用户名: 密码: 验证码:
含多金属硫酸渣制备预还原球团工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国铁矿石资源短缺已经严重制约了钢铁工业的发展。作为一种富含铁元素的二次资源,硫酸渣还含有少量的铜、铅、锌等有色金属,具有重要的综合利用价值,是一种典型的难选难冶二次资源铁矿。我国化工行业每年排放数千万t的硫酸渣,且在全国各地堆存量上亿t无法得到有效利用。传统的回转窑高温氯化焙烧工艺,要求含多金属硫酸渣的FeO含量小于5%,且制备出的氧化球团铁品位低;而用还原焙烧工艺处理含多金属的硫酸渣,则无法脱除铜等有色金属。本研究以河南灵宝地区的含铜铅锌和高FeO含量的硫酸渣混合矿为原料,开发了预热氯化-直接还原“一步法”新工艺,并进一步开展了相关机理的研究,为含多金属硫酸渣综合利用提供理论依据及有效途径。
     系统研究了含多金属硫酸渣生球制备、球团的预热固结和氯化焙烧、球团预热还原焙烧等工艺,优化了工艺参数。研究结果表明:所开发的含多金属硫酸渣球团预热氯化-直接还原“一步法”新工艺,可制备出铁品位高,机械强度好,具有一定的金属化率和铜铅锌含量低的预还原球团矿,是一种优质的高炉炉料。针对含Fe61.24%、CuO.22%、Pbl.79%和Zn0.20%的硫酸渣混合矿,在链篦机-回转窑模拟装置上进行了该工艺的扩大试验,取得的主要指标为:预还原球团全铁含量73.17%、金属化率46.18%、Cu、Pb和Zn含量分别为0.18%、0.16%和0.065%,抗压强度1069N/个,转鼓强度64%,总还原度90.97%,还原膨胀指数-3.7%,还原粉化指数RDI+3.15为98.83%。结果表明:该工艺能有效的实现铁和铜、铅、锌的分离,在大幅提高铁品位同时,预还原球团的机械强度、冶金性能和铜、铅、锌等杂质的含量均能满足高炉要求。
     深入开展了硫酸渣球团氯化焙烧基础研究。①氯化热力学基础研究表明:添加CaCl2的球团中铜、铅、锌的氧化物、硫化物、铁酸盐和硅酸盐均容易被氯化,而铁氧化物和硅铝等脉石矿物均难以被氯化,这是实现铁和铜、铅、锌氯化挥发分离的理论依据。②氯化焙烧动力学研究表明:在1025℃~1175℃的温度范围内,CuO、Cu2O、ZnO和ZnFe2O4的氯化反应均受界面化学反应控制,而PbO的氯化反应则受扩散控制。铜、铅、锌的氯化反应速率非常快,这为硫酸渣中铜、铅、锌在链篦机上预热过程快速脱除提供了动力学支持。③铜、铅和锌的氯化焙烧行为研究结果表明:在氯化焙烧过程中,硫化物最容易脱除,氧化物次之,而铁酸盐和硅酸盐最难脱除,脉石成分对铜、铅、锌矿物的氯化脱除有很大影响。④氯化焙烧过程中预热球团的微观结构变化发现,氯化焙烧可促进预热球团内铁氧化物的结晶。
     进一步研究了含多金属硫酸渣球团还原行为。①还原焙烧热力学基础研究表明:铜氧化物最容易被还原成金属铜而残留在球团中;铅氧化物也易被还原而挥发;锌氧化物最难被还原,但还原后容易挥发。②还原动力学研究表明:在800-1100℃的还原温度范围内,硫酸渣球团中的铁氧化物还原受界面化学反应控制。在还原温度为950~1100℃时,铁酸锌和氧化铅的还原也均受界面化学反应控制。氧化铅还原最快,锌氧化物次之,铁氧化物还原最慢。③硫酸渣球团直接还原过程固结机理和微观结构特征研究表明:预热球团充分固结和铁氧化物充分结晶,是保证直接还原球团强度的前提。④铅、锌氧化物还原焙烧行为研究表明:提高还原温度及维持强还原气氛有利于加快铅和锌的脱除。
Shortage of iron ore resource has seriously restricted the development of iron and steel industry in China recently. It is significant to utilize the secondary resources which are rich of iron, such as pytite cinder, comprehensively. Pyrite cinder, also containing considerable nonferrous metals, is a kind of important secondary resources which are difficult to upgrade and smelt. Tens of millions of tons of pyrite cinder are discharged in chemical industry annually. In addition, there are more than100million tons of the accumulated waste cinder in storage that cannot be efficiently utilized. However, there are some limitations for comprehensive utilization of the pyrite cinder containing nonferrous metals. As an example, it is required that FeO content of cinder is less than5%with traditional technology of high temperature chlorination roasting for pyrite cinder. The iron grade of oxidized pellet which is prepared by high temperature chlorination roasting is low for the blust furnace. Furthermore, the nonferrous metal elements, such as copper, cannot be removed by the traditional reduction technology. Therefore, This paper developed a "one step" technology of preheating chorination-direct reduction. The raw material used is namely pyrite cinder mixture from Lingbao with Cu, Pb, Zn and high FeO content. Moreover, the mechanism was studied, which supplied the theory basis and effective process for the comprehensive utilization of pyrite cinder containing nonferrous metals.
