用户名: 密码: 验证码:
氢还原氧化亚铜制备MLCC用均分散铜粉
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在开发适用于片式多层陶瓷电容器(MLCC)电极材料的、粒径均一、分散性好、致密的均分散铜粉制备技术。在系统地调研有关超细铜粉制备方法的基础上,提出了氧化亚铜(Cu2O)制备-Al(OH)3包覆—低温氢还原—高温致密化制备铜粉的新工艺。本工艺的特点是:将铜粉的形貌粒径的控制转化为了对Cu2O颗粒的形貌粒径控制;通过葡萄糖还原Cu(Ⅱ)制备了平均粒径为0.5-3.2μm的Cu20颗粒,其形貌粒径完全可控;通过对Cu2O进行Al(OH)3包覆防止了铜颗粒的高温烧结,保证了铜粉的分散性;通过铜粉的高温致密化实现了低温氢还原得到的多孔铜粉向致密铜粉的转化。具体内容归纳如下:
     在葡萄糖还原Cu(Ⅱ)制备Cu2O颗粒的过程中,首先研究了CuSO、NaOH和葡萄糖的不同加料方式对Cu2O颗粒性能的影响,结果表明:采用向CuSO4溶液中分步加入NaOH溶液制备Cu(OH)2前驱体,再用葡萄糖还原Cu(OH)2制备Cu2O的加料方式(简称分步加碱沉淀法)的情况下,Cu(OH)2前驱体稳定性好,制备的Cu2O粒子分散性好,呈球形外貌,粒径均匀且工艺重现性好。通过加料方式的对比研究,确定了分步加碱沉淀法为Cu2O制备的基本工艺路线。
     针对分步加碱沉淀法,系统地研究了反应温度、葡萄糖与NaOH溶液的投加浓度等因素对Cu2O粒子形貌粒径的影响。实验结果显示:以Cu(OH)2为前驱体时,一般都可制备出分散性好、粒径均一的球形Cu2O颗粒,但是当葡萄糖投加浓度小于0.50mol/1或NaOH溶液投加浓度大于5.00mol/1时,Cu20颗粒的形貌趋向于八面体。本实验制备的立方形、八面体形Cu2O颗粒为单晶,是通过扩散生长机理长大的;本实验制备的球形Cu2O颗粒为多晶,是通过碰撞聚集机理长大的。球形Cu2O颗粒的粒径随反应温度和反应物浓度的变化而呈规律性的变化:随着反应温度或葡萄糖浓度的升高,Cu2O颗粒粒径降低,随着NaOH的投加浓度的增大,Cu2O颗粒粒径增大;体系内最终颗粒密度与各影响因素的变化呈直线关系。
     在Cu2O的包覆过程中,采用Al(OH)3对Cu2O颗粒进行包覆,实验表明:Al(OH)3对Cu2O颗粒的包覆主要存在核包覆与膜包覆两种包覆形态,膜包覆的效果明显优于核包覆;用碱液滴加法进行包覆时易于实现Al(OH)3对Cu2O颗粒的膜包覆。用碱液滴加法包覆时,初始pH值、陈化pH值、反应温度和NaOH的滴加速度对包覆效果有重要影响,陈化时间对包覆效果影响不大。实现最佳的包覆效果对包覆工艺的要求是:初始pH值3.5~4.0、陈化pH值5.00~7.00、反应温度60-80℃;NaOH溶液浓度为0.5mol/1时,其滴加速度不宜超过5ml/min。Al(OH)3包覆量过低时无法起到对铜粉高温烧结的阻隔作用,Al(OH)3包覆量过高时会增加包覆层酸洗的难度,Al(OH)3的包覆量以2%~3%为宜。
     在H2还原Cu2O粉末的研究中发现,在0.6-1.5μm范围内,粒径大小和包覆层的存在对Cu2O的还原速率影响不大;温度对还原速率影响显著。H2还原Al(OH)3/Cu2O包覆粉末的适宜温度为175℃,经H2还原Cu2O得到的铜粉较为疏松,需要经过致密化处理才适于制作MLCC电极浆料。Cu2O颗粒经包覆后,不同致密温度下所制得的铜粉均具有高分散性,且保持了前躯体Cu20的形貌;随着致密化处理温度的升高,铜粉的粒径发生了收缩,比表面积降低,振实密度增大,晶型更加成熟,抗氧化能力增强。粒径为1.85μm的Cu2O颗粒在175℃下还原后所得铜颗粒的粒径为1.70μm,振实密度为3.52g/cm3,空气中的起始氧化温度为125℃;而在700℃下致密化处理后,粒径收缩为1.58μm,振实密度达到4.10g/cm3,起始氧化温度提高至175℃,适于制备MLCC电极。
This dissertation aims at developing a new synthesis process of copper powder with uniform partical size and good dispersibility suitable for MLCC (multilayer ceramic capacitors) electrode. A novel process, including Cu2O preparation, Al(OH)3coating, low temperature hydrogen reduction and high temperature densification, has been proposed on the basis of thorough review of large amount of references. The features of this process are as follows. Morphology and size control of copper powder are transformed into the control of Cu2O particles. The Cu2O particles of0.5μm to3.2μm in diameter are prepared by glucose reduction of Cu(Ⅱ) and their morphology and size are controllable. The sintering of copper powders at high temperature is avoided by coating Al(OH)3on the surface of Cu2O particles. The porous copper particles prepared by hydrogen reduction at low temperature are transformed into compact copper particles by densification at high temperature. The details are summarized as follows.
