用户名: 密码: 验证码:
富钴和富硒物料湿法处理工艺及理论基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着钴、硒的广泛应用,需求量急剧增加。而我国钴、硒资源相对匮乏,如何从复杂二次资源中提高回收率已迫在眉睫。湿法冶金因具有选择性好和能耗低等优点,已成为回收钴、硒的主要工艺。同时在实际生产模拟及优化工艺过程中建立准确可靠的控制对象模型具有重要意义,但实际收入项和支出项的比较、模型设计参数的合理计算以及终点成分的预测仍是难点。本文针对富钴和富硒物料的特性,深入进行湿法处理过程中的热力学、动力学分析和优化工艺实验设计等研究,构建了湿法处理两种物料过程中的有价元素分配模型,对有价元素的具体走向及分布状况进行分析,为该类湿法工艺开发提供理论和技术依据,结论如下:
     系统分析了富钻物料和富硒物料湿法处理过程的热力学。硫酸浸出富钻物料中的金属氧化物反应趋势为:MnO>CoO>NiO> ZnO>Cd2O3> CuO> Fe2O3;控制pH值和温度可实现优先沉铜;沉锰铁过程中,过硫酸钠优先氧化铁,可实现锰、铁的选择性沉淀;提高pH值和温度,有利于钴的沉淀回收。煤油脱除富硒物料中的单质硫,温度应达到95℃以上;提高pH值和温度,有利于硒的氧化浸出;亚硫酸钠还原过程中,溶液初始酸度越大,亚硫酸钠还原硒的趋势越大,越有利于硒的还原析出。
     系统研究了富钻物料和富硒物料湿法处理优化工艺。硫酸浸出富钴物料,Co、Zn、Cd、Ni、Cu、Mn、Fe和Pb的浸出率分别达到97.99%、91.79%、96.20%、87.31%、91.20%、89.19%、67.09%和0.14%;硫化钠除铜,Cu的沉淀率达到99.93%;过硫酸钠氧化水解沉锰铁,Mn和Fe的浓度分别降至0.0005g/L和0.0018g/L;过硫酸钠沉钴,Co的沉淀率达到99.81%,沉钴产品为CoO(OH)(羟基氧化钴),Co含量高达45.56%。整个富钴物料处理工艺过程中,Cu、Mn、Fe和Co的直收率分别为88.58%、89.09%、70.01%和93.58%。煤油脱硫富硒物料,单质硫的脱除率达到97.8%;氧化酸浸脱硫富硒物料,Se和Fe的浸出率分别为97.76%和12.20%;亚硫酸钠还原沉硒,Se的还原率为99.7%,沉硒产品为单质Se,其含量高达99.63%。整个富硒物料处理工艺过程中,S、Fe和Se的直收率为97.8%、92.84%和98.46%。
     系统研究了酸浸富钴物料和富硒物料的动力学及其机理。结果表明:富钴物料中Co、Zn和Cu的浸出反应为未反应收缩核扩散控制过程,三者有较强的关联性。Co、Zn和Cu的表观活化能分别为11.69kJ/mol、6.69kJ/mol和5.98kJ/mol,化学反应级数分别为0.74、0.41和0.32;粒度级数分别为-1.44、-1.04和-0.84;Co、Zn和Cu的浸出动力学方程分别为:
     富硒物料中Se的浸出反应为化学反应控制过程,Fe的浸出曲线不符合化学反应控制模型,两者关联性不强。Se的表观活化能为39.50kJ/mol,化学反应级数n1为0.15,化学反应级数n2为0.95,粒度级数为-0.16。Se的浸出动力学方程为:
     构建了富钴和富硒物料在湿法处理过程中的有价元素分配模型,模型预测的整体分配质量和整体分配比例可以定量预估实验结果,表明有价元素分配模型可用于该类湿法工艺模拟优化控制;有价元素在富钴和富硒物料湿法处理过程中的具体分配走向如下:富钴物料中已回收铜、锰、铁、钻元素的单步工序回收率和直收率分别为99.93%和89.36%、99.95%和89.89%、99.69%和70.16%、99.98%和95.38%,铅元素均为99.88%。铅、铜、锰、铁和钴的分配比例分别为99.88%、89.36%、89.85%、70.16%和95.38%。未回收的95.66%的锌、93.35%的镉和85.80%的镍存于沉钻后液中,10.74%的镍进入到硫酸浸出渣中。富硒物料中已回收铁、硒元素的单步工序回收率和直收率分别为93.03%和92.78%、99.93%和98.05%,硫元素均为99.90%,铁、硒和硫的分配比例分别为92.77%、98.06%和98.06%。本论文图153幅,表61个,参考文献303篇。
In recent years, the demanding of cobalt and selenium is increasing dramatically with its wide applications. However, the resources of cobalt and selenium are relatively scarce in China, so how to increase the recovery of cobalt and selenium from complex secondary materials becomes imperative. Hydrometallurgical processes which are the main technologies of recovery of cobalt and selenium have many advantages including excellent selectivity, low energy consumption and so on; Meanwhile, the accurate and reliable object controlling model in hydrometallurgical process is established for practical production simulation and optimization control while its comparison of input and output, parameters calculation of model and the final composition are all difficult to predict. Based on the analysis of cobalt and selenium metallurgical residue properties and characteristics, combination of thermodynamics analysis, kinetic analysis and optimization design of experiment research in the hydrometallurgical processes, the quality of value element allocation model of hydrometallurgical technological process of cobalt and selenium metallurgical residue was proposed, meanwhile the flow analysis of the value element in the technological process was analyzed which provide the theoretical and technological basis for the industrial processing of cobalt and selenium metallurgical residue, the main conclusions are as follows:
     The fundamental thermodynamics analysis of cobalt metallurgical residue in the hydrometallurgical process was studied. The metal acidic leaching trend of cobalt metallurgy sluge were as follows: MnO>CoO>NiO>ZnO>Cd2O3>CuO>Fe2O3; Copper was preferentially removed by controling pH value and tempature of acidic leaching solution; In the process of oxidizing and hydrolysis precipitation(pH<4), by adding sodium persulfate in the purification solution after copper precipitation, iron was first oxidized, then manganese which could realize selective precipitation; The higher it increase temperature and pH value of solution after iron and manganese precipitation, the more beneficial to precipitation rate of cobalt it was.
     The thermodynamics analysis of selenium metallurgical residue show that the kerosene desulfurization temperature should achieve above sulfur melting point; The higher it increase temperature and pH value of oxidization acid leaching solution solution after kerosene desulfurization, the more beneficial to leaching rate of selenium it was. In the selenium reduction process, the greater the initial acidity of solution it had, the more beneficial to precipitation rate of selenium it was.
     The optimization conditions on treatment of cobalt and selenium metallurgical residue were studied. In the process of acid leaching, the leaching rates of cobalt, zinc, cadmium, nickel, copper, manganese, iron and lead are97.99%,91.79%,96.20%,87.31%,91.20%,89.19%,67.09%and0.14%, respectively.99.93%of copper was preferentially removed with Na2S. During the oxidizing and hydrolysis precipitation, iron and manganese residual amount of solution are about0.0005g/L and0.0018g/L respectively. In the process of cobalt oxidizing precipitation with Na2S2O8,99.81%of cobalt was precipitated. The phase of cobalt product is CoO(OH),which content of cobalt is45.56%. In the whole process, the direct yield recovery rate of copper, manganese, iron and cobalt were88.58%,89.09%,70.01%and93.58%, respectively.