     The study of this thesis focused on the preparation of green balls, preheating and chloridizing roasting of pellets and reduction roasting of pre-heated pellets. It is shown that blast furnace burdens of high quality, which possess high grade of iron, good mechanical strength, some metallization degree and low content of copper, lead and zinc, have been acquired by "one step" technology of chloridizing and reduction roasting from pyrite cinder containing nonferrous metals. Based on the above research, the tests, using the pyrite cinder mixture contaning Fe61.24%、 Cu0.22%、Pb1.79%and Zn0.20%, were conducted in a grate-kiln at a pilot scale. The main quality results of pre-reduced pellets were as follows:total iron content of73.17%、metallization degree of46.18%、the Cu、Pb and Zn content of0.18%,0.16%and0.065%, the compressive strength of1069N per pellet, tumbler strength of64%, the reducibility index of30.12%, the reduction swelling index of-3.7%, reduction disintegration index of (RDI+3.15)98.83%。The test results show that this new process can effectively separate copper, lead, zinc form iron, and greatly increase the iron grade. The mechanical strength and metallurgical property of pre-reduced pellets and the content of copper, lead and zinc in them also can meet the requirement of blast furnace burden.
     The chloridizing roasting behaviors of pyrite cinder pellets were investigated.①It can be seen from the research of chlorination thermodynamics that it is easy for oxides, sulfides, ferrite and silicates of copper, lead and zinc to chloridize with the addition of CaCl2in pellets, but hard for the iron oxide and the gangue like silicon and alumina. This is the basis for separation of copper, lead, zinc from iron.②It is shown from the research of chlorination kinetic that the chlorination reactions of CuO, Cu2O, ZnO and ZnFe2O4are controlled by interface chemical reaction from1025℃to1175℃, while PbO is controlled by diffusion. The chlorination reaction rates of copper, lead and zinc are very fast, which support the removal of copper, lead and zinc inside pyrite cinder well at the chain grate in preheating.③Form the chlorination behavior of copper, lead and zinc, it is found out that it is the easiest to remove sulfides in the chloridizing roasting, then the oxides. Furthermore, it is most difficult for ferrites and silicates to remove. The gangue has a great effect on the removal of copper, lead and zinc.④The microstructure change of preheated pellets shows that oxidizing and chloridizing roasting can pomote the crystallization of iron oxides.
     It was further investigated of the reduction mechanism of pyrite cinder pellets and reduction volatilization behaviors of lead and zinc. The following results are obtained.①It can be seen from the research of reduction thermodynamics that the copper oxides are the easieat to reduce, zinc oxides are most difficulty to reduce, lead oxides are middle. Metallic zinc and lead volatilize into flue gas, while the metallic copper is remained in pellets.②It is found out from the research of reduction kinetic that reduction of iron oxides is controlled by interface chemical reaction inside pyrite cinder pellets within the temperature range of800-1100℃, and the reduction reaction rate is fast. The reduction reactions of zinc ferric and lead oxide are also controlled by interface chemical reaction at950-1100℃. The lead oxide is the fastest to reduce, iron oxides are the slowest to reduce, and zinc oxides are in the middle.③From the research of solidification mechanism pyrite cinder pellets and microstructure feature in reduction, it is proved that fully solidification of pellets and sufficient crystallization of iron oxides are the premise to obtain high strength of reduced pellets.④The reduction volatilization behaviors of lead and zinc show that the high reduction temperature and the high concentration of CO promote the removal of zinc and lead.
引文
[1]王筱留.钢铁冶金学(炼铁部分)[M].北京:冶金工业出版社,2005:1,7.
    [2]杨小宁.中国钢铁工业五十年[M].北京:冶金工业出版社,1999.
    [3]刘泽辉.中国钢铁行业供应现状分析及发展战略[J].商业文化(下半月),2011,(1):97.
    [4]国际钢铁协会.钢产量统计数据.http://www.worldsteel.org/index.php,2011.
    [5]张寿荣.钢铁工业的过去、现在和未来[J].武汉科技大学学报(自然科学版),2002,25(4):331-334.
    [6]李金千,李咏和.中国铁矿开采业浅析[J].现代矿业,2011,506(6):1-5.
    [7]罗溪梅,童雄,王云帆.我国铁矿石选矿技术的新进展[J].矿山机械,2010,38(7):85-91.