     The effects of feeding modes of CuSO4, NaOH and glucose on performance of Cu2O particles and stability of the process were investigated. It has been found that the Cu(OH)2precursor with good thermal stability and the Cu2O particles with high dispersibility, spherical morphology, uniform size and good repeatability can be prepared by so-called "fractional alkali feeding mode", in which mode Cu(OH)2precursor was first prepared by adding NaOH solution to CUSO4solution step by step, and then Cu2O particles are obtained by glucose reduction of Cu(OH)2precursor. Fractional alkali feeding mode is determined as the basic process for preparation of Cu2O particles.
     As for the fractional alkali feeding mode, effects of reaction temperature, glucose and NaOH concentration on the morphology and size of the Cu2O particles were investigated systematically. The results indicate that spherical Cu2O particles with good dispersibility and uniform size usually were prepared using Cu(OH)2as the precursor. However, when the glucose concentration was lower than0.50mol/1or the NaOH concentration was higher than5.00mol/1, the Cu2O particles were grown into octahedron. The cubic and octahedral Cu2O particles were single crystals which obeys diffusion-growth mechanism, and the spherical Cu2O particles were polycrystals which obeys aggregation mechanism. The size of the spherical Cu2O particles varied regularly with the variation of reaction temperature and reactant concentration:The size of the Cu2O particles decreased with the increase of the reaction temperature and glucose concentration, and decreased with the increase of the NaOH concentration. There is a liner relationship between the final particle density and the above influencing factors in the system.
     Al(OH)3was selected as the coating layer material in the coating process. The experimental results indicated that there were two coating patterns, nuclei coating and film coating, and the latter was evidently superior to the former. The film coating can be realized by continuous alkali dripping method. The initial pH value, Ostwald ripening pH, reaction temperature and NaOH feeding rate had great importance on the coating effect while the ripening time showed tiny effect. The optimal coating technical conditions were as follows:the initial pH value was3.5to4.0, the ripening pH value5.00to7.00, the reaction temperature60℃or80℃, and the NaOH feeding rate was below5ml/min when NaOH concentration was0.50mol/1. In this study, when the coating amount of Al(OH)3was too low, the obstructing from high-temperature sintering could not be achieved. On the contrary, when the coating amount of Al(OH)3was too high, the difficulty during acid washing was increased. Therefore, the appropriate coating amount of Al(OH)3was determined as2%~3%.
     In the process of hydrogen reduction of Cu2O powder, it is found that the particle size in the range of0.6μ.m to1.5μm and the coating layer had little influence, but reduction temperature had remarkable influence on the reduction rate of Cu2O particles. The appropriate reduction temperature for the Al(OH)3/Cu2O powder was175℃. The powders obtained by hydrogen reduction were porous and so their densification was necessary for the MLCC electrode paste usage. The copper powder with A1(OH)3coating obtained at different densification temperature inherited the morphology of the Cu2O precursor and had high dispersibility. With the elevated densification temperature, the particle shank, the specific area decreased, the tap density increased, the crystallinity was improved and the anti-oxidation enhanced. As a typical example, through hydrogen reducion of Cu2O particles with1.85μm in diameter at175℃, porous copper powders with1.70μm in diameter,3.52g/cm3in tap density and125℃in initial oxidation temperature in the air was obtained, further through the densification at700℃, they were transformed into compact copper powders with1.58μm in diameter,4.10g/cm3in tap density and175℃in initial oxidation temperature in the air, which was suitable for the MLCC electrode paste usage.
引文
[1]方佩敏.贴片式多层陶瓷电容器及其应用[J].今日电子,2003,(5):10-12.
    [2]陈祥冲,黄新友.多层陶瓷电容器研究现状和发展展望[J].材料导报,2004,18(9):12-14.
    [3]方佩敏.贴片式多层陶瓷电容器简介[J].世界电子元器件,2006,(1):22-24.
    [4]邓湘云,李建保,王晓慧,等.MLCC的发展趋势及在军用电子设备中的应用[J].电子元件与材料,2006,25(5):1-6.
    [5]付振晓.瞄准新兴应用升级MLCC技术[N].中国电子报,2011-5-31(012).
    [6]诸玲珍.MLCC行业发展面临新契机[N].中国电子报,2011-5-31(012).
    [7]EC&M.2009年全球MLCC市场需求量将达9100亿只[J].电子元件与材料,2009,28(6):26.
    [8]Bultitude John.高压表面贴装MLCC的新进展[J].今日电子,2008,(12):50-52.
    [9]EC&M.2009年中国国内对MLCC的需求量将达5640亿只[J].电子元件与材料,2009,28(7):41.
    [10]向勇.MLCC:日企领跑中国本地化供应能力跃升[N].中国电子报,2011-7-12(008).