     The experimental design for optimization of kerosene desulfurization process was done, and the results show that the rate of desulphurization was lager than97%. During the process of oxidization leaching, the leaching efficiencies of selenium and iron are97.76%and12.20%, respectively.99.7%of selenium was precipited with Na2SO3in the leaching solution. The phase of selenium product is Se, which content of selenium is99.63%. In the whole processes, the direct recoveries of surfur, iron and selenium are97.8%,92.84%and98.46%, respectively.
     The kinetics and its mechanism of leaching cobalt metallurgical residue in sulfur acid system were investigated, the results show that the leaching behavior of cobalt, zinc and copper which have high correlation between them fit well with the kinetic models of unreacted shrinking core reactions. The apparent activation energies for cobalt, zinc and copper extraction are11.69KJ/mol,6.69KJ/mol and5.98KJ/mol, respectively, which indicates that the leaching rate of cobalt, zinc and copper were controlled by diffusion through a porous product layer with chemical reaction rate order of0.74,0.41and0.74respectively and particle size rate order of-1.44,-1.04and-0.84respectively; The leaching kinetic equations of cobalt, zinc and copper are as follows:
     The kinetics of leaching desulfurization residue in sodium chlorate and sulfur acid system show that the leaching behavior of selenium fit well with the kinetic models of surface chemical reactions control, while iron was not affected. So selenium and iron have low correlation between them. The apparent activation energies for selenium extraction were39.50KJ/mol, which indicated that the leaching rate of selenium was controlled by surface chemical reactions with chemical reaction rate orders:n1of0.15, n2of0.95respectively and particle size rate order of-0.16; The leaching kinetic equation of selenium is as follows:
     The quality of value element allocation model of technological process of cobalt and selenium metallurgical residue was established based on the analysis of treatment process of cobalt and selenium metallurgical residue and material balance to determine the algorithms of model coefficient. The distribution of overall quality and overall allocation proportion of the prediction model can be quantitatively estimated technological process result. It shows that quality of value element allocation model of technological process can be used for industrial production. The flow analysis of the value element in the technological process of cobalt metallurgical residue are as follows:the single step process and direct yield recovery rate of copper, lead, manganese, iron and cobalt are99.93%and89.36%,99.95%and89.89%,99.69%and70.16%,99.98%and95.38%, which of lead are all both99.88%.The allocation proportion of lead, copper, manganese, iron and cobalt are99.88%,89.36%,89.85%,70.16%and95.38%, respectively. About95.66%of unrecovered zinc,93.35%of unrecovered cadmium,85.80%of unrecovered nickel are existed in the cobalt precipitated solution.
     The flow analysis of the value element in the technological process of selenium metallurgical residue are as follows:the single step process and direct yield recovery rate of iron and selenium are93.03%and92.78%,99.93%and98.05%, which of surfur are all both99.90%.The allocation proportion of iron, selenium and surfur are92.77%,98.06%and98.06%, respectively. The overall of figures, tables and inferences are153,61,303, respectively.
引文
[1]张训鹏.冶金工程概论[M].长沙:中南工业大学出版社.1998.
    [2]乐颂光.钻冶金[M].北京:冶金工业出版社.1987.
    [3]赵天从.重金属冶金学[M].北京:冶金工业出版社.1981.
    [4]何焕华.中国镍钻冶金[M].北京:冶金工业出版社.2000.
    [5]翟秀静.重金属冶金学[M].北京:冶金工业出版社.2011.
    [6]一成.钻的发展动向及其前景展望[J].市场周刊(理论研究),2010,(9):32-33.
    [7]曹异生.世界钻工业现状及前景展望[J].中国金属通报,2007,(42):30-34.
    [8]李艳艳.2012年钴消费格局分析[J].中国金属通报,2012,(40):32-33.
    [9]梁建坤,薛剑峰.金属钴的消费现状及发展前景[J].现代冶金,2010,(3):12-13.
    [10]Lin W C, Chen C. Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding[J]. Surface and Coatings Technology,2006,200(14-15): 4557-4563.
    [11]Tang C, Pan F, Qu X, et al. Novel cobalt base superalloy and its high-temperature flow behavior[J]. Rare Metals,2008,27(3):292-298.
    [12]Swain B, Jeong J, Lee J, et al. Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of lib industry waste:A mathematical model correlation to predict optimum operational conditions [J]. Separation and Purification Technology,2008,63(2):360-369.
    [13]Swain B, Jeong J, Yoo K, et al. Synergistic separation of Co/Li for the recycling of lib industry wastes by supported liquid membrane using Cyanex 272 and DR-8R[J]. Hydrometallurgy,2010,101(1-2):20-27.
    [14]杨红玖,郝俊,易长宾.钴市场走势分析报告[J].世界有色金属,2005,(3):31-36.
    [15]Gomez E, Pellicer E, Valles E. Microstructures of soft-magnetic cobalt-molybdenum alloy obtained by electrodeposition on seed layer/silicon substrates[J]. Electrochemistry Communications,2004,6(8):853-859.
    [16]吴丹,张建伟,蒋景阳.钻催化剂催化高碳烯烃氢甲酰化反应的研究进展[J].石油化工,2011,(12):1370-1374.
    [17]何醒民.我国湿法炼锌技术的发展与展望[J].工程设计与研究,2005,(2):24-27.
    [18]马荣骏.改进湿法炼锌工艺的新设想[J].湖南有色金属,2002,(2):11-13.
    [19]Jha M K, Kumar V, Singh R J. Review of hydrometallurgical recovery of zinc from industrial wastes[J]. Resources, Conservation and Recycling,2001,33(1):21-22.
    [20]Ju S, Zhang Y, Zhang Y, et al. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy[J]. Journal of Hazardous Materials,2011,192(2): 554-558.
    [21]刘斌,王伟涛.浅谈湿法炼锌工艺的浸出渣问题[J].四川环境,2007,(2):105-108.
    [22]杨文栋.湿法炼锌工艺中的综合回收[J].湿法冶金,2009,(2):101-104.
    [23]Bockman O, Ostvold T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes[J]. Hydrometallurgy,2000,54(2-3):65-78.
    [24]Yoroko I, Seimin T. Zinc production in Yandao limited[J]. Mineral and row material (in Japanese),1993,109 (12):1039-1104.
    [25]Wang Y, Zhou C. Hydrometallurgical process for recovery of cobalt from zinc plant residue[J]. Hydrometallurgy,2002,63(3):225-234.
    [26]Aparajith.B, Kumar A, Hodder D, et al. Recovery of cadmium from hydrometallurgical zinc smelter by selective leaching[J]. Hydrometallurgy,2010,102 (1-4):31-36.
    [27]Barakat M A. Recovery of metal values from zinc solder dross[J]. Waste Management,1999,19(7-8):503-507.
    [28]Kul M, Topkaya Y. Recovery of germanium and other valuable metals from zinc plant residues[J]. Hydrometallurgy,2008,92(3-4):87-94.
    [29]Turan M D, Altundogan H S, Tumen F. Recovery of zinc and lead from zinc plant residue[J]. Hydrometallurgy,2004,75(1-4):169-176.