    [8]焦玉书,周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势(续)[J].中国冶金,2004,85(12):15-28.
    [9]李金千,李咏和.中国铁矿石对外依存状况刍议[J].现代矿业,2011,(5):1-4.
    [10]陈世光,赵小燕.我国进口铁矿石市场分析及对策[J].水运管理,2009,31(3):13-20.
    [11]焦玉书,周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势[J].中国冶金,2004,(11):13-18.
    [12]张继民.我国争取大宗商品国际定价权问题探讨[J].黑龙江对外经贸,2011,(8):23-25.
    [13]黄启安.我国铁矿石进口价格攀升成因思考[J].经济与管理研究,2011,(4):125-128.
    [14]李志芳.钢铁企业面临的成本压力分析[J].冶金经济与管理,2008,(4):23-25.
    [15]魏建新.钢铁工业铁矿石资源战略研究[J].冶金经济与管理,2011,(2):25-28.
    [16]谢承祥,李厚民,王瑞江等.中国查明铁矿资源储量的数量、分布及保障程度分析[J].地球学报,2009,30(3):387-394.
    [17]陈井伟,丁一.中国铁矿资源消费及附加环境压力研究[J].中国矿业,2007,16(9):18-20.
    [18]张久铭,王贵成,何亚丽.我国铁矿资源的秉赋特征与可持续开发利用研究[J].中国矿业,2007,16(7):36-39.
    [19]侯宗林.中国铁矿资源现状与潜力[J].地质找矿论丛,2005.20(4):242-247.
    [20]王可南,姚培慧.中国铁矿床综论[M].北京:冶金工业出版社,1988:18-21.
    [21]李裕伟.中国矿产[M].北京:中国建材工业出版社,1992:92-97,254-259.
    [22]宋雄,余中平.中国铁矿资源利用现状及其保证程度[J].地质与勘探,1998,34(2):1-4.
    [23]袁致涛,高太,印万忠等.我国难选铁矿石资源利用的现状及发展方向[J].金属矿山,2007,(1):1-6.
    [24]印万忠,丁亚卓.我国难选铁矿石资源利用现状[J].有色矿冶,2006,22:163-168.
    [25]方启学,卢寿慈.世界弱磁性铁矿石资源及其特征[J].矿产保护与利用,1995,(4):44-46.
    [26]沙业汪.我国硫酸工业可持续发展探讨[J].硫磷设计与粉体工程,2004,(6):4-9.
    [27]唐达高.硫酸烧渣生产球团的技术探讨[J].中国资源综合利用,2006,24(7):5-7.
    [28]吴大敏.我国硫铁矿产业存在的问题及对策[J].化工矿物与加工,2003,32(1):1-3.
    [29]李振飞,文书明,周兴龙等.我国硫铁矿加工业现状及硫铁矿烧渣利用综述[J].国外金属矿选矿,2006,43(6):10-12.
    [30]刘全军,周兴龙,李华伟等.硫酸渣综合利用的研究现状与进展[J].云南冶金,2003,32(2):27-29.
    [31]改革开放30年来的中国硫酸工业[C].2008第二届中国农资发展论坛论文集.2008:29-36.
    [32]我国硫酸产量居世界首位[J].化工矿物与加工,2004.33(6):39-40.
    [33]汪大晕,徐新华.化工环境保护概论[M].北京:化学工业出版社,1999:122-123.
    [34]楼紫阳,宋立言,赵由才等.中国化工废渣污染现状及资源化途径[J].化工进展,2006,25(9):988-994.
    [35]楼紫阳,宋立言,赵由才等.我国化工废渣污染现状及资源化途径综述[C].第五届中国粉煤灰、矿渣及煤矸石加工与应用技术交流大会暨展示会论文集.2007:213-220.
    [36]M. Giunti, D. Baroni and E. Bacci. Hazard Assessment to Workers of Trace Metal Content in Pyrite Cinders [J]. Bulletin of Environmental Contamination and Toxicology,2004,72(2):352-357.
    [37]罗道成,易平贵,刘俊峰.硫铁矿烧渣综合利用研究进展[J].工业安全与环 保,2003,29(4):10-12.
    [38]叶志平,何国伟.硫酸渣资源化及其以废治废技术研究[J].华南师范大学学报(自然科学版),2010,(2):72-75.
    [39]化学工业部环境保护设计技术中心站.化工环境保护设计手册[M].北京:化学工业出版社,1998:250-263.
    [40]陈永亨,吴颖娟.硫酸废渣中铁、锌、铜元素的迁移及其对环境的潜在影响[J].广州大学学报,2001,15(2):78-81.
    [41]刘闯,蒋其胜,王志勇等.论硫铁矿烧渣的再生与利用[J].安徽地质,2000,10(4):290-293.