    [11]张宇,张承琚,王永春.多层陶瓷电容器及其发展趋势[J].江西科学,2005,23(4):374-377.
    [12]梁力平,赖永雄,李基森.片式叠层陶瓷电容器的制造与材料[M].广州:暨南大学出版社,2008.
    [13]彭自冲,黄旭业,李筱瑜.MLCC网版印刷工艺的探讨[J].丝网印刷,2011,(12):16-19.
    [14]陈长云,李筱瑜,祝忠勇.高比容MLCC关键制作技术研究[J].电子工艺技术,2011,32(4):229-232.
    [15]张尹,赖永雄,肖培义,等.MLCC制造中产生内部开裂的研究[J].电子元件与材料,2005,24(5):52-54.
    [16]黄新民,解廷.材料分析测试方法[M].北京:国防工业出版社,2006.
    [17]周玉,武高辉.材料分析测试技术:材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [18]王建祺.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社,1992.
    [19]廖乾初,蓝芬兰.扫描电镜分析技术与应用[M].北京:机械工业出版社, 1990.
    [20]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [21]李余增.热分析[M].北京:清华大学出版社,1987.
    [22]王俊波.多层陶瓷电容器的技术现状及未来发展趋势[J].绝缘材料,2008,41(3):30-36.
    [23]李艳霞,姚熹,张良莹.贱金属内电极多层陶瓷电容器(BME-MLCCs)研究进展[J].材料导报,2003,17(10):41-43.
    [24]KISHI H, MIZUNO Y, CHAZONO H. Base-metal electrode-multilayer ceramic capacitors:past, present and future perspectives[J]. Japanese Journal of Applied Physics,2003,42(1):4-19.
    [25]李标荣,陈万平MLCC之绝缘低压失效机理[J].电子元件与材料,1999,18(4):32-35.
    [26]王文生.多层陶瓷电容器Ni内电极研究进展[J].电子元件与材料,1994,13(1):7-11.
    [27]Gui ZL, Wang YL, Li LT. Study on the interdiffusion in base metal electrode MLCCs[J]. Ceramics International,2004,30(7):1275-1278.
    [28]Bernard J, Houivet D, Fallah JE, et al. MgTiO3 for Cu base metal multilayer ceramic capacitors[J]. Journal of the European Ceramic Society,2004,24(6): 1877-1881.
    [29]Pollet M, Marinel S. Copper electrodes multilayer ceramic capacitors Part Ⅰ The dielectric composition[J]. Journal of Materials Science.2004,39(6): 1943-1958.
    [30]Belnou F, Bernard J, Houivet D, et al. Low temperature sintering of MgTiO3 with bismuth oxide based additions[J]. Journal of the European Ceramic Society,2005,25(12):2785-2789.
    [31]谢兆军,朱泽华,叶中郎.低温烧结BaTiO3基介电陶瓷的研究进展[J].陶瓷学报,2011,32(1):130-134.
    [32]Addona T, Auger P, Celik C, et al. Nickel and copper powders for high-capacitance MLCC manufacture [J]. Passive Component Industry,1999, 1(2):14-19.
    [33]张颖,林粱旭,阎子峰,等.低温MOCVD法制备铜纳米棒[J].科学通报,2006,51(19):2309-2314.
    [34]谢中亚,徐建生.高能球磨法制备纳米金属铜粒子工艺条件研究[J].润滑与密封,2006,(3):126-128.
    [35]Ding J, Tsuzuki T, McCormick PG, et al. Ultrafine Cu particles prepared by mechanochemical process[J]. Journal of Alloys and Compounds,1996,234(2): L1-L3.
    [36]陈祖耀,陈波,钱逸泰,等.γ-射线辐照—水热结晶联合法制备金属超微颗粒[J].金属学报,1992,28(4):169-172.
    [37]朱英杰,钱逸泰,张曼维,等.γ-射线辐照-水热处理法制备纳米金属粉末[J].金属学报,1994,30(18):259-264.
    [38]高保娇,高建锋.超微镍粉的微乳液法制备研究[J].无机化学学报,2001,17(4):491-495.
    [39]Cason JP, Roberts CB. Metallic copper nanoparticle synthesis in AOT reverse micelles in compressed propane and supercritical ethane solutions[J]. Journal of Physical Chemistry B,2000,104(6):1217-1221.
    [40]Tanori J, Pileni MP. Control of the shape of copper metallic particles by using a colloidal system as template[J]. Langmuir,1997,13(4):639-646.
    [41]徐瑞东,常仕英,郭忠诚.电解法制备超细铜粉的工艺及性能研究[J].电子工艺技术,2006,27(6):355-359.
    [42]何峰,汪武祥,韩雅芳,等.制备超细金属粉末的新型电解法[J].粉末冶金技术,2001,19(2):80-82.
    [43]王菊香,赵恂,潘进,等.超声电解法制备超细金属粉的研究[J].材料科学与工程,2000,18(4):70-74.
    [44]朱协彬,段学臣.超声电解法制备纳米铜粉的研究[J].上海有色金属,2004,25(3):97-99.
