael W.I. Schmidt, Margaret S Torn, Samuel Abiven etal. Persistence of soilorganic matter as an ecosystem property[J]. Nature,2011,478:49-56.
    [101]Yao Y, Gao B, Inyang M et al. Biochar derived from anaerobically digestedsugar beet tailings: characterization and phosphate removal potential[J]. BioresourTechnol.2011,102(10):6273-6278.
    [102]Xinde Cao, Willie Harris. Properties of dairy-manure-derived biochar pertinentto its potential use in remediation[J]. Bioresour Technology.2010,101:5222-5228.
    [103]Xinde Cao, Lena Ma, Yuan Liang et al. Simultane ous Immobilization of Leadand Atrazine in ContaminatedSoils Using Dairy-Manure Biochar[J]. EnvironmentalScience Technology.2011,45:4884-4889.
    [104]Bartle, J.; Olsen, G.; Don, C, et al. Int. J. Global Energy Issues.2007,27(2):115–137.
    [105] H. Abdullah, H. Wu, Biochar as a Fuel:1. Properties and grindability ofbiochars produced from the pyrolysis of mallee wood under slow-heatingconditions[J]. Energy Fuels.2009,23:4174–4181.
    [106] H. Abdullah, K. A. Mediaswanti, H. Wu, Biochar as a Fuel:2. Significantdifferences in fuel quality and ash properties of biochars from various biomasscomponents of mallee trees[J]. Energy Fuels.2010,24:1972–1979.
    [107] K. Yip, M. Xu, C. Li, et al. Biochar as a fuel:3. Mechanistic understanding onbiochar thermal annealing at mild temperatures and its effect on biochar reactivity[J].Energy Fuels.25(2011):406–414.
    [108]J. M. Cai, R. H. Liu, C. J. Deng, et al. Amount, availability, and potential usesfor energy of agricultural residues in Mainland China[J]. Journal of the EnergyInstitute.2007,80(4):243-246.
    [109]Junmeng Cai, Ronghou Liu, Chunjian Deng. An assessment of biomassresources availability in Shanghai:2005Analysis. Renewable and Sustainable EnergyReviews.2008,12:1997-2004.
    [110]Junmeng Cai, Ronghou Liu, Yuanyuan Wang. Kinetic analysis of solid-statereactions: a new integral method for nonisothermal kinetics with the dependence ofthe preexponential factor on the temperature (A=A0Tn)[J]. Solid State Sciences.2007,9(5):421-428.
    [111]J. M. Cai, R. H. Liu. Parametric study of the nonisothermal nth-order distributedactivation energy model involved the Weibull distribution for biomass pyrolysis[J].Journal of Thermal Analysis and Calorimetry.2007,89(3):971-975.
    [112]J. M. Cai, R. H. Liu. Errors involved in the activation energy calculated byintegral methods when the frequency factor depends on the temperature (A=A0Tm)[J]. Journal of Thermal Analysis and Calorimetry.2007,90(2):459-462.
    [113]刘荣厚.《新能源工程》(全国统编教材),北京:中国农业出版社.2006.10.
    [114]刘荣厚.《生物质热化学转换技术》(著作),化学工业出版社.2005.
    [115]J. M. Cai, R. H. Liu. New approximation for the general temperature integral[J].Journal of Thermal Analysis and Calorimetry.2007,90(2):469-474.
    [116]J. M. Cai, R. H. Liu. Precision of integral methods for the determination of thekinetic parameters: use in the kinetic analysis of solid-state reactions[J]. Journal ofThermal Analysis and Calorimetry.2008,91:275-278.
    [117]Junmeng Cai, Ronghou Liu. Dependence of the frequency factor on thetemperature: A new integral method of nonisothermal kinetics[J]. Journal ofMathematical Chemistry.2008,43:637-646.
    [118]Junmeng Cai, Ronghou Liu. An improved version ofJunmeng-Fang-Weiming-Fusheng approximation for the temperature integral. Journalof Mathematical Chemistry[J].2008,43:1193-1198.
    [119]Junmeng Cai, Ronghou Liu. Kinetic analysis of solid-state reactions: Errorsinvolved in the determination of the kinetic parameters calculated by one type ofintegral methods[J]. Journal of Mathematical Chemistry.2008,43:914-920.