    [42]王雪松,张德海,任允芙.黄铁矿烧渣的特性及其利用[J].环境工程,1999,17(1):58-61.
    [43]胡宾生,王晖.南化硫酸渣综合利用过程中矿物特征变化规律的研究[J].化学通报,2000,63(7):40-43.
    [44]李华伟.硫铁矿烧渣资源化开发与利用研究[J].昆明:昆明理工大学,2004.
    [45]张德海.黄铁矿烧渣工艺矿物学研究[J].黄金科学技术,1999,7(4-5):102-105.
    [46]张汉泉.硫酸渣资源化利用实践[J].中国矿业,2009,(18):116-124.
    [47]彭志坚,刘涛,张敏.硫酸渣的开发利用[J].矿产综合利用,2004,(2):45-47.
    [48]谭定桥.高品位硫铁矿烧渣资源化前景及综合利用研究[J].广东科技,2009,206(4):198-200.
    [49]蒋伟锋.硫酸烧渣综合利用及新途径探析[J].中国资源综合利用,2004,(5):23-25.
    [50]朱申红,吴德礼,孟娟.黄铁矿烧渣的综合利用途径与问题分析[J].青岛建筑工程学院学报,2005,26(1):25-29.
    [51]曹毅轩,崔宏兵,韩美玲等.利用工业废渣生产瓷质外墙砖的研究[J].佛山陶瓷,2001,(9):11-13.
    [52]A. V. Abdrakhimov, E. S. Abdrakhimova and V. Z. Abdrakhimov. Technical properties of roof tiles made of technogenic material with pyrite cinder [J]. Glass and Ceramics,2006,63(3-4):130-132.
    [53]I. V. Kovkov and V. Z. Abdrakhimov. Thermomechanical studies of ceramic tile made from technogenic raw materials [J]. Glass and Ceramics (English translation of Steklo i Keramika),2011,68(3-4):128-130.
    [54]汤海生.硫酸渣分选铁精矿余渣制砖[J].使用技术市场,1992,(4):21.
    [55]钱玲,侯浩波.废石膏硫酸烧渣砖的研制[J].砖瓦,2005,(1):8-9.
    [56]严波,徐志.硫酸渣作混合材生产水泥[J].水泥,1996,(9):32-34.
    [57]肖忠明,王昕,霍春明等.硫酸渣对水泥性能的影响[J].水泥,2009,(9):12-15.
    [58]邓世水.利用工业废渣生产水泥新工艺[J].福建环境,2001,(2):13-15.
    [59]郭敬波,胡竹寅,张占民等.粉煤灰、煤矸石、硫酸渣等固体废物在水泥厂的综合利用[J].中国建材装备,2002,(03):43-46.
    [60]张占民.用粉煤灰煤矸石硫酸渣综合烧制水泥[J].粉煤灰综合利用,2002,(5):43-44.
    [61]I. Alp, H. Deveci, E. Y. Yazici, et al. Potential use of pyrite cinders as raw material in cement production:Results of industrial scale trial operations [J]. Journal of Hazardous Materials,2009,166(1):144-149.
    [62]C. D. Popescu, M. Muntean and J. H. Sharp. Industrial trial production of low energy belite cement [J]. Cement and Concrete Composites,2003,25(7): 689-693.
    [63]陈吉春,孔磊.硫铁矿烧渣制备纳米铁黄工艺的研究[J].矿业工程,2008,(1):67-69.
    [64]周敏,冯业铭,王永忠等.用硫铁矿烧渣生产氧化铁黄新工艺[J].环境工程,1996,14(05):49-53.
    [65]谭定桥,郑雅杰.硫铁矿烧渣制备铁黄新技术[J].化学工程,2006,34(3):72-75.
    [66]温普红,高均科.用硫酸渣制备铁基颜料铁黄[J].化工环保,2003,23(2):100-102.
    [67]陈白珍,龚竹青,黄坚等.硫铁矿烧渣制备铁黄颜料的工艺研究[J].无机盐工业,2001,33(4):39-42.
    [68]梁绪树,程帅,孙体昌等.用硫酸化焙烧渣制备氧化铁红的中试研究[J].矿冶工程,2011,31(4):104-108.
    [69]金士威,易琼,包传平等.硫铁矿烧渣制高纯氧化铁红的研究[J].化工矿物与加工,2003,(12):12-15.
    [70]余海峰,王莹,徐旺生.硫铁矿烧渣制备氧化铁红工艺研究[J].贵州化工,2007,32(6):12-13.
    [71]郑雅杰,刘昭成.用水热法从硫铁矿烧渣制备氧化铁红[J].金属矿山,2008,(2):139-145.
    [72]张玉奇,张嵩松.硫铁矿烧渣简易制备氧化铁红的工艺[J].科技创新导报,2008,(05):85.