    [45]顾大明,孙沫莹.次磷酸盐在纳米金属粉制备中的作用机理[J].哈尔滨工业大学学报,2003,35(8):1009-1011.
    [46]姜雄华,李成海,董丽辉等.以次磷酸钠为还原剂制备纳米铜粉[J].无机盐工业,2006,38(5):34-36.
    [47]Wen Jin, Li Jie, Liu Shijun, et al. Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,373(1-3): 29-35.
    [48]吴昊,张建华.化学还原法制备纳米铜粉[J].广东有色金属学报,2004,14(2):101-103.
    [49]耿新玲,苏正涛.液相法制备纳米铜粉的研究[J].应用化工,2005,34(10):614-617.
    [50]温传庚,王开明,李晓奇,等.液相沉淀法制备纳米铜粉[J].鞍山科技大学学报,2003,26(3):176-178.
    [51]廖戎,孙波,谭红斌.以甲醛为还原剂制备超细铜粉的研究[J].成都理工大学学报,2003,30(4):417-421.
    [52]刘志杰,赵斌,张宗涛,等.以抗坏血酸为还原剂的超细铜粉的制备及其热稳定性[J].华东理工大学学报,1996,22(5):548-553.
    [53]Mustafa B,Ilkay S. Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution[J]. Powder Technology,2010,198(2): 279-284.
    [54]吴伟钦,郭忠诚.水合肼为还原剂制备超细铜粉的研究[J].福建工程学院学报,2008,6(1):29-33.
    [55]赵斌,刘志杰,蔡梦军,等.超细铜粉的水合肼还原法制备及其稳定性研究[J].华东理工大学学报,1997,23(3):372-376.
    [56]胡敏艺,王崇国,徐锐,等.两步还原法制备MLCC电极用超细铜粉[J].材料科学与工艺,2009,17(4):539-543.
    [57]Huang Chienyu, Sheen SR.Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape[J]. Materials Letters,1997, 30(5-6):357-361.
    [58]Zhang Yongcai, Xing Rong, Hu Xiaoya. A green hydrothermal route to copper nanocrystallites[J]. Journal of Crystal Growth,2004,273(1-2):280-284.
    [59]Sinha A, Sharma BP. Preparation of copper powder by glycerol process[J]. Materials Research Bulletin,2002,37(3):407-416.
    [60]余仲兴,周邦娜,孙驰,等.常压歧化铜粉的物理与化学性能研究[J].上海有色金属,2000,21(3):105-111.
    [61]Wu Songping, Qin Haoli, Li Pu. Preparation of fine copper powders and their application in BME-MLCC[J]. Journal of University of Science and Technology Beijing,2006,13(3):250-255.
    [62]Wu Songping, Meng Shuyuan. Preparation of micron size copper powder with chemical reduction method[J]. Materials Letters,2006,60(20):2438-2442.
    [63]Wu Songping. Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC[J]. Materials Letters,2007, 61(4-5):1125-1129.
    [64]Wu Songping. Preparation of ultra-fine copper powder and its lead-free conductive thick film[J]. Materials Letters,2007,61(16):3526-3530.
    [65]Wu Songping. Preparation of ultra fine nickel-copper bimetallic powder for BME-MLCC[J]. Microelectronics Journal,2007,38(1):41-46.
    [66]Wu SP, Gao RY, Xua LH. Preparation of micron-sized flake copper powder for base-metal-electrode multi-layer ceramic capacitor[J]. Journal of materials processing technology,2009,209(3):1129-1133.
    [67]胡国荣,刘智敏,方正升,等.喷雾热分解技术制备功能材料的研究进展[J].功能材料,2005,36(3):335-339.
    [68]Majumdar D, Glicksman HD, Kodas TT. Generation and sintering characteristics of silver-copper (Ⅱ) oxide composite powders made by spray pyrolysis[J]. Powder Technology,2000,110(1-2):76-81.
    [69]Rosenband V, Gany A. Preparation of nickel and copper submicrometer particles by pyrolysis of their formats[J]. Journal of Materials Processing Technology,2004,153(4):1058-1061.
    [70]Lee YH, Leu LC, Chang ST, et al. The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium[J]. Electrochimica Acta,2004,50(2-3):553-559.
    [71]Zhang Jiatao, Liu Junfeng, Peng Qing, et al. Nearly monodisperse Cu2O and CuO nanospheres:preparation and applications for Sensitive Gas Sensors [J]. Chemistry of Materials,2006,37(17):867-871.
    [72]Akimoto K, Ishizuka S, Yanagita M, et al. Thin film deposition of Cu2O and application for solar cells[J]. Solar Energy,2006,80(6):715-722.
    [73]Kakuta Seiji, Abe Toshiyuki. Photocatalytic activity of Cu2O nanoparticles prepared through novel synthesis method of precursor reduction in the presence of thiosulfate [J]. Solid State Sciences,2009,11(8):465-1469.
    [74]柏振海,罗兵辉.氧化亚铜粉末的制备[J].粉末冶金材料科学与工程,2001,6(4):28-29.