    [120]Junmeng Cai, Ronghou Liu, Caixia Huang. Kinetic analysis of nonisothermalsolid-state reactions: Determination of the kinetic parameters by means of a nonlinearregression method[J]. Journal of Mathematical Chemistry.2008,44:551-558.
    [121]Ronghou Liu, Hairongyuan. Kinetics of the low-temperature pyrolysis of walnutShell. Int. J. Global Energy Issues.2008,29(3).
    [122]邓春健.生物质热裂解反应动力学及流化床反应器液化装置研究[D].上海交通大学博士论文.2010,06.
    [123]刘荣厚,黄彩霞,蔡均猛,邓春健.生物质热裂解生物油精制的研究进展[J].农业工程学报.2008,24(03):308-312.
    [124]刘荣厚,栾敬德.榆木木屑快速热裂解主要工艺参数优化及生物油成分的研究[J].农业工程学报.2008,24(05):187-191.
    [125] Liu Ronghou. Production and characterisation of bio-oil from biomass fastpyrolysis in a fluidised bed reactor[J]. Int. J. Global Energy Issues.2007,28(4).
    [126]刘荣厚,袁海荣,徐璐.玉米秸秆热解反应动力学的研究[J].太阳能学报.2007,28(05):527-531.
    [127]刘荣厚,袁海荣,李金洋.花生壳热解试验及其剩余物特性红外光谱分析[J].农业工程学报.2006,23(12):197-202.
    [128]陈东雨,刘荣厚,蔡均猛.预处理甜高粱茎秆残渣的热解动力学研究[J].农业工程学报.2007,23(02):188-194.
    [129]Junmeng Cai, Ronghou Liu. Weibull mixture model for modeling nonisothermalkinetics of thermally stimulated solid-state reactions: application to simulated and realkinetic conversion data. Journal of Physical Chemical B.2007,111:10681-10686.
    [130]袁海荣,刘荣厚,姜恒,等.向日葵籽壳热解反应动力学的研究[J].农业工程学报.2006,22(04):220-223.
    [131]刘荣厚,王华.生物质快速热裂解反应温度对生物油产率及特性的影响[J].农业工程学报.2006,22(06):138-143.
    [132]刘荣厚,牛卫生,于晓芳,等.生物质快速热裂解主要参数对产物产率及其分布的影响[J].农业工程学报.2003,19(5):204-208.
    [133] Junmeng Cai, Ronghou Liu, Fei Shen. Dependence of the frequency factor ontemperature: The relationship between the reaction extent at the maximum reactionrate and the reaction mechanism[J]. Solid State Sciences.2008,10:226-231.
    [134]Junmeng Cai, Ronghou Liu. Kinetic analysis of solid-state reactions: Precisionof the activation energy obtained from one type of integral methods withoutneglecting the low temperature end of the temperature integral[J]. Solid StateSciences.2008,10:659-663.
    [135]Junmeng Cai, Ronghou Liu. Research on water evaporation in the process ofbiomass pyrolysis[J]. Energy Fuels.2007,21:3695-3697.
    [136] H. R. Yuan,R. H. Liu. Study on pyrolysis kinetics of walnut shell[J]. Journal ofThermal Analysis and Calorimetry.2007,89(3),983-986.
    [137]Junmeng Cai, Ronghou Liu. Application of Weibull2-mixture model to describebiomass pyrolysis kinetics[J]. Energy Fuels.2008,22:675-678.
    [138] Oasmaa, A.; Kyto, M.; Sipila, K. Pyrolysis Liquid Combustion.Tests in anIndustrial Boiler. In Progress in Thermochemical Biomass Conversion;Bridgwater.A.V, Ed..Blackwell Science: Oxford, U.K2001,2:1468-1481.
    [139] Chiaramonti, D.; Bonini, M.; Fratini, E. et al. Development of emulsions frombiomass pyrolysis liquid and diesel and their use in engines—Part1: emulsion:production[J]. Biomass Bioenergy.2003,25:85-99.
    [140] Chiaramonti, D.; Bonini, M.; Fratini, E.et al. Development of emulsions frombiomass pyrolysis liquid and diesel and their use in engines—Part2: Test in dieselengines[J]. Biomass Bioenergy.2003,25:101-111.
    [141] Williams, P. T.; Brindle, A. J. Temperature selective condensation of TyrePyrolysis Oils to Maxmise the Recovery of Single Ring Aromatic Compounds[J].Fuel.2003,82:1023-1031.