    [73]Y. Zheng and Z. Liu. Preparation of monodispersed micaceous iron oxide pigment from pyrite cinders [J]. Powder Technology,2011.207(1-3):335-342.
    [74]恭明玺.硫铁矿烧渣综合回收系列铁红产品研究[J].矿冶工程,2008,28(3):38-40.
    [75]包永明.用梅山硫酸渣生产氧化铁红的试验研究[J].金属矿山,2009,(08):158-162.
    [76]贺春明,陈正军.应用选矿新工艺及设备从硫酸烧渣中回收铁红产品[J].工程设计与研究,2005,(118):4-8.
    [77]张仲伟,陈吉春,李旭.硫铁矿烧渣制备铁系化工产品研究方法综述[J].化工矿产地质,2004,26(3):181-185.
    [78]温普红,宋周周.以硫酸渣为原料制备铁黑工艺研究[J].无机盐工业,1994,(2):31-33.
    [79]陈吉春,陈永亮.硫铁矿烧渣还原酸浸制取硫酸亚铁[J].矿产综合利用,2004,(3):42-45.
    [80]郑雅杰,龚竹青,易丹青.以硫铁矿烧渣为原料制备绿矾新技术[J].化学工程,2005,33(4):51-55.
    [81]冯俊瑜.用硫铁矿烧渣生产液体三氯化铁[J].硫酸工业,1994,(3):51-52.
    [82]刘立华,郑雅杰,龚竹青.聚合铁盐絮凝剂的研究进展与发展趋势[J].现代化工,2002,22(10):18-21.
    [83]陶颖.硫铁矿烧渣制备聚合硫酸铁工艺评述[J].化工环保,2000,20(5):25-27.
    [84]姜凌,董亚妮,田萍.用硫铁矿烧渣制取聚合硫酸铁的实验研究[J].环境科学与技术,2010,33(8):148-151.
    [85]郑雅杰,陈白珍,龚竹青等.硫铁矿烧渣制备聚合硫酸铁新工艺[J].中南工业大学学报(自然科学版),2001,32(2):142-145.
    [86]龚竹青,黄坚.用硫铁矿烧渣制备的硫酸亚铁研制软磁用a-Fe203[J].环境工程,2003,21(2):48-51.
    [87]杨喜云,龚竹青,郑雅杰等.硫铁矿烧渣制备静电复印显影剂用Fe3O4[J].功能材料,2005,(5):667-670.
    [88]苏莉.用硫铁矿烧渣制取四氧化三铁超细粉体的研究[J].贵州工业大学学报(自然科学版),2003,32(6):75-77.
    [89]L. I. Levin, N. M. Iakubtsiner, V. M. Sholeninov, et al. Application of pyrite cinders in the production of high-basicity sinter [J]. Metallurgist,1958.2(6): 278-285.
    [90]喻世杰,詹星.开发利用硫酸渣作炼铁原料[J].四川冶金,1994,16(4):1-4.
    [91]储谦慎,王兴艳.铜陵硫酸渣综合利用[J].河北理工学院学报,2003.25(4):17-22.
    [92]于留春,尤六亿.梅山铁矿废渣的综合利用[J].金属矿山,1993,(11):34-36.
    [93]阮积海,覃洁,宁玲.芬兰焙烧黄铁矿在烧结工艺的综合利用[J].广西节能,2009,(2):30-31.
    [94]朱德庆,陈栋,潘建.高压辊磨和润磨预处理强化硫酸渣球团对比研究[J].中南大学学报(自然科学版),2011.42(7):1825-1832.
    [95]D. Q. Zhu, D. Chen, J. Pan, et al. Pretreatment of Pyrite Cinder Before Pelletization by High Pressure Roller Grinding [J]. Journal of Iron and Steel Research International,2009.16:345-349.
    [96]白国华,周晓青,范晓慧等.润磨强化硫酸渣制备氧化球团的技术及机理[J].中南大学学报(自然科学版),2011.42(6):1509-1515.
    [97]陈铁军,张一敏.全硫酸渣生产氧化球团试验研究及工业应用[J].钢铁研究,2005.(1):1-4.
    [98]白国华,周晓青.硫酸渣配加磁铁矿制备氧化球团试验研究[J].钢铁,2009,44(7):7-10.
    [99]张一敏,杨士勇,吴寒芬等.精选硫酸渣球团试验研究[J].烧结球团,2002.27(2):11-14.
    [100]刘树立.铜陵有色高配比硫酸渣球团技术的工业化应用[J].烧结球团,2010.35(1):15-20.
    [101]曾文波,蓝庆滔,李要武.铜陵有色高配比硫酸渣球团生产实践[J].烧结球团,2010,35(5):40-44.
    [102]李心广.新型冷固(含碳)球团的研究[J].上海金属,1995,17(3):31-35.