    [75]张意霞,何家成.氧化铜火法还原为氧化亚铜的研究[J].湖南有色金属,1987,(5):22-25.
    [76]张炜,许小青,郭承育,等.低温固相法制备Cu2O纳米晶[J].青海师范大学学报,2004,(3):53-56.
    [77]Sun Fang, Guo Yupeng, Tian Yumei. The effect of additives on the Cu2O crystal morphology in acetate bath by electrodeposition[J]. Journal of Crystal Growth,2008,310(2):318-323.
    [78]Yang Huaming, Ouyang Jing, Tang Aidong, et al. Electrochemical synthesis and photo-catalytic property of cuprous oxide nanoparticles[J]. Materials Research Bulletin,2006,41 (7):1310-1318.
    [79]陈之战,施尔畏,李汉军,等.水热条件下Cu2O的连生习性[J].人工晶体学报,2001,30(4):369-374.
    [80]陈之战,施尔畏,元如林,等.水热条件下晶粒的聚集生长(11)氧化亚铜晶粒生长形态及其稳定能计算[J].中国科学E辑,2003,33(7):589-596.
    [81]张炜,郭幼敬,范燕青,等.水热法绿色制备Cu20和Cu纳米晶[J].云南大学学报,2005,27(3A):136-139.
    [82]张炜,许小青,范燕青,等.乙醇还原法制备Cu2O、Cu和CuCl微晶[J].青海师范大学学报:自然科学版,2005,(2):26-28.
    [83]He Ping, Shen Xinghai, Gao Hongcheng. Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption[J]. Journal of Colloid and Interface Science,2005,284(2):510-515.
    [84]Liu Hongjiang, Ying hong, Wang Fei, et al. Fabrication of submicron Cu2O hollow spheres in an O/W/O multiple emulsions[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2004,235(1-3):79-82.
    [85]乔振亮,马铁成.溶胶凝胶法制备氧化亚铜薄膜及其工艺条件[J].大连轻工业学院学报,2004,23(1):4-7.
    [86]杨土国,陈庆德,沈兴海.乙二醇对反向微乳辐照法制备纳米级氧化亚铜形貌的影响[J].光谱学与光谱分析,2007,27(11):2155-2159.
    [87]陈祖耀,朱玉瑞,陈文明,等.紫外射线辐照制备Cu20超细粉及其宏观动力学[J].金属学报,1997,33(3):330-336.
    [88]张萍,刘恒,李大成.亚硫酸钠还原法制备超细氧化亚铜粉末[J].四川有色金属,1998,(2):16-18.
    [89]刘登良.一种生产氧化亚铜的方法.中国:CN1054956[P],1990-03-12.
    [90]Wang Wenzhong, Varghese OK, Ruan C, et al. Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates[J]. Journal of Materials Research,2003,18(12):2756-2759.
    [91]刘亦凡,于慧荣,祝昌翠,等.均分散氧化亚铜溶胶的制备[J].物理化学学报,1993,9(1):107-109.
    [92]Muramatsu A, Sugimoto T.Synthesis of uniform spherical Cu2O particles from condensed CuO suspensions [J]. Journal of Colloid and Interface Science, 1997,189(1):167-173.
    [93]Dong Yajie, Li Yadong, Wang Cheng, et al. Preparation of cuprous oxide particles of different crystallinity[J], Journal of Colloid and Interface Science, 2001,243(1):85-89.
    [94]Xu Haolan, Wang Wenzhong, Zhu Wei. A facile strategy to porous materials: Coordination-assisted heterogeneous dissolution route to the spherical Cu2O single crystallites with hierarchical pores[J]. Microporous and Mesoporous Materials,2006,95(1-3):321-328.
    [95]Xu Haolan, Wang Wenzhong, Zhu Wei. Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties[J]. J.Phys.Chem.B,2006,110(28):13829-13834.
    [96]Du Fanglin, Liu Jungang, Guo Zhiyan. Shape controlled synthesis of Cu2O and its catalytic application to synthesize amorphous carbon nanofibers [J]. Materials Research Bulletin,2009,44(1):25-29.
    [97]Ram S, Mitra C. Formation of stable Cu2O nanocrystals in a new orthorhombic crystal structure[J]. Materials Science and Engineering,2001, 304-306:805-809.
    [98]Gou LF, Muprhy CJ. Solution-phase synthesis of Cu2O nanocubes[J]. Nano Lett,2003,3(2):231-234.
    [99]Gou Lingfeng, Murphy CJ. Controlling the size of Cu2O nanocubes from 200 to 25nm[J]. Journal of Materials Chemistry,2004,14(4):735-738.
    [100]McFadyen P, Matijevic E. Copper hydrous oxide sols of uniform particle shape and size[J]. J.Colloide Interface Science,1973,44(1):95-105.
    [101]吴正翠,邵明望,张文敏,等.微波辐照下均分散氧化亚铜超细粒子的制备[J].安徽师范大学学报,2001,24(4):356-358.
    [102]Wu Zhengcui, Shao Mingwang, Zhang Wu, et al. Large-scale synthesis of uniform Cu2O stellar crystals via microwave-assisted route[J]. Journal of Crystal Growth,2004,260(3-4):490-493.