    [142] Williams, P. T.; Nugranad, N. Comparison of products from the pyrolysis andcatalytic pyrolysis of rice husks. Energy[J].2000,25:493-513.
    [143] Oasmaa, A.; Sipila, K.; Solantausta, Y, et al. Quality Improvement of PyrolysisLiquid: Effect of Light Volatiles on the Stability of Pyrolysis Liquids[J]. Energy Fuels.2005,19:2556-2561.
    [144] Bridgwater, A. V. Principles and Practice of Biomass Fast Pyrolysis Processesfor Liquids[J]. Journal of Analytical and Applied Pyrolysis.1999,51:3–22.
    [145] Oasmaa, A.; Czernik, S. Fuel Oil Quality of Biomass Pyrolysis OilssState of theArt for the End Users[J]. Energy Fuels.1999,13:914-921.
    [146]Oasmaa, A.; Peacocke, C. A Guide to Physical Property Characterisation ofBiomass-derived Fast Pyrolysis Liquids. VTT publications450:1-102.
    [147]William, J. D.; Nathan, H.; Sedat, H.; et al. Fast pyrolysis of pine sawdust in afluidized-bed reactor[J]. Energy Fuels.2010,24:2642–2651.
    [148] Garcia-Perez, M.; Wang, S.; Shen, J, et al. Effects of temperature on theformation of lignin-derived oligomers during the fast pyrolysis of Mallee woodybiomass[J]. Energy Fuels.2008,22(3):2022–2032.
    [149] Cetin, E.; Gupta, R.; Moghtaderi, B. Effect of pyrolysis pressure and heatingrate on radiata pine char structure and apparent gasification reactivity[J]. Fuel.2005,84:1328–1334.
    [150]Agblevor, F.A., Besler, S. Inorganic compounds in biomass feedstocks.1. effecton the quality of fast pyrolysis oils[J]. Energy Fuels.1996,10:293-298.
    [151]Elly, H., Kees, J.A.H., Wang, X.Q., et al. Fast pyrolysis of biomass in a fluidizedbed reactor: In Situ filtering of the vapors[J]. Ind. Eng. Chem. Res.2009,48:4744–4756.
    [152]Lee, K.H., Kang, B.S., Park, Y.K., et al. Influence of reaction temperature,pretreatment, and a char removal system on the production of bio-oil from rice straw,using a fluidized bed[J]. Energy Fuels.2005,19:2179–2184.
    [153]Diebold, J.P., Czernik, S., Scahill, J.W., et al. Hot gas filtration to remove charfrom pyrolysis vapors produced in the vortex reactor at NREL. Proceedings pyrolysisoil properties and combustion meeting.1994, Sept26-28, Colorado.
    [154]Chen, T.J., Deng, C.J., Liu, R.H. Effect of selective condensation on thecharacterization of bio-oil from pine sawdust fast pyrolysis using a fluidized bedreactor[J]. Energy Fuels.2010,24:6616-6623.
    [155]Basak, BU., Esin, AV., Funda, A., et al. Synthetic fuel production from teawaste: Characterisation of bio-oil and bio-char[J]. Fuel,2010,89:176-184.
    [156]Heo, H.S., Park, H.J., Dong, J.I., et al. Fast pyrolysis of rice husk under differentreaction conditions[J]. J. Ind. Eng. Chem.2010,16:27–31.
    [157]Zheng, J.L. Bio-oil from fast pyrolysis of rice husk: Yields and related propertiesand improvement of the pyrolysis system. J. Anal. Appl. Pyrolysis.2007,80:30–35.
    [158]Oasmaa, A., Leppamaki, E., Koponene, P.,1997. Physical characterization ofbiomass-based pyrolysis liquid: application of standard fuel oil analyses[J]. VTTEnergy Publication306.
    [159]Oasmaa, A., Peacocke, C.,2001. A guide to physical property characterisationof biomass-derived fast pyrolysis liquids. VTT publications450,1-102.
    [160]柏雪原,吴娟,王丽红等.生物质热解生物油/柴油乳化燃料的制备与试验[J].农业机械学报.2009,40(9):112-116.
    [161]Ceng Wu, Ronghou Liu. Hydrogen Production from Steam Reforming ofm-Cresol, a Model Compound Derived from Bio-oil: Green Process Evaluation Basedon Liquid Condensate Recycling[J]. Energy&Fuels.2010,24,5139–5147.