    [103]谢海泉,郭戈,谢海涛.黄铁矿烧渣冷固球团胶粘剂的研究[J].矿产综合利用,2005,(4):46-49.
    [104]许斌,庄剑鸣,白国华等.硫酸烧渣综合利用新工艺[J].中南工业大学学报(自然科学版),2000,31(3):215-218.
    [105]龚竹青,龚胜,周波等.硫铁矿烧渣制取海绵铁的工艺研究[J].矿冶工程,2006,26(1):45-48.
    [106]薛正良,周利刚,张海峰等.用含铁物料和煤粉直接制备金属铁粒的新工艺研究[J].武汉科技大学学报,2008,31(5):453-456.
    [107]P. G. Kihlstedt. Method for purifying and agglomerating pyrite cinders. US: 3,849,111 [P],1974-11-09.
    [108]王全亮,周虎强,代奕华.广西某硫酸烧渣脱硫选矿工艺研究[J].矿冶工程,2008,28(5):44-46.
    [109]王全亮,宁平,陈述明.黄铁矿制酸烧渣生产铁精粉试验工艺研究[J].湖南有色金属,2006,22(2):4-6.
    [110]董风芝.硫酸渣磁选工艺选铁研究与应用[J].矿业安全与环保,2006,33(6):58-59.
    [111]向发柱,胡春晖,廖锦.硫酸渣选铁试验研究[J].有色金属(选矿部分),2006,(5):36-39.
    [112]毕万利,吴文红,李晶.从硫酸渣中选铁试验研究[J].湿法冶金,2011,30(3):229-230.
    [113]董风芝,孙永峰.硫酸渣磁重选联合工艺回收铁精矿研究[J].化工矿物与加工,2006,(4):14-16.
    [114]曾志飞,李茂林.从硫铁矿烧渣中回收铁的试验研究[J].矿冶工程,2006,26(5):29-32.
    [115]杨敏,邱廷省.陈金花等.某硫酸渣选矿试验研究[J].四川有色金属,2009,(1):6-10.
    [116]韩远燕,戴惠新.某高砷硫酸渣选铁试验研究[J].矿产保护与利用,2010,(3):55-57.
    [117]朱昌洛,沈明伟.高砷高硫硫酸渣综合利用探索性试验[J].云南冶金,2011,40(2):38-40.
    [118]V. O. Angel, J. G. Segundo and L. M. Federico. Process for the leaching of pyrite cinders. US:3,330,648 [P],1967-07-11.
    [119]吴德礼,朱申红,马鲁铭,化学法处理黄铁矿烧渣的新工艺[J].矿产综合利用,2005,(1):34-37.
    [120]B. B. He, X. K. Tian, Y. Sun, et al. Recovery of iron oxide concentrate from high-sulfur and low-grade pyrite cinder using an innovative beneficiating process [J]. Hydrometallurgy,2010.104(2):241-246.
    [121]胡宾生,张景智.铜陵硫酸渣磁化焙烧-磁选的试验研究[J].矿冶工程,1996,16(3):44-47.
    [122]胡宾生,王晖.铜陵硫酸渣磁化焙烧-磁选过程中硫赋存状态的变化[J].矿产综合利用,1999,(1):29-32.
    [123]董风芝,姚德,孙永峰.硫酸渣用磁化焙烧工艺分选铁精矿的研究与应用[J].金属矿山,2008,(5):146-148.
    [124]朱德庆,李建,李青春等.硫酸渣复合球团还原焙烧法制备高品位磁铁 精矿[J].中国有色金属学报,2007,17(4):649-656.
    [125]罗良飞,余永富,陈雯等.某含铁浸金渣闪速焙烧磁选试验研究[J].矿冶工程,2009,29(3):26-28.
    [126]龔鸿翔.黄铁矿烧渣的综合利用[J].国外重有色金属,1964,(8):1-10.
    [127]C. Mora, R. Aleta, H. Delgado, et al. Process for the recovery of non ferrous metal values from pyrite cinders. EP:0538168A1 [P],1993-04-21.
    [128]C. Umberto, S. Giuseppe, V. Bruno, et al. Process for the purification of pyrite cinders from nonferrous metals, from arsenic and form sulfur. US: 3,649,245 [P],1972-05-14.
    [129]C. Umberto, I. Mini, and G. Sironi. Process for purifying pyrite cinders by removal of nonferrous metals. US:3,499,754 [P],1970-03-10.
    [130]中南矿冶学院冶金研究室.氯化冶金[M].北京:冶金工业出版社,1978:129,303.
    [131]A. Ishimitsu, K. Sugahara, S. Arakawa, et al., Process of obtaining a granular charge for the blast furnace from a pyrite cinder and iron manufacture dust or powdered iron ore. US:3,482,964 [P],1969-12-09.