    [103]Wang Debao, Yu Dabin, Mo Maosong, et al. Seed-mediated growth approach to shape-controlled sythesis of Cu2O particles[J]. Journal of Colloid and Interface Science,2003,261(2):565-568.
    [104]Wang Debao, Mo Maosong, Yu Dabin, et al. Large-Scale growth and shape evolution of Cu2O cubes[J]. Crystal Growth and Desgin,2003,3(5):717-720.
    [105]Zhang Xu, Xie Yi, Xu Fen, et al. Shape-controlled synthesis of submicro-sized cuprous oxide octahedral [J]. Inoganic Chemisty Communications,2003,6(11): 1390-1392.
    [106]赵华涛,王栋,张兰月,等.高反应浓度下制备不同形貌氧化亚铜的简易方法[J].无机化学学报,2009,25(1):142-146.
    [107]Zhang Xiaojuan, Cui Zuolin. One-pot growth of Cu2O concave octahedron microcrystal in alkaline solution[J]. Materials Science and Engineering B, 2009,162(2):82-86.
    [108]Liang Zhenhua, Zhu Yingjie. Synthesis of uniformly sized Cu2O crystals with star-like and flower-like morphologies[J]. Materials Letters,2005,59(19-20): 2423-2425.
    [109]张萍,李大成,刘恒,等.氧化亚铜的制备[J].四川有色金属,1995,(3):6-8.
    [110]胡黎明,古宏晨,李春忠.化学工程的前言——超细粉末的制备[J].化工进展,1996,(2):1-8.
    [111]黄凯.可控缓释沉淀-热分解法制备超细氧化镍粉末的粒度和形貌控制研究[D],长沙:中南大学,2003.
    [112]Borho K. The importance of population dynamics from the perspective of the chemical process industry[J]. Chemical Engineering Science,2002,57(20): 4257-4266.
    [113]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社,1996.
    [114]Nielsen AE. Kinetics of precipitation[M]. Oxford:Pergamon Press.1964.
    [115]张济忠.分形[M].北京:清华大学出版社,1995.
    [116]张克从,张乐惠.晶体生长科学与技术[M].北京:科学出版社,1996.
    [117]仲维卓.晶体生长形态学[M].北京:科学出版社,1999.
    [118]Sugimoto T. Monodispersed Particles[M]. Amsterdam:Elsevier Science B V., 2001.
    [119]郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J].无机材料学报,1998,14(3):321-332.
    [120]王继扬.晶体生长的缺陷机制[J].物理,2001,30(6):332-339.
    [121]于锡铃.晶体生长机理研究的新近进展[J].中国科学基金,2002,4:215-218.
    [122]黄凯,郭学益,张多默.超细粉末湿法制备过程中粒子粒度和形貌控制的基础理论[J].粉末冶金材料科学与工程,2005,10(6):319-314.
    [123]李广慧,韩丽,方奇.晶体结构控制晶体形态的理论及应用[J].人工晶体学报,2005,34(3):546-549.
    [124]施尔畏,仲维卓,华素坤,等.关于负离子配位多面体生长基元模型[J].中国科学(E辑),1998,28(1):37-45.
    [125]ZHONG Weizhuo, LUO Haosu, HUA Sukun, et al. Anionic coordination polyhedron growth units and crystal morphology[J].人工晶体学报,2004,33(4):475-478.
    [126]ZHONG Weizhuo, LUO Haosu, HUA Sukun, et al. Crystal surface structure and its growth units of anionic coordination polyhedra[J].人工晶体学报,2004,33(4):471-474.
    [127]Rak M, Izdebski M, Brozi A.Kinetic monte carlo study of crystal growth from solution[J]. Computer Physics Communications,2001,138(3):250-263.
    [128]Mao Huibing, Jing Weiping, Wang Jiqing, et al. Nucleation and growth mechanism of GaAs epitaxial growth[J]. Thin Solid Films,2007,515(7-8): 3624-3628.
    [129]Matijevic E. Colloid science of ceramic powders[J]. Pure and Applied Chemistry,1988,60(10):1479-1491.
    [130]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997.
    [131]Sugimoto T. Preparation of mono-dispersed colloidal particles[J]. Advances in Colloid and Interface Science,1987,28:65-108.
    [132]Rawlings JB, Miller SM, Witkowski WR. Model identification and control solution crystallization processes:a review[J]. Industrial and Engineering Chemistry Research,1993,32(7):1275-1296.
    [133]仲维卓,华素坤.负离子配位多面体生长基元与晶体的结晶习性[J].硅酸盐学报,1995,23(4):464-470.
    [134]仲维卓,罗豪甦,华素坤.若干晶体中氧八面体结晶方位与晶体形貌[J].无机材料学报,1995,10(3):272-276.
    [135]施尔畏,元如林,夏长泰,等.水热条件下钛酸钡晶粒生长基元模型研究(Ⅱ)生长基元稳定能计算及晶粒的成核与生长[J].物理学报,1997,46(1):1-11.
    [136]Mullin JW. Crystallization[M]. London:Butterworth Heinemann Press,1997.