    [162]Ceng Wu, Ronghou Liu.Carbon deposition behavior in steam reforming ofbio-oil model compound for hydrogen production[J]. International Journal ofHydrogen Energy.2010,35:7386-7398.
    [163] Wu C, Huang Q, Sui M, et al. Hydrogen production via catalytic steamreforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system[J]. FuelProcessing Technology.2008, B89(12):1306-1316.
    [164]Wu C, Sui M, Yan Y. A comparison of steam reforming of two model bio-oilfractions. Chemical Engineering&Technology.2008,31(12):1748-1753.
    [165]吴层、颜涌捷、张素平,等.生物质快速裂解油水蒸汽催化重整制氢的研究[J].太阳能学报,2008,29(9).
    [166]Ceng Wu,Ronghou Liu. Sustainable hydrogen production from steam reformingof bio-oil model compound based on carbon deposition/elimination[J]. InternationalJournal of Hydrogen Energy.2011,36(4):2860-2868.
    [167]Tianju Chen, Ceng Wu, Ronghou Liu, et al. Effect of hot vapor filtration on thecharacterization of bio-oil from rice husks with fast pyrolysis in a fluidized-bedreactor[J]. Bioresource Technology.2011,102:6178-6185.
    [168] D. Ayhan, Effects of temperature and particle size on bio-char yield frompyrolysis of agricultural residues[J]. J. Anal. Appl. Pyrolysis.2004,72:243–248.
    [169] L. Johannes, G. John, R. Marco, Bio-char sequestration in terrestrialecosystems-A review[J]. Mitigation and Adaptation Strategies for Global Change.2006,11:403–427.
    [170] M. E. Sanchez, E. Lindao, D. Margaleff, et al. Pyrolysis of agricultural residuesfrom rape and sunflowers: Production and characterization of bio-fuels and biocharsoil management[J]. J. Anal. Appl. Pyrolysis.2009,85:142–144.
    [171] B. B. Uzun, E. Apaydin-Varol, F. Ates, et al. Synthetic fuel production from teawaste: Characterisation of bio-oil and bio-char[J]. Fuel.2010,89:176–184.
    [172] D. Ayhan, Effects of temperature and particle size on bio-char yield frompyrolysis of agricultural residues[J]. J. Anal. Appl. Pyrolysis.2004,24:243–248
    [173] L. Johannes, G. John, R. Marco, Bio-char sequestration in terrestrialecosystems-A review[J]. Mitigation and Adaptation Strategies for Global Change.2006,11:403–427.
    [174] C. B. Gheorghe, C. Marculescu, A. Badea, T. Apostol, Pyrolysis parametersinfluencing the bio-char generation from wooden biomass[J]. U.P.B. Sci. Bull.2010,72:29-38.
    [175] J. Cai, L. Bi, Kinetic analysis of wheat straw pyrolysis using isoconversionalmethods[J]. J Therm Anal Calorim.2009,98:325–330.
    [176] A. Khawam, D. R. Flanagan, Complementary use of model-free and modelisticmethods in the analysis of solid-state kinetics[J]. J Phys Chem B.2005,109:10073–10080.
    [177] S. Vyazovkin, C. A. Wight, Model-free and model-fitting approaches to kineticanalysis of isothermal and nonisothermal data[J]. Thermochim Acta.1999,340-341(14):53–68.
    [178] S. Zou, Y. Wu, M. Yang, et al. Pyrolysis characteristics and kinetics of themarine microalgae dunaliella tertiolecta using thermogravimetric analyzer[J].Bioresource Technology.2010,101:359–365.
    [179] C. Pacurariu, R. Lazau, I. Lazau, et al. Non-isothermal crystallization kinetics ofsome basaltic glass-ceramics containing CaF2as nucleation agent[J]. J Therm AnalCalorim.2009,97:507–513.
    [180] H. E. Kissinger. Reaction kinetics in differential thermal analysis[J]. AnalyticalChemistry.1957,29:1702–1706.
    [181] J. H. Flynn, A. L. Wall. A quick direct method for determination of activationenergy from thermogravimetric data[J]. Polymer Letters.1966,4:323–328.
    [182] T. Ozawa, A new method of analyzing thermogravimatric data[J]. Bulletin ofthe Chemical Society of Japan.1965,38:1881–1886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700