    [30]Stanojevic D, Nikolic B, Todorovic M. Evaluation of cobalt from cobaltic waste products from the production of electrolytic zinc and cadmium[J]. Hydrometallurgy, 2000,54(2-3):151-160.
    [31]梅光贵.湿法炼锌学[M].长沙:中南大学出版社.2001.
    [32]刘永帅,张旭.湿法炼锌净化除钻工艺现状及发展趋势[J].矿冶工程,2012,(3):65-69.
    [33]阎江峰.硫酸锌溶液深度净化除钴的现状与展望[J].云南冶金,1997,26(5):34-41.
    [34]柳冠华,张庆兰,李自静.湿法炼锌中除钻工艺现状研究与发展[J].广州化工,2012,(20):12-13.
    [35]Boyanov B S, Konareva V V, Kolev N K. Purification of zinc sulfate solutions from cobalt and nickel through activated cementation[J]. Hydrometallurgy,2004, 73(1-2):163-168.
    [36]李世禄,王正民,朱军,等.湿法炼锌净化除钴实验研究及实践[J].湖南有色金属,2010,(2):25-26.
    [37]李建华.从湿法炼锌生产的锌置换渣中回收钻[J].铀矿冶,2002,(4):214-216.
    [38]Rabah M A, Elsayed A S. Recovery of zinc and some of its valuable salts from secondary resources and wastes[J]. Hydrometallurgy,1995,37(1):23-32.
    [39]Raghavan R, Mohanan P K, Verma S K. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process[J]. Hydrometallurgy,1999,51(2):187-206.
    [40]刘洪萍.锌湿法冶金工艺概述[J].金属世界,2009,(5):53-57.
    [41]王越胜,余梦迪,袁季源.锌净化过程中黄药除钴的专家控制系统[J].矿冶工程,1997,(2):59-61.
    [42]赵效如,何学斌,柳兴龙,等.湿法炼锌黄药净化工艺中镍钴开路的研究[J].有色金属(冶炼部分),2002,(2):16-18.
    [43]郭天立,杨如中,张伟青,等.利用β-萘酚回收锑盐净化钴渣的研究[J].有色矿冶,2002,(6):19-23.
    [44]孙明生,刘三平.湿法炼锌中β-萘酚除钴的工业应用[J].有色金属(冶炼部分),2008,(2):6-9.
    [45]吴健辉,李义兵,林泓富.湿法炼锌溶液净化β-萘酚除钴的研究[J].中国有色冶金,2008,(1):24-26.
    [46]Raghavan R, Mohanan P K, Swarnkar S R. Hydrometallurgical processing of lead-bearing materials for the recovery of lead and silver as lead concentrate and lead metal[J]. Hydrometallurgy,2000,58(2):103-116.
    [47]Sadanandam R, Fonseca M F, Srikant K, et al. Production of high purity cobalt oxalate from spent ammonia cracker catalyst[J]. Hydrometallurgy,2008,91(1-4): 28-34.
    [48]Safarzadeh M S, Moradkhani D, Ojaghi-Ilkhchi M. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues[J]. J Hazard Mater,2009,163 (2-3):880-890.
    [49]Ramachandra V N, Deo K, Biswas A K. Dissolution of zinc ferrite samples in acids[J]. Hydrometallurgy,1976,2(2):171-184.
    [50]Abdel S M, Rabah M A. Hydrometallurgical recovery of metal values from brass melting slag[J]. Hydrometallurgy,1999,53(1):31-44.
    [51]Asadi Z B, Mowla D, Shariat M H, et al. Zinc recovery from blast furnace flue dust[J]. Hydrometallurgy,1997,47(1):113-125.
    [52]刘庆杰,贾乙东.从湿法炼锌锑盐净化钴渣中回收钻、锌、镉、铜[C].全国“十二五”铅锌冶金技术发展论坛暨驰宏公司六十周年大庆学术交流会,中国云南曲靖,2010:6.
    [53]罗伟雄.湿法炼锌的钴渣处理研究[J].湖南有色金属,2006,(2):22-23.
    [54]汪云华,董海刚,范兴祥,等.两段硫酸化焙烧-水浸从红土镍矿中回收镍钴[J].有色金属(冶炼部分),2012,(2):16-18.
    [55]Georgiou D, Papangelakis V G. Behaviour of cobalt during sulphuric acid pressure leaching of a limonitic laterite[J]. Hydrometallurgy,2009,100(1-2):35-40.
    [56]Han K N, Lawson F. Leaching behaviour of cobalt in acid solutions[J]. Journal of the Less Common Metals,1974,38(1):19-29.
    [57]Havlik T, Laubertova M, Miskufova A, et al. Extraction of copper, zinc, nickel and cobalt in acid oxidative leaching of chalcopyrite at the presence of deep-sea manganese nodules as oxidant[J]. Hydrometallurgy,2005,77(1-2):51-59.
    [58]Safarzadeh M S, Dhawan N, Birinci M, et al. Reductive leaching of cobalt from zinc plant purification residues[J]. Hydrometallurgy,2011,106(1-2):51-57.
    [59]欧俊,蓝德均.酸浸法处理湿法炼锌高钻锌渣回收锌和钴[J].桂林工学院学报,2008,(1):94-97.
    [60]喻正军,冯其明,欧乐明,等.常压下硫酸体系中钴冰铜的浸出[J].中南大学学报(自然科学版),2006,(4):675-679.
    [61]Park K H, Kim H I, Das R P. Selective acid leaching of nickel and cobalt from precipitated manganese hydroxide in the presence of chlorine dioxide[J]. Hydrometallurgy,2005,78(3-4):271-277.
    [62]刘俊,李林艳,徐盛明,等.还原酸浸法从低品位水钴矿中提取铜和钴[J].中国有色金属学报,2012,(1):304-309.
    [63]蒋训雄,尹才.大洋多金属结核催化还原氨浸提取镍钴铜[J].有色金属,1997,(3):47-52.
    [64]尹飞,阮书锋,江培海,等.低品位红土镍矿还原焙砂氨浸试验研究[J].矿冶,2007,(3):29-32.
    [65]Katsiapi A, Tsakiridis P E, Oustadakis P, et al. Cobalt recovery from mixed Co-Mn hydroxide precipitates by ammonia-ammonium carbonate leaching[J]. Minerals Engineering,2010,23(8):643-651.
    [66]赵廷凯,唐谟堂.湿法炼锌净化钴渣新处理工艺[J].中南工业大学学报(自然 科学版),2001,(4):371-375.
    [67]Barik S P, Park K H, Parhi P K, et al. Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid[J]. Hydrometallurgy, 2012,111-112:46-51.
    [68]Canterford J H. Cobalt extraction and concentration from manganese wad by leaching and precipitation[J]. Hydrometallurgy,1984,12(3):335-354.
    [69]Coto O, Galizia F, Hernandez I, et al. Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids[J]. Hydrometallurgy,2008,94(1-4):18-22.
    [70]周宛平.化学分离法[M].北京:北京大学出版社.2008.
    [71]Anotai J, Tontisirin P, Churod P. Integrated treatment scheme for rubber thread wastewater:Sulfide precipitation and biological processes [J]. J Hazard Mater,2007, 141(1):1-7.