    [132]傅菊英,朱德庆.铁矿氧化球团基本原理、工艺及设备[M].长沙:中南大学出版社,2005:22-29,69-70.
    [133]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南大学出版社,1995:251,259,242.
    [134]彭荣秋.铅锌冶金学[M].北京:科学出版社,2003.
    [135]王葵.天津煤基直接还原铁厂用煤的选择[J].烧结球团,1994,(4):12-14.
    [136]邱冠周,姜涛,徐经沧等.冷固结球团直接还原[M].长沙:中南大学出版社,2001:74,138,176-182.
    [137]张松龄.直接还原铁生产和应用的技术与经济[M].浙江省冶金工业总公司,1984:93-96.
    [138]魏向华,薛晓宏,郭剑锋.煤对C02化学反应性测定影响因素探讨[J].山东煤炭科技,2008,(6):128-129.
    [139]付式.球团矿体积测定方法比较[J].烧结球团,1991,(3):82-89.
    [140]陈道栋.铁矿球团体积测定试验[J].烧结球团,1991,(3):87-90.
    [141]徐南平.钢铁冶金实验技术和研究方法[M].北京:冶金工业出版社,1995:122-124.
    [142]J. Szekely, J. W. Evans, and H. J. Sohu. Gas-Soild Reactions [M]. New York: Academic Press,1976.
    [143]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:179-193.
    [144]韩其勇.冶金过程动力学[M].北京:冶金工业出版社,1983:49-54.
    [145]周红.铁精矿球团冷固结直接还原的机理研究[D].长沙:中南工业大学,1998.
    [146]李建.铁精矿复合粘结剂球团直接还原法工艺及机理研究[D].长沙:中南大学,2007.
    [147]刘建华,张家芸,周土平.CO及CO-H2气体还原铁氧化物反应表观活化能的评估[J].钢铁研究学报,2000,34(1):5-9.
    [148]唐惠庆,唐惠庆,张圣弼等.CO/CO2气氛下含碳球团还原动力学模型及其应用[J].钢铁研究学报,2000,12(6):1-6.
    [149]H. Mattenberger, G. Fraissler, T. Brunner, et al. Sewage sludge ash to phosphorus fertiliser:Variables influencing heavy metal removal during thermochemical treatment [J]. Waste Management,2008,28:2709-2722.
    [150]时文中,王竞研,朱国才.固氟氯化铵焙烧法从包头稀土矿中回收稀土的动力学[J].中国有色金属学报,2004,14(7):1254-1258.
    [151]伊赫桑·巴伦.纯物质热化学数据手册[M].北京:科学出版社,2003.
    [152]M.K.Sesen. The influence of CaO on the precipitation behaviour of iron in the reduction of iron oxide [J]. Scandinavian Journal of Metallurgy,2001,30(1): 1-7.
    [153]J. R. Miller. Direct Reduction of Iron Comes of Age In the 70's [J]. Engineering and Mining Journal,1972,173:68-76.
    [154]S. K. Nicl, and Z. P. Adamiak. Role of bentonite in wet pelletizating [J]. Institution of Mining and Metallurgy Sec. C.,1978,82:32.
    [155]吴一善.粉碎学概论[M].武汉:武汉工业大学出版社,1993:111-115.
    [156]朱德庆,细磨精矿冷固成型机理研究及在直接还原中的应用[D].长沙:中南大学,1994.
    [157]葛勇,葛勇,杨文萃等.常用无机盐对溶液表面张力及混凝土性能的影响[J].混凝土,2007,(6):7-9.
    [158]周连江,乐志强.无机盐工业手册[M].北京:化学工业出版社,1996:545.
    [159]G. Fraissler, M. Joller, T. Brunner, et al., Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination [J]. Chemical Engineering and Processing:Process Intensification,2009,48:380-388.
    [160]D. Q. Zhu, D. Chen, J. Pan et al. "One step" technology to separate copper, zinc, lead from iron in metallurgical slag and pyrite cinder:part 1-laboratory scale test [J]. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min Metall. C),2012,121(2):79-85.
    [161]窭明民.锌冶金中铁酸锌生成及离解机理研究[J].云南冶金,2003,32(增刊):63-65,99.
    [162]李永刚,俞小花,杨大锦.炉渣中铅锌还原挥发的研究[J].材料研究与应用,2008,2(1):63-66.
    [163]朱祖泽,贺家齐.现代铜冶金学[M].北京:科学出版社,2003:.
    [164]董若璟.冶金原理[M].北京:机械工业出版社,1980:111.
    [165]D. Q. Zhu, D. Chen, J. Pan et al. "One Step" Technology to Separate Copper, Zinc, Lead Form Iron in Metallurgical Slag and Pyrite Cinder:Part 2-Pilot Test [C].2011 TMS annual meeting,2nd International Symposium on High-Temperature Metallurgical Processing:151-160.