    [137]Randolph AD, Larson MA. Theory of particulate processes[M]. New York: Academic Press,1988.
    [138]Egon Matijevic. Mono-dispersed inorganic colloids:achievements and problems[J]. Pure and Applied Chemistry,1992,64(11):1703.
    [139]Stanka Kratohvil, Egon Matijevic. Preparation of copper compounds of different compositions and particle morphologies[J]. Journal of Materials Research,1991,6(4):766.
    [140]成国祥,沈锋,张仁柏,等.反相胶束微反应器及其制备纳米微粒的研究进展[J].化学通报,1997,(3):14-19.
    [141]沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报,1995,(11):6-9.
    [142]Antonietti M. Surfactants for novel templating applications[J]. Current Opinion in Colloid and Interface Science,2001,6(3):244-248.
    [143]Adair JH, Suvaci E.Morphological control of particles[J]. Current Opinion in Colloid & Interface Science,2000,5(1):160-167.
    [144]Sugimoto T, Wang Y, Itoh H. Systematic control of size, shape and internal structure of monodisperse a-Fe2O3 particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1998,134(3):265-279.
    [145]胡敏艺.多层陶瓷电容器电极用超细铜粉的制备与表面改性研究[D].长沙:中南大学,2008.
    [146]崔洪梅,刘宏,王继扬,等.纳米粉体的团聚与分散[J].机械工程材料,2004,28(8):38-41.
    [147]刘志强,李小斌,彭志宏,等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化学通报,1999,(7):54-57.
    [148]王觅堂,李梅,柳召,等.超细粉体的团聚机理和表征及消除[J].中国粉体技术,2008,14(3):46-51.
    [149]张文斌,祁海鹰,由长福,等.影响微细颗粒团聚的粘性力分析[J].中国粉体技术,2001,7(5):143-146.
    [150]邓祥义,胡海平.纳米粉体材料的团聚问题及解决措施[J].化工进展,2002,21(10):761-763.
    [151]罗电宏,马荣骏.对超细粉末团聚问题的探讨[J].湿法冶金,2002,21(2):57-61.
    [152]陈永奋,赵斌.铜溶胶的制备[J].无机化学学报,1995,11(4):378-383.
    [153]肖寒,王瑞,余磊,等.还原法制备纳米级铜粉[J].贵州师范大学学报:自然科学版,2003,21(1):4-6.
    [154]彭天右,杜平武,胡斌,等.共沸蒸馏法制备超细氧化铝粉体及其表征[J].无机材料学报,2000,15(6):1097-1101.
    [155]刘继富,吴厚政,谈家琪,等.冷冻干燥法制备MgO-ZrO2超细粉末[J].硅酸盐学报,1996,24(1):105-108.
    [156]张敬畅,朱分梅,曹维良.超临界流体干燥法(SCFD)制备纳米级铜粉[J]. 中国有色金属学报,2004,14(10):1741-1746.
    [157]储茂泉,刘国杰.喷雾干燥法制备载药微球时的形貌与粒度控制[J].化工学报,2004,55(11):1903-1907.
    [158]曹爱红.微波干燥制备Al2O3纳米粉体的研究[J].天津工业大学学报,2002,21(4):25-27.
    [159]李风生.特种超细粉体制备技术及应用[M].北京:国防工业出版社,2002.
    [160]郑水林.粉体表面改性(第二版)[M].北京:中国建材工业出版社,2003.
    [161]王利剑,郑水林.我国无机包覆型复合粉体制备研究现状[J].化工矿物与加工,2005(1):5-7.
    [162]魏明坤,肖辉,刘利.Al2O3包覆石墨颗粒的制备及表征[J].硅酸盐学报,2004,32(8):916-919.
    [163]李玉峰,欧阳家虎,钟继,等.Al2O3包覆SrSO4纳米复合粉体的制备与表征[J].人工晶体学报,2009,38增刊:21-24.
    [164]刘川文,黄红军,刘宏伟.复合粉体的包覆制备技术现状与发展[J].新技术新工艺,2005(1):44-46.
    [165]覃操,王亭杰,金涌.TiO2表面包覆Al2O3纳米膜的特性[J].过程工程学报,2002,2增刊:87-92.
    [166]关毅,程琳俨,张金元.非均相沉淀法在无机包覆中的应用[J].材料导报,2006,20(7):88-90.
    [167]HARMER MA, BERGNA H, SALTZBERG M, et al. Preparation and properties of borosilicate-coated alumina particles from alkoxides[J]. J Am Ceram Soc,1996,79(6):1546-1551.
    [168]崔爱莉,王亭杰.二氧化钛表面包覆氧化硅纳米膜的热力学研究[J].高等学校化学学报,2001,22(9):1543-1545.
    [169]方吉祥,赵康.化学法制备Al2O3包覆TiH2颗粒发泡剂[J].中国有色金属学报,2002,12(6):1205.
    [170]王志兴,邢志军.非均匀成核法表面包覆氧化铝的尖晶石LiMn2O4的研究[J].物理化学学报,2004,20(8):790-794.