    [72]Cao J, Zhang G, Mao Z, et al. Precipitation of valuable metals from bioleaching solution by biogenic sulfides[J]. Minerals Engineering,2009,22(3):289-295.
    [73]Lewis A, Van Hille R. An exploration into the sulphide precipitation method and its effect on metal sulphide removal[J]. Hydrometallurgy,2006,81(3-4):197-204.
    [74]Lewis A E. Review of metal sulphide precipitation[J]. Hydrometallurgy,2010, 104(2):222-234.
    [75]石玉臣.镍阳极液中铜等杂质的深度去除研究[D]:中南大学,2010.
    [76]孙召明.从低品位矿堆浸液中分离回收铜镍[D]:中南大学,2004.
    [77]范兴祥,彭金辉,张利波,等.ZnSO4溶液除Mn2+的工艺研究[J].有色金属,2002,(04):65-68.
    [78]褚志鹏,陈学安,常新安,等.尾矿酸浸液除锰工艺条件研究[J].无机盐工业,2012,(11):45-48.
    [79]范兴祥,彭金辉,张利波,等.过硫酸铵氧化法除去ZnSO4溶液中Mn2+的工艺研究[J].有色矿冶,2002,(2):38-41.
    [80]Das S C, Sahoo P K, Rao P K. Extraction of manganese from Low-grade manganese ores by FeSO4Ieaching[J]. Hydrometallurgy,1982,8(1):35-47.
    [81]Naik P K, Sukla L B, Das S C. Aqueous SO2 leaching studies on nishikhal manganese ore through factorial experiment[J]. Hydrometallurgy,2000,54(2-3): 217-228.
    [82]Menard V, Demopoulos G P. Gas transfer kinetics and redox potential considerations in oxidative precipitation of manganese from an industrial zinc sulphate solution with SO2/O2 [J]. Hydrometallurgy,2007,89(3-4):357-368.
    [83]Momade F W, Momade Z G. Reductive leaching of manganese oxide ore in aqueous methanol-sulphuric acid medium[J]. Hydrometallurgy,1999,51(1):103-113.
    [84]Trifoni M, Toro L, Veglio F. Reductive leaching of manganiferous ores by glucose and H2SO4:Effect of alcohols[J]. Hydrometallurgy,2001,59(1):1-14.
    [85]Sahoo R N, Naik P K, Das S C. Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution[J]. Hydrometallurgy,2001,62(3):157-163.
    [86]Veglio F, Toro L. Reductive leaching of a concentrate manganese dioxide ore in acid solution:Stoichiometry and preliminary kinetic analysis[J]. International Journal of Mineral Processing,1994,40(3-4):257-272.
    [87]Sayilgan E, Kukrer T, Yigit N O, et al. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants[J]. Journal of Hazardous Materials,2010,173(1-3):137-143.
    [88]Ismail A A, Ali E A, Ibrahim A, et al. A comparative study on acid leaching of low grade manganese ore using some industrial wastes as reductants[J]. Canadian Journal of Chemical Engineering,2004,82:1296-1300.
    [89]Zhang W, Cheng C Y. Manganese metallurgy review. Part I:Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide[J]. Hydrometallurgy,2007,89(3-4):137-159.
    [90]Bello T S, Perez G R, Uribe S A. The controlled oxidative precipitation of manganese oxides from Mn(Ⅱ) leach liquors using SO2/air gas mixtures[J]. Minerals Engineering,2011,24(15):1658-1663.
    [91]Zhang W, Singh P, Muir D. Oxidative precipitation of manganese with SO2/O2 and separation from cobalt and nickel[J]. Hydrometallurgy,2002,63(2):127-135.
    [92]刘庆杰.湿法炼锌净化钴渣中富集钴的工艺研究[J].资源再生,2011,(10):56-58.
    [93]Deng Y. Formation of Iron(Ⅲ) hydroxides from homogeneous solutions[J]. Water Research,1997,31(6):1347-1354.
    [94]Posey D J, Moskowitz B, Crerar D, et al. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to martian surface mineralogy [J]. Icarus,1986,66(1):105-116.
    [95]Swarnkar S R, Gupta B L, Sekharan R D. Iron control in zinc plant residue leach solution[J]. Hydrometallurgy,1996,42(1):21-26.
    [96]Ismael M R C, Carvalho J M R. Iron recovery from sulphate leach liquors in zinc hydrometallurgy[J]. Minerals Engineering,2003,16(1):31-39.
    [97]Claassen J O, Sandenbergh R F. Influence of mixing on the quality of iron precipitates in zinc-rich solutions [J]. Hydrometallurgy,2007,87(3-4):112-123.
    [98]Claassen J O, Sandenbergh R F. Influence of temperature and ph on the quality of metastable Iron phases produced in zinc-rich solutions [J]. Hydrometallurgy,2007, 86(3-4):178-190.
    [99]关亚君.湿法炼锌常规工艺铁的浸出及沉铁pH值的研究[J].稀有金属,2006,(3):419-422.
    [100]Chen L, Tang X, Zhang Y, et al. Process for the recovery of cobalt oxalate from spent lithium-ion batteries[J]. Hydrometallurgy,2011,108(1-2):80-86.
    [101]Jandova J, Vu H, Dvorak P. Treatment of sulphate leach liquors to recover cobalt from waste dusts generated by the glass industry [J]. Hydrometallurgy,2005,77(1-2): 67-73.
    [102]朱澍.湿法炼锌针铁矿法沉铁过程终点pH值预测方法研究[D]:中南大学,2012.
    [103]Loan M, Newman O M G, Cooper R M G, et al. Defining the paragoethite process for iron removal in zinc hydrometallurgy [J]. Hydrometallurgy,2006,81(2): 104-129.
    [104]Claassen J O, Meyer E H O, Rennie J, et al. Iron precipitation from zinc-rich solutions:Defining the zincor process[J]. Hydrometallurgy,2002,67(1-3):87-108.
    [105]邓志明,周正华.湿法炼锌浸出沉铁探讨[J].湖南有色金属,2002,(1):23-25.
    [106]Pakarinen J, Paatero E. Recovery of manganese from iron containing sulfate solutions by precipitation[J]. Minerals Engineering,2011,24(13):1421-1429.
    [107]Shen Y F, Xue W Y, Niu W Y. Recovery of Co(Ⅱ) and Ni(Ⅱ) from hydrochloric acid solution of alloy scrap [J]. Transactions of Nonferrous Metals Society of China,2008,18(5):1262-1268.
    [108]Harvey R, Hannah R, Vaughan J. Selective precipitation of mixed nickel-cobalt hydroxide[J]. Hydrometallurgy,2011,105(3-4):222-228.
    [109]Mendes F D, Martins A H. Selective sorption of nickel and cobalt from sulphate solutions using chelating resins[J]. International Journal of Mineral Processing,2004, 74(1-4):359-371.
    [110]Mendes F D, Martins A H. Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption[J]. International Journal of Mineral Processing,2005,77(1):53-63.
    [111]Surucu A, Eyupoglu V, Tutkun O. Selective separation of cobalt and nickel by supported liquid membranes[J]. Desalination,2010,250(3):1155-1156.
    [112]黄明雯,宋鹂,张金朝.液相沉淀法制备草酸钻粉体的研究[J].无机盐工业,2008,(4):31-34.