    [166]梁英教,车茂昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [167]G. Fraissler, M. Joeller, H. Mattenberger, et al. Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination [J]. Chemical Engineering and Processing,2009,48(1):152-164.
    [168]G. De Micco, A. E. Bohe, and D. M. Pasquevich. A thermogravimetric study of copper chlorination [J]. Journal of Alloys and Compounds,2007,437(1-2): 351-359.
    [169]J. Poznahski. A study of the chlorination of copper(I) and copper(Ⅱ) oxides [J]. Journal ofthe Less-Common Metals,1991,169:181-186.
    [170]J. G. Dunn and C. Muzenda. Thermal oxidation of covellite (CuS) [J]. Thermochimica Acta,2001,369(1-2):117-123.
    [171]H. Matsuura, T. Hamano and F. Tsukihashi. Chlorination kinetics of ZnFe2O4 with Ar-Cl2-O2 gas [J]. Materials Transactions,2006,47(10):2524-2532.
    [172]H. Matsuura and F. Tsukihashi. Chlorination kinetics of ZnO with Ar-Cl2-O2 gas and the effect of oxychloride formation [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2006, 37(3):413-420.
    [173]C. Wang, X. Hu, H. Matsuura, et al. Evaporation kinetics of the molten PbCl2-ZnCl2 system from 973 to 1073 K [J]. Isij International,2007,47(3): 370-376.
    [174]T. Guo, X. Hu, H. Matsuura, et al. Kinetics of Zn Removal from ZnO-Fe2O3-CaCl2 System [J]. Isij International,2010,50(8):1084-1088.
    [175]A. Bhattacharyya, M. K. Mitra, G. C. Das, et al., Chlorination kinetics of copper oxide and cobalt oxide with ammonium chloride [J]. Journal of the Indian Chemical Society,2002,79(10):807-810.
    [176]M. Kobayashi, Y. Ueda and F. Noguchi. On the Mass Transfer in the Chloride Volatilization of CuO by HCl Gas [J]. Jouranl of the Japan Institute of Metals, 1975,39:240-246.
    [177]Titi-Manyaka and Iwasaki. Thermogravimetric Investigation of the Chlorination Behaviors of Some Common Metals and Their Oxides [J]. Society of Mining Engineers, AIME,1972,252:307-313.
    [178]侯贵华,沈晓冬,许仲梓.氧化铜对碳酸钙热分解动力学过程的影响[J].硅酸盐学报,2005,33(1):109-114.
    [179]K. Matsuzaki, T. Ishikawa, T. Tsukada, et al. Distribution Equilibria of Pb and Cu between CaO-SiO2-Al2O3 Melts and Liquid Copper [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2000,31B:1261-1266.
    [180]P. Taskinen, A. Taskinen and L. E. Holappa. Activities in PbO-MgO-SiO2 Melts by EMF Technique [J]. Scandinavian Journal of Metallurgy,1982,11: 17-22.
    [181]S. H. Son and F. Tsukihashi. Thermodynamics on the vapor formation of lead oxychloride [J]. High Temperature Materials and Processes,2003,22(3-4): 179-186.
    [182]H. Matsuura, K. Yajima and F. Tsukihashi. Chlorination and evaporation behaviours of zinc and lead at chlorinating and oxidising atmosphere [J]. Mineral Processing and Extractive Metallurgy,2011,120(4):235-239.
    [183]S. H. Son and F. Tsukihashi. Vapor pressure measurement of zinc oxychloride [J]. Isij International,2003,43(9):1356-1361.
    [184]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2004:283-288.
    [185]R. C. Nascimento, M. B. Mourao and J. D. T. Capocchi. Kinetics and catastrophic swelling during reduction of iron ore in carbon bearing pellets [J]. Ironmaking & Steelmaking,1999,26(3):182-186.
    [186]张元波.含锡锌复杂铁精矿球团弱还原焙烧的物化基础及新工艺研究 [D].长沙:中南大学,2006.
    [187]徐采栋,林蓉,汪大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979:169-171.
    [188]B. S. Kim, J. M. Yoo, J. T. Park, et al. A kinetic study of the carbothermic reduction of zinc oxide with various additives [J]. Materials Transactions,2006, 47(9):2421-2426.
    [189]彭兵,张传福,彭及.CO还原氧化锌速率的研究[J].中南工业大学学报(自然科学版),2001,32(4):189-191.
    [190]王涛,朱立新,陈伟庆等.含锌粉尘造泡沫渣过程中锌挥发动力学研究[J].安徽工业大学学报(自然科学版),2003,20(4):22-24.
    [191]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998:529-530.
    [192]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994:60-62.
    [193]M. M. Hussain and D. R. Morris. Kinetic of reduction of lead minerals and commercial lead bearing materials by CO/CO2 gas mixtures [J]. Journal of Metals, 1985,37(8):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700