用户名: 密码: 验证码:
方铅矿—软锰矿协同浸出直接制备铅、锰氧化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的铅氧化物制备方法要经历金属铅的冶炼和氧化物制备两个过程,流程长、成本高、环境污染严重。从环保及节约能源出发,开发方铅矿—软锰矿协同浸出直接制备铅、锰氧化物新工艺,以替代从铅金属—氧化铅的传统生产工艺具有很大的意义。本文针对从硫化铅矿物资源(即方铅矿精矿)直接制备PbO技术性问题,进行了如下研究:(1)浸出体系的选择和浸出机理的研究;(2)浸出的铅盐的转型与选择性除杂;(3)化学沉淀法制备细粒PbO粉体。通过“协同浸出—选择性除杂—化学合成”的技术路线达到制备PbO和Mn3O4的目的,主要的研究内容和结论如下:
     1)研究了氯化铵体系中方铅矿转化过程的浸出行为,Tafel曲线和EIS腐蚀电化学分析结果表明,浸出过程生成的钝化膜主要成分为PbCl2。研究了三氯化铁体系中方铅矿转化为可溶性铅盐的浸出过程,浸出过程中加入NaCl,加快了浸出反应速度。
     研究确定了FeCl3-NaCl-PbS溶液体系方铅矿与FeCl3反应的腐蚀原电池反应机理,NaCl的加入增大了Cl-离子的浓度,促使络合反应的发生,从而加快PbCl2的溶解,加速方铅矿表面反应的发生。
     2)在FeCl3-NaCl体系研究金属离子Pb2+在不同反应体系中各种组分间的复杂相互作用,及其存在形态、分布和有效控制机制。取得的主要研究结果如下:(1)氯化介质中方铅矿的溶液化学。对方铅矿固体表面的氯络合-溶解行为进行研究,计算考察颗粒表面固体反应产物(PbCl2)的生成与溶解,研究确定FeCl3-NaCl-PbS溶液体系中PbCl2形成及其与溶液相中Cl-结合发生氯络合反应的络合平衡关系。(2)氯化介质中方铅矿的腐蚀电化学。三氯化铁可将方铅矿氧化为可溶性的PbCl2铅盐,在浸出过程中可加入NaCl,使浸出反应生成的PbCl2进一步变成PbCl42-络离子,增大氯化铅在溶液中的溶解度,加快浸出反应速度。
     3)方铅矿—软锰矿协同浸出及研究,利用廉价的软锰矿作为氧化剂,与方铅矿同时浸出得到铅的化合物和锰的化合物,既解决了方铅矿的氧化剂的问题又解决了软锰矿还原浸出中还原剂的来源问题,又得到了Mn3O4。对方铅矿和软锰矿中铅和锰的浸出、浸出液的净化、硫酸铅的制备以及Mn3O4的制备进行了试验研究;采用电化学测试、配位计算、X—射线衍射、扫描电镜以及电子能谱等方法探讨其反应机理。
     方铅矿、软锰矿在盐酸溶液和NaCl溶液中的Tafle极化曲线及EIS图表明:电解质溶液中无NaCl时,方铅矿矿物电极在氧化过程中生成了表面膜层,该膜层阻碍方铅矿氧化反应的继续进行,降低了反应速率;配位体NaCl的加入能使方铅矿表面膜层的“阻力”大大降低,提高方铅矿的反应速率;盐酸浓度的变化,也有相似的现象。
     4)溶液化学研究结果表明,浸出过程中PbCl2主要以[PbCl4]2-配合物的形式存在于溶液中,pClop=0.04\[Cl-]T=0.92mol/L为PbCl2的转溶点,温度对氯化铅在氯化钠溶液中的溶解度影响明显,可以采用降温和稀释同时进行的方法使得浸出的氯化铅从浸出的溶液中析出,随温度降低,[Pb2+]Tmin点下降,是冷却结晶析出PbCl2晶体的化学原理。
     5)从方铅矿精矿浸出产物(PbCl2)制备PbSO4,然后采用化学沉淀法生成前驱体—碳酸铅(PbCO3)和碱式碳酸铅(2PbCO3·Pb(OH)2)的混合物,前驱体物质在不同的分解温度下可分别得到稳定的中间产物PbOx、Pb3O4和PbO。控制分解温度制备了超细、高纯的PbO功能粉体,所制得的PbO为黄色斜方晶系,且不含其它杂质峰,粉末颗粒呈片状,平均粒径为5μm。
     6)对方铅矿—软锰矿两矿浸出后,含锰溶液通过分离和净化。浸出液中铁的脱除方法如下,调节溶液的pH值为3.5-4.0利用溶液中未反应完的软锰矿将二价铁离子氧化为针铁矿以脱除。含锰溶液中铅离子、锌离子的脱除采用硫化法,脱除后溶液中的铅离子、锌离子浓度分别为7.73×10-7和1.28×10-6mol/L。含锰溶液中钙离子的脱除采用加入NH4F的方法,脱除后溶液中的钙离子浓度为0.11×10-5mol/L。进行了氧化制备Mn304工艺的试验研究,讨论了Mn3O4制备过程中的机理,通过X—衍射分析、热重分析及能谱分析也证明所制备样品的主要物相为Mn3O4。
The preparation of electrode active material lead-sulfate and mangano-anganic-oxide from galena concentrate and pyrolusite using two-ores method was investigated.