    [113]徐明晗,丁时锋,宋鹂,等.用沉淀法制备超细草酸钴粉体[J].硅酸盐学报,2008,(3):367-372.
    [114]姜洪波.用湿法炼锌除钴渣生产氧化钴的可行性研究[D]:东北大学,2009.
    [115]李林波,洪涛,贾青,等.从湿法炼锌除钴渣的浸出液中分离钻的研究[J].有色金属(冶炼部分),2004,(3):13-15.
    [116]秦玉楠.电镍含钴废渣提取氧化钴新工艺[J].中国钼业,2001,(1):42-45.
    [117]Dorella G, Mansur M B. A study of the separation of cobalt from spent Li-ion battery residues[J]. Journal of Power Sources,2007,170(1):210-215.
    [118]刘春侠,王吉坤,谢刚,等.用过硫酸钠氧化富集钴镍渣中的钴[J].湿法冶金,2007,(3):154-156.
    [119]刘春侠,谢刚,王吉坤,等.锌湿法净化钴镍渣的综合回收[J].有色金属(冶炼部分),2006,(3):2-4.
    [120]Rane M V, Bafna V H, Sadanandam R, et al. Recovery of high purity cobalt from spent ammonia cracker catalyst[J]. Hydrometallurgy,2005,77(3-4):247-251.
    [121]何焕华,蔡乔方.中国镍钴冶金[M].北京:冶金工业出版社.2000:361-362.
    [122]彭志伟.红土镍矿有机酸浸提取镍钴的研究[D]:中南大学,2008.
    [123]曹南星.高含量铁砷硫酸钻液一步法除铁砷新工艺研究[J].江西冶金,1992,12(2):41-44.
    [124]欧俊,蓝德均.湿法炼锌除钴锌渣硫酸浸出液中高锰酸钾氧化沉钴热力学分析[J].桂林工学院学报,2006,(2):271-275.
    [125]Strbac N, Mihajlovic I, Andric V, et al. Kinetic investigations of two processes for zinc recovery from zinc plant residue[J]. Canadian Metallurgical Quarterly,2011, 50(1):28-36.
    [126]李元高,曾孟详,王松森,等.钻镍渣中锌的溶出动力学研究[J].厦门理工学院学报,2008,(2):36-40.
    [127]邵琼,兰尧中.湿法炼锌废渣综合浸出过程动力学研究[J].有色金属(冶炼部分),2006,(3):11-13.
    [128]Gharabaghi M, Irannajad M, Azadmehr A R. Leaching kinetics of nickel extraction from hazardous waste by sulphuric acid and optimization dissolution conditions[J]. Chemical Engineering Research and Design,2013,91(2):325-331.
    [129]Gharabaghi M, Irannajad M, Azadmehr A R. Leaching behavior of cadmium from hazardous waste[J]. Separation and Purification Technology,2012,86:9-18.
    [130]齐美富,乐红燕,方小刚.次氧化锌烟尘中镉的硫酸浸出动力学研究[J].能源与环境,2009,(5):14-15.
    [131]方小刚.高杂次氧化锌烟尘浸出特性及硫酸浸镉的研究[D]:南昌大学,2008.
    [132]冯其明,邵延海,欧乐明,等.废催化剂焙烧水浸渣中硫酸浸取钴的动力学研究[J].中南大学学报(自然科学版),2010,(1):21-26.
    [133]Hubli R C, Mittra J, Suri A K. Reduction-dissolution of cobalt oxide in acid media:A kinetic study[J]. Hydrometallurgy,1997,44(1-2):125-1341.
    [134]王松森.湿法炼锌净化渣-钻镍渣选择性溶出研究[D]:中南大学,2008.
    [135]Li G, Rao M, Jiang T, et al. Leaching of limonitic laterite ore by acidic thiosulfate solution[J]. Minerals Engineering, 11,24(8):859-863.
    [136]House J E, House K A. Chapter 15-sulfur, selenium, and tellurium. Amsterdam: Academic Press.2010:341-374.
    [137]Stivaninde Almeida C M, Ribeiro A S, Saint'Pierre T D, et al. Studies on the origin and transformation of selenium and its chemical species along the process of petroleum refining[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2009,64(6): 491-499.
    [138]Zhong L, Cao Y, Li W, et al. Selenium speciation in flue desulfurization residues[J]. Journal of Environmental Sciences,2011,23(1):171-176.
    [139]Uden P C. Selenium[M]. Oxford:Elsevier.2005:216-224.
    [140]周令治,陈少纯.稀散金属提取冶金[M].北京:冶金工业出版社.2008:281-316.
    [141]《稀有金属知识》编写组.稀散金属[M].北京:冶金工业出版社.1978.
    [142]沈华生.稀散金属冶金[M].上海:上海人民出版社.1976:125-144.
    [143]Behrens R G, Lemons R S, Rosenblatt G M. Vapor pressure and thermodynamics of selenium dioxide. The enthalpy of atomization of SeO2(g)[J]. The Journal of Chemical Thermodynamics,1974,6(5):457-466.
    [144]Floor G H, Iglesias M, Roman-Ross G, et al. Selenium speciation in acidic environmental samples:Application to acid rain-soil interaction at mount etna volcano[J]. Chemosphere,2011,84(11):1664-1670.
    [145]Pyrzynska K. Analysis of selenium species by capillary electrophoresis[J]. Talanta,2001,55(4):657-667.
    [146]Saygi K O, Melek E, Tuzen M, et al. Speciation of selenium(IV) and selenium(VI) in environmental samples by the combination of graphite furnace atomic absorption spectrometric determination and solid phase extraction on Diaion HP-2MG[J]. Talanta,2007,71(3):1375-1381.
    [147]Murillo M, Carrion N, Quintana M, et al. Determination of selenium and iodine in human thyroids[J]. Journal of Trace Elements in Medicine and Biology,2005,19(1): 23-27.
    [148]Navarro A M, Cabrera V C. Selenium in food and the human body:A review[J]. Sci Total Environ,2008,400(1-3):115-141.
    [149]Rayman M P. The importance of selenium to human health[J]. The Lancet,2000,356(9225):233-241.
    [150]Vinceti M, Crespi C M, Bonvicini F, et al. The need for a reassessment of the safe upper limit of selenium in drinking water[J]. Science of The Total Environment,2013,443:633-642.
    [151]葛清海,陈后兴,谢明辉,等.硒的资源、用途与分离提取技术研究现状[J].四川有色金属,2005,(3):7-11.
    [152]Lenz M, Lens P N. The essential toxin:The changing perception of selenium in environmental sciences [J]. Science of The Total Environment,2009,407(12): 3620-3633.
    [153]陈少纯,顾珩,高远,等.稀散金属产业的观察与思考[J].材料研究与应用,2009,(4):216-222.
    [154]王晓民.硒及其化合物的生产、消费和应用前景[J].世界有色金属,2011,(1):28-31.
    [155]罗淑琼.硒价上涨为这般[J].中国金属通报,2000,(34):6.
    [156]王兵.供应紧张硒价上调[J].功能材料信息,2007,(3):48.
    [157]吴海瀛.国际市场硒镉锑供应紧张价格上扬[N].中国有色金属报.2005-12-13.
    [158]冯彩霞,刘家军,刘粲.我国的硒资源及成矿条件初论[J].矿床地质,2002,(S1):812-815.