    [171]Pol VG, Reisfeld R. Sonochemical synthesis and optical properties of europium oxide nanolayer coated on titania[J]. Chemistry of Materials,2002, 14(9):3920-3924.
    [1 72]刘旭俐,马峻峰.Gd2O3掺杂CeO2粉体的包覆处理[J].硅酸盐通报,2003,1:84-89.
    [173]ZHANG Rui, GAO Lian, GUO Jingkun. Preparation and characterization of coated nanoscale Cu/SiC composite particles[J]. Ceramics International,2004, 30(3):401-404.
    [174]Ajay Garg, Egon Matijevic. Preparation and properties of uniform coated inorganic colloidal particles III zirconium hydrous oxide on hematite[J]. Journal of Colloid and Interface Science,1988,126(1):243-250.
    [175]王海龙,张锐,乔祝云.化学镀法制备SiC/Cu金属陶瓷复合粉体工艺的研究[J].佛山陶瓷,2003,13(11):14-16.
    [176]蔡克峰,李成红,袁润章.在陶瓷粉末表而化学镀包复金属[J].电镀与环保,1994,14(2):11-12.
    [177]张超.超细Al2O3-TiC-Co复合材料的制备及复合材料的研究[D].浙江:浙江大学,2004.
    [178]Fang Mei, Donglu Shi. Electroless plating of thin film on porous Al2O3 substrate and the study of deposition kinetics[J]. Tsinghua Science and Technology,2005,10(6):680-689.
    [179]廖辉伟,李翔,彭汝芳,等.包覆型纳米铜-银双金属粉研究[J].无机化学学报,2003,19(12):1327-1330.
    [180]徐锐,周康根,胡敏艺.水合肼液相还原法制备银包覆超细铜粉反应机理研究[J].稀有金属材料与工程,2008,37(5):905-908.
    [181]徐锐,周康根,王飞.水合肼液相还原法制备银包覆超细铜粉反应工艺研究[J].武汉理工大学学报,2008,30(1):24-27.
    [182]Selmi FA, Amarakoon VRW. Sol-gel coating of powder for processing electronic ceramics[J]. Journal American Ceramic Society,1988,71(11): 934-937.
    [183]刘波,庄志强,刘勇,等.粉体的表面修饰与表面包覆方法的研究[J].中国陶瓷工业,2004,(1):50-54.
    [184]崔爱莉,王亭杰,金涌.SiO2和Al2O3在TiO2表面的成核包覆与成膜包覆[J].化工冶金,1999,20(2):178-181.
    [185]Yoshio Kobayashi, Hironori Katakami, Eiichi Mine, et al. Silica coating of silver nanoparticles using a modified Stober method [J]. Journal of Colloid and Interface Science,2005,283(2):392-396.
    [186]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [187]美国杜邦公司.稳定氢氧化铜的方法.中国:CN101010008A[P],2007-08-01.
    [188]沈祖达.氢氧化铜或氧化铜的制备方法.中国:CN101195497A[P],2008-06-11.
    [189]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985.
    [190]Lamer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols [J]. Journals of the American Chemical Society, 1950,72(11):4847-4854.
    [191]Wan Peter Hsu, Lena Ronnquist, Egon Matijevic. Preparation and properties of monodispersed colloidal particles of lanthanide compounds[J]. Langmuir, 1988,4(1):31-37.
    [192]Manuel Ocana, Egon Matijevic. Well-defined colloidal tin(IV) oxide particles[J]. Journal of Materials Research,1990,5(5):1083-1091.
    [193]杨宏孝.无机化学[M].北京:高等教育出版社,2002.
    [194]Sugimoto T, Shiba F, Sekiguchi T, et al. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: silver chloride[J]. Colloids Surfaces A:Physicochemical and Engineering Aspects,2000,164(2-3):183-203.
    [195]Sugimoto T, Shiba F.Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution II:silver bromide[J]. Colloids Surfaces A:Physicochemical and Engineering Aspects,2000,164(2-3): 205-215.
    [196]李竟先,刘树罗,方晖.纳米TiO2颗粒表面无机包覆方法及原理[J].中国陶瓷工业,2005,12(1):40-44.
    [197]王忠良,叶春洪,戴路,等.纸浆纤维对钙离子吸附行为及机理[J].南京林业大学学报:自然科学版,2010,34(1):59-63.
    [198]吕广明,仲剑初.无机电解质和有机高分子絮凝剂对污泥表面Zeta电位的影响[J].辽宁化工,1999,18(1):38-40.
    [199]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [200]David RL. CRC Handbook of Chemistry and Physics,90th Edition[M]. Boca Raton, FL, USA:CRC Press,2009.
    [201]李洁,王勇,王丽娜,等.氧化铝包覆对TiO2颜料性能的影响及包覆过程机理研究[J].湖南科技大学学报:自然科学版,2009,24(2):98-103.
    [202]彭志宏,李琼芳,周秋生.氢氧化铝脱水过程的动力学研究[J].轻金属, 2010,(5):16-18.
    [203]胡敏艺,王崇国,周康根,等.球形超细铜粉的制备[J].功能材料,2007,38(10):1577-1579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700