    [159]Velinsky D J, Cutter G A. Geochemistry of selenium in a coastal salt marsh[J]. Geochimica et Cosmochimica Acta,1991,55(1):179-191.
    [160]Bech J, Suarez M, Reverter F, et al. Selenium and other trace element in phosphorites:A comparison between those of the bayovar-sechura and other provenances [J]. Journal of Geochemical Exploration,2010,107(2):146-160.
    [161]Park M, Chon H T, Marton L. Mobility and accumulation of selenium and its relationship with other heavy metals in the system rocks/soils-crops in areas covered by black shale in korea[J]. Journal of Geochemical Exploration,2010,107(2):161-168.
    [162]Roca P L, Gil C, Cervera M L, et al. Selenium and heavy metals content in some mediterranean soils[J]. Journal of Geochemical Exploration,2010,107(2):110-116.
    [163]Iwashita A, Sakaguchi Y, Nakajima T, et al. Leaching characteristics of boron and selenium for various coal fly ashes[J]. Fuel,2005,84(5):479-485.
    [164]Otero R J, Mato F M, Moreda P J, et al. Influence of several experimental parameters on As and Se leaching from coal fly ash samples[J]. Analytica Chimica Acta,2005,531(2):299-305.
    [165]Su T, Wang J. Modeling batch leaching behavior of arsenic and selenium from bituminous coal fly ashes[J]. Chemosphere,2011,85(8):1368-1374.
    [166]Bech J, Suarez M, Reverter F, et al. Selenium and other trace elements in phosphate rock of Bayovar-Sechura (Peru)[J]. Journal of Geochemical Exploration, 2010,107(2):136-145.
    [167]Ryu J H, Gao S,Tanji K K. Accumulation and speciation of selenium in evaporation basins in California, USA[J]. Journal of Geochemical Exploration,2011, 110(2):216-224.
    [168]冯彩霞,刘家军,刘粲,等.硒资源及其开发利用概况[J].地质与资源,2002,(3):152-156.
    [169]刘家军,冯彩霞,郑明华.硒矿资源研究现状[J].世界科技研究与发展,2001,(5):16-21.
    [170]汪芳安,潘丛道.硒及富硒资源开发[J].粮食加工,1993,(4):34-36.
    [171]邢翔,郭建秋.硒的分布及综合利用研究[J].长江大学学报(自然科学版)理工卷,2008,(2):41-44.
    [172]Wen H, Carignan J. Selenium isotopes trace the source and redox processes in the black Shale-hosted Se-rich Deposits in China[J]. Geochimica et Cosmochimica Acta,2011,75(6):1411-1427.
    [173]Zhu J M, Johnson T M, Finkelman R B, et al. The occurrence and origin of selenium minerals in Se-rich stone coals, spoils and their adjacent soils in Yutangba, China[J]. Chemical Geology,2012,330-331:27-38.
    [174]Amer A M. Processing of copper anodic-slimes for extraction of valuable metals[J]. Waste Management,2003,23(8):763-770.
    [175]黎英,徐养良,沙梅,等.分银炉烟尘银、硒综合回收新工艺[J].有色金属 (冶炼部分),2011,(10):34-36.
    [176]斯科韦尔斯基,苏裕光.从生产硫酸的废泥中提取硒[J].化学世界,1958,(10):55-56.
    [177]徐盛明,刘景槐.从汞硒物料中回收汞和硒[J].有色金属(冶炼部分),1992,(2):11-13.
    [178]曹大义,崔瑞柏,戴义山.铜铅阳极泥处理[M].北京:中国工业出版社.1962.
    [179]王吉坤,张博亚.铜阳极泥现代综合利用技术[M].北京:冶金工业出版社.2008:1-254.
    [180]Bounoughaz M, Manzini M,Ghali E. Behaviour of copper anodes containing oxygen, silver and selenium impurities during electro-refining[J]. Canadian Metallurgical Quarterly,1995,34(1):21-26.
    [181]Lamontagne M, Pickles C A,Toguri J M. Effect of oxygen on the Cu-Cu2Se-Ag system[J]. Minerals Engineering,1999,12(12):1441-1457.
    [182]侯晓川,肖连生,张启修,等.硒提取工艺的研究现状及应用[J].稀有金属与硬质合金,2012,(2):1-5.
    [183]F H. Handbook of extractive metallurgy[M]. New York:Wiley-VCH.1977: 1491-1581.
    [184]E H J. Recovering selenium and tellurium from copper refinery slimes[J]. Journal of Metals,1989,(7):33-38.
    [185]尹善继,刘世武,张德杰.提高铜阳极泥中硒回收率的实践[J].中国有色冶金,2008,(3):28-29.
    [186]朱慧仁,陈芳兰.可溶阳极电解法分离粗碲中的硒[J].稀有金属与硬质合金,1990,(4):23-27.
    [187]黎鼎鑫,王永录.贵金属提取与精炼[M].长沙:中南大学出版社.2003.
    [188]高远,吴昊,王继民.高纯硒的制备方法[J].稀有金属,2009,(2):276-278.
    [189]金世平.真空蒸馏提取金属硒的工艺研究[D]:昆明理工大学,2004.
    [190]刘卫东.贵冶氧气燃烧法制取1号硒工艺简介[J].有色冶炼,1998,(1):6-8.
    [191]汤家道,杨晓明.云铜粗硒生产工艺沿革[J].云南冶金,2008,(4):31-33.
    [192]万雯.粗硒的真空蒸馏提纯工艺研究[D]:昆明理工大学,2006.
    [193]万雯,杨斌,刘大春,等.用真空蒸馏法提纯粗硒的研究[J].昆明理工大学学报(理工版),2006,(3):26-28.
    [194]马荣骏.铜铅锌冶炼中稀散金属的综合回收第三部分:铊、铼、硒、碲的回收[J].有色金属(冶炼部分),1978,(11):41-46.
    [195]周西银.粗锑加Me精炼除硒[J].有色金属(冶炼部分),1991,(4):14.
    [196]农大桂.铜阳极泥处理工艺的改进[J].中国有色冶金,2004,(6):44-46.
    [197]陈慧仙.大阪精炼厂从铜电解阳极泥中回收硒[J].有色冶炼,1983,(7):14-201.
    [198]梁君飞,柳松,谢西京.铜阳极泥处理工艺的研究进展[J].黄金,2008,(12):32-38.
    [199]杨长江,张旭,蓝德均.铜阳极泥脱硒工艺现状和趋势[J].四川有色金属,2005,(1):22-25.
    [200]钟菊芽.大冶铜阳极泥处理过程中有价金属元素物质流分析研究[D]:中南大学,2010.
    [201]季金华,陈礼宽.湿法提取阳极泥中硒的探索性试验[J].江苏地质,1998,(2):26-28.
    [202]康立武,王青云.铜阳极泥湿法处理工艺初探[J].世界有色金属,2011,(11):52-53.
    [203]李运刚.湿法处理铜阳极泥工艺研究-铜、硒、碲的浸出[J].湿法冶金,2000,(1):41-45.
    [204]Luo R, Rice N M, Taylor N, et al. A study of the oxidative dissolution of synthetic copper-silver selenide minerals using the intermittent galvanostatic polarisation (IGP) technique[J]. Hydrometallurgy,1997,45(1-2):221-238.
    [205]Tsukahara I, Tanaka M. Determination of gold in silver, copper, lead, selenium and anode slime by atomic-absorption spectrometry[J]. Talanta,1980,27(8):655-658.
    [206]Young R S. The analysis of copper refinery slimes[J]. Talanta,1976,23(2): 125-130.
    [207]尹湘华.预脱铜阳极泥回转窑蒸硒生产实践[J].铜业工程,2000,(1):35-38.
    [208]朱瑛昕,钱宏光,李新.从铜阳极泥中回收粗硒的生产实践[C].中国首届熔池熔炼技术及装备专题研讨会,中国云南昆明,2007:5.
    [209]Gu Z H, Chen J,Fahidy T Z. A study of anodic slime behaviour in the electrorefining of copper[J]. Hydrometallurgy,1995,37(2):149-167.
    [210]刘伟锋.碱性氧化法处理铜/铅阳极泥的研究[D]:中南大学,2011.
    [211]张博亚.铜阳极泥加压酸浸预处理工艺及机理研究[D]:昆明理工大学,2008.
    [212]Seidell A. Solubilities of inorganic and organic compounds [M]. Oxford: Pergaman.1979.
    [213]沙梅.铜阳极泥浮选处理工艺及实践[J].有色冶炼,2003,(5):27-29.
    [214]汪蓓.钢阳极泥预处理富集金银新工艺研究[D]:中南大学,2009.
    [215]黎英,徐养良,沙梅,等.液态S02还原硒的新工艺探索[J].昆明冶金高等专科学校学报,2011,(3):8-11.
    [216]杨文斌,王靖芳,王建民.离子交换法从铜阳极泥中提取高纯硒[J].稀有金属,1989,(4):300-303.
    [217]张钦发.从铜阳极泥分金钯后的铂精矿中提取分离铂钯金新工艺及萃取机理研究[D]:中南大学,2007.
    [218]Ali M M, Desai H B, Venkateswarlu C. A discrepancy in the analytical chemistry of tellurium:Separation of selenium and tellurium with application to anode slimes[J]. Analytica Chimica Acta,1979,107:415-418.
    [219]Chowdhury M R, Sanyal S K. Separation by solvent extraction of tellurium(Ⅳ) and selenium(Ⅳ) with tri-n butyl phosphate:some mechanistic aspects[J]. Hydrometallurgy,1993,32(2):189-200.
    [220]Chowdhury M R, Sanyal S K. Diluent effect on extraction of tellurium (Ⅳ) and selenium (Ⅳ) by tri-n butyl phosphate[J]. Hydrometallurgy,1994,34(3):319-330.
    [221]Hoh Y C, Chang C C, Cheng W L, et al. The separation of selenium from tellurium in hydrochloric acid media by solvent extraction with Tri-butyl Phosphate[J]. Hydrometallurgy,1983,9(3):381-392.
    [222]Sun Z M, Zheng Y J. Preparation of high pure tellurium from raw tellurium containing Cu and Se by chemical method[J]. Transactions of Nonferrous Metals Society of China,2011,21(3):665-672.
    [223]逯宝娣.溶剂萃取法分离提取硒碲的应用[J].内蒙古石油化工,2005,(,5):12-13.
    [224]钟勇.从高含硒、碲和贵金属富料中分离提取硒、碲研究[D]:昆明理工大学,2010.
    [225]高柳由行,陶海玲.竹原冶炼厂铜冶炼副产品的回收[J].有色矿冶,1990,(2):29-32.
    [226]矢冈隆,冷立山.竹原冶炼厂的副产品回收[J].有色冶炼,1989,(6):23-27.
    [227]Safizadeh F, Lafront A M, Ghali E, et al. An investigation of the influence of selenium on copper deposition during electrorefining using electrochemical noise analysis[J]. Hydrometallurgy,2012,111-112:29-34.
    [228]陈永康.从铜阳极泥的脱铜、硒废液中回收酸[J].有色冶炼,1986,(12):36-40.
    [229]肖峰.铅冰铜碱性高压浸出液富集硒的工艺研究[D]:中南大学,2011.
    [230]侯晓川,肖连生,高丛堦,等.从镍钼矿冶炼烟尘浸出液中还原硒的热力学及应用[J].中国有色金属学报,2010,(12):2431-2437.
    [231]黄国发,乔冬玉.碱液吸收法净化含硒废气[J].环境污染与防治,1983,(3):30-32.
    [232]赖建林,吴桂明,李勤.从蒸硒渣溶解液中回收硒[J].江西有色金属,1996,(2):35-37.
    [233]王琳,施永生.含硒水处理[M].北京:化学工业出版社.2005:1-76.
    [234]魏先红,邹光中,郭春花.硒与铁氧体共沉淀的研究[J].辽宁化工,2005,(7):280-281.
    [235]Zelmanov G, Semiat R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent[J]. Separation and Purification Technology,2013,103:167-172.
    [236]Geoffroy N, Demopoulos G P. The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide[J]. J Hazard Mater,2011,185(1): 148-154.
    [237]郭学益,田庆华.有色金属资源循环理论及方法[M].长沙:中南大学出版社.2008:23-33.
    [238]Krauskopf K B. Sedimentary deposits of rare metals[A].1955:411-463.
    [239]Hatten H J. Geochemistry of selenium:Formation of ferroselite and selenium behavior in the vicinity of oxidizing sulfide and uranium deposits[J]. Geochimica et Cosmochimica Acta,1977,41(11):1665-1678.
    [240]Lakin H W. Geochemistry of selenium in relation to agriculture[A]. In: Anderson M S (e d). Selenium in Agriculture[C]. US Department of Agriculture Agric Handb.200. US, Washington DC. Government Printing Office,1961:3-12
    [241]Subramanian K N, Nissen N C, Thomas J A. Recovery of selenium from copper anode slime[J]. Society Mineral Engineering,1978,30(11):1538-1542.
    [242]Hameda K. Kinetics of the Reduction of Selenious Acid by Sulfur Dioxide Reduction in Acidic Solution with Sulfuric Acid.Bulletin of the Chemical Society of Japan,1961,34:593.
    [243]Nishimura T, Hata R. Chemistry of the Ca-Se(IV)-H2O and Ca-Se(VI)-H2O systems at 25 ℃[J]. Hydrometallurgy,2007,89(3-4):346-356.
    [244]Seby F, Potin-Gautier M, Giffaut E, et al. A critical review of thermodynamic data for selenium species at 25℃[J]. Chemical Geology,2001,171(3-4):173-194.
    [245]Reeder R J, Lamble G M, Lee J-F, et al. Mechanism of SeO42- substitution in calcite:An xafs study[J]. Geochimica et Cosmochimica Acta,1994,58(24):5639-5646.
    [246]Aurelio G, Fernandez-Martinez A, Cuello G J, et al. Structural study of selenium(TV) substitutions in calcite[J]. Chemical Geology,2010,270(1-4):249-256.
    [247]Chiu T M, Horng J S, Hoh Y C. Kinetic studies on selenious acid reduction at higher Se(IV) concentration[J]. Hydrometallurgy,1981,7(1-2):135-146.
    [248]Hou X, Xiao L, Gao C, et al. Kinetics of leaching selenium from Ni-Mo ore smelter dust using sodium chlorate in a mixture of hydrochloric and sulfuric acids[J]. Hydrometallurgy,2010,104(1):76-80.
    [249]侯晓川.镍钼矿冶炼烟尘中硒的提取新工艺及其机理研究[D]:中南大学,2011.
    [250]Pettine M, Gennari F, Campanella L, et al. The reduction of selenium(IV) by hydrogen sulfide in aqueous solutions[J]. Geochimica et Cosmochimica Acta,2012,83: 37-47.
    [251]郑雅杰,陈昆昆,孙召明.S02还原沉金后液回收硒碲及捕集铂钯[J].中国有色金属学报,2011,(9):2258-2264.
    [252]陈昆昆.沉金后液中回收硒碲及硒浸出动力学[D]:中南大学,2012.
    [253]邵建广,曾桂生,李慧,等.炼锑砷碱渣中锑硒分离及动力学研究[J].有色金属(冶炼部分),2012,(2):5-8.
    [254]梁平.计算机在水法冶金中的应用[M].北京:清华大学出版社.1987:4-9.
    [255]殷瑞钰.冶金流程工程学[M].北京:冶金工业出版社.2009:116-224.
    [256]尹才研.论冶金数学模型的建立[J].有色金属(冶炼部分),1980,(6):3440.
    [257]陈家祥.钢铁冶金学[M].北京:冶金工业出版社.1990:5-110.
    [258]野板康雄.钢铁工业中的计算机控制[M].上海:科学技术出版社.1982.
    [259]Kerr T, Masao F, Masakazu M, et al. New endpoint control system with Auto-parameter turning in BOF. Steelmaking conference proceedings [J].1995: 715-719.
    [260]杨超,吴龙,李士琦,等.转炉提钒工艺模型的研究[J].河南冶金,2009,(6):4-5.
    [261]杨超,吴龙,李士琦,等.转炉提钒工艺模型的研究[C].中国金属学会特钢分会,特钢冶炼学术委员会2009年会,中国山东青岛,2009:5.
    [262]Galloway S M, Green M J, Balajee S R. Improvement in Furnace Performance at Inland Steel Company's No.2 BOF Shop Through Models Utilization and Standardization of Operating Practices[J]. Steelmaking conference proceedings,1991: 389-396.
    [263]Hara T, Nakamura H, Tawara M, et al. Development of Direct Tapping at No.2 Steelmaking Shop in Kure Works[J]. Steelmaking conference proceedings,1989: 155-158.
    [264]Abbulangelo A, Dalla Rena M, Palcbelli M, et al. Blowing Pattern Computerised Control at Taranto Steelshop[J]. Steelmaking conference proceedings,1990:337-342.
    [265]杨旗.转炉提钒静态模型研究[D]:重庆大学,2002.
    [266]尹锡军.转炉提钒静态模型及应用[J].四川冶金,2006,(2):8-11.
    [267]喻淑仁.转炉炼钢过程静态控制及其数学模型[J].炼钢,1995,(3):55-60.
    [268]甄小鹏,谢兵,赵重阳,等.转炉提钒终点钒的分配行为[J].北京科技大学学报,2012,(12):1371-1378.
    [269]郭杰,林姜多,刘之彭,等.不锈钢渣熔融还原中铬在铁浴和熔渣间的分配行为[J].有色金属(冶炼部分),2011,(6):1-3.
    [270]张弘平.基于工厂建模的冶金质量模型[J].计算机应用与软件,2012,(8):164-166.
    [271]张鹏飞.难浸金矿石加石灰焙烧预处理的经验数学模型[J].中国矿业,1998,(1):76-78.
    [272]胡广浩,毛志忠,周俊武,等.湿法冶金浸出过程建模与仿真研究[J].系统仿真学报,2011,(6):1220-1224.
    [273]黄瑛.湿法冶金浸出过程建模与优化[D]:东北大学,2009.
    [274]郝卫东,桂卫华,吴敏.湿法炼锌净化过程的数学模型和优化控制[J].北京科技大学学报,1996,(4):370-373.
    [275]王凌云.湿法炼锌净化过程建模及基于控制参数化的优化方法[D]:中南大学,2009.
    [276]常玉清,梁倩,王姝,等.湿法冶金草酸钻粒度分布建模与优化研究[J].东北大学学报(自然科学版),2012,(11):1533-1537.
    [277]王夏书.草酸钴粒度分布的RBFNN混合建模与优化[D]:东北大学,2008.
    [278]张淑宁,王福利,尤富强,等.湿法冶金草酸钴粒度分布混合建模方法[J].东北大学学报(自然科学版),2010,(1):8-11.
    [279]范俊杰.湿法炼锌净液钴离子浓度在线检测及预测模型的研究与实现[D]:中南大学,2008.
    [280]刘梅花.湿法炼锌除钴过程离子浓度预测及应用研究[D]:中南大学,2009.
    [281]熊富强,桂卫华,阳春华,等.基于PLS-LSSVM方法的湿法炼锌过程预测建模[J].仪器仪表学报,2011,(4):941-948.
    [282]师丽强.锌液净化砷盐作钴过程钴离子浓度预测模型研究与实现[D]:中南 大学,2012.
    [283]朱红求.锌冶炼除钴过程建模与智能优化方法研究及应用[D]:中南大学,2010.
    [284]高伟.案例推理方法在砷盐净化除钴中的应用[D]:中南大学,2011.
    [285]李浩.针铁矿法沉铁过程铁离子浓度预测模型研究及系统开发[D]:中南大学,2011.
    [286]陈爱国.湿法炼锌过程中钴的分布与控制[J].中国有色冶金,2004,(3):14-17.
    [287]陈爱国.镉在湿法炼锌过程中的分布与控制[J].湖南有色金属,2002,(S1):1-4.
    [288]刘常青,张平民,尹周澜,等.数学模型在氧化铝生产种分过程中的应用[C].2004年全国冶金物理化学学术会议,中国郑州,2004:4.
    [289]张本法.工业污水处理过程控制与建模研究[D]:江南大学,2007.
    [290]Guo X Y, Shi W T, Li D, et al. Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching[J]. Transactions of Nonferrous Metals Society of China,2011,21(1):191-195.
    [291]李洪桂.冶金原理[M].北京:科学出版社.2005.
    [292]蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社.1984:117-123.
    [293]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社.1993:16-449.
    [294]杨显万.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社.1983:20-696.
    [295]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社.1986:80-101.
    [296]Liang C J, Bruell C J, Marley M C. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries [J]. Soil and Sediment Contamination:An International Journal,2003,12 (2):207-228.
    [297]华一新.冶金过程动力学导论[M].北京:冶金工业出版社.2004.
    [298]曾凡,胡永平,杨毅,等.矿物加工颗粒学[M].徐州:中国矿业大学出版社.2001:136-137.
    [299]周玉琳.湿法炼锌洗渣过程中体积平衡及酸根平衡研究[J].湖南有色金属,2012,(5):33-36.
    [300]Eckel B. Thinking in java[M].北京:机械工业出版社.2007:389-437.
    [301]杨文军,董玉涛.Java程序设计教程[M].北京:清华大学出版社.2010.
    [302]程杰.大话设计模式[M].北京:清华大学出版社.2007:1-15.
    [303]孙卫琴.Java面向对象编程[M].北京:电子工业出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700