     There are four main components in this research:the recover of lead and manganese, the purification of leaching solution, the preparation of the lead sulfate and the mangano-manganic oxide, and some discussions on the reaction mechanism by XRD, SEM, XPS, the electrochemistry test and complexing coordinate computation. More details are described as follows.
     Some factors which have effects on the lead recovery and the leaching reaction rate were explored and optimized. The reaction mechanism was studied by electrochemistry test, the complexing computation and microscopic examination. The results show that the formation of production S0membrane and the insolvent production lead-chloride membrane prevent the reaction between the galena and pyrolusite. Adding sodium-chloride at the very beginning of the reaction and adding hydrochloric acid twice during reaction will remarkably increase the recovery of lead and manganese.
     The iron in the leaching solution can be removed by the goethite method. The most appropriate pulp pH value was found out by the experiment. The concentration of the iron-ion, the lead-ion, the manganese-ion, the zinc-ion at the different pulp pH values were calculated by thermodynamics method, the computed results are consistent with the experimental conclusion.
     The influence of diluting the leaching solution with distilled water on the lead separating from the solution was researched. The complexing computation shows that the lead ion dissolves in the solution with different complex compound shapes at different temperatures and concentration of Cl-[Cl-]=1mol/L is the appropriate value of separating the lead chloride from the sodium-chloride solution. The atmospherics pressure vulcanization was used to remove heavy metal ions from the solution. The influence of the factors of vulcanization on the removing rate of the heavy metal ion was studied, and the most appropriate factors of vulcanization were found out. The analysis on the thermodynamics shows that the concentration of sulfur-ion is the key factors affecting the removing rate of the heavy metal ion at certain pulp pH value.
     The conditions of preparing the lead sulfate were studied. The experimental results show that the reaction time and the pulp pH value are the key factors affecting the purity and the average grain diameter of product. The XRD and SEM analyses on the composition and the appearance of product show that the purity of product is99.83%, the average grain diameter of product is250nm.
     The mangano-manganic oxide was prepared from the purified manganese chloride solution. The preparing conditions were researched by the single factor method and the orthogonal factor method, the most appropriate factors of preparing the mangano-manganic oxide were found out. The E-pH curves of Mn-O-H2O at60℃was drawn up by the thermo-dynamicsis calculation. In addition, the condition of the mangano-manganic-oxide stable existence was discussed based on the E-pH curves. Both the theoretical calculation and the experimental result show that the pulp pH value is the determining factor preparing the mangano-manganic-oxide pure phase. Also the pulp pH is the key factor increasing the produce rate. The XRD and XPS analyses on the product further show that the production is the pure phase mangano-manganic-oxide.
引文
[1]索恩等编.硫化矿冶炼的进展,上册:基本原理[M],包晓波,邓文基译,北京:冶金工业出版社,1990
    [2]索恩等编,包晓波,邓文基译.硫化矿冶炼的进展,下册:生产技术和实践[M],北京:冶金工业出版社,1991
    [3]朱松然主编,铅蓄电池技术(第2版)[M],北京:机械工业出版社,2005
    [4]何启贤,陆玺争.铅锑冶金生产技术[M],北京:冶金工业出版社,2005
    [5]彭容秋.铅冶金[M],长沙:中南大学出版社,2005
    [6]叶锦华,陈正,叶锦族.中俄主要固体矿产资源潜力比较研究[J],中国国土资源经济,2010,8:9-17
    [7]《铅锌冶金学》编委会.铅锌冶金学[M],北京:科学出版社,2003.18
    [8]康义.加快发展方式转变促进我国有色金属工业科学发展[J],中国金属通报,2010,31:14-21
    [9]D Renock, U Becker. A first principles study of coupled substitution in galena[J], Ore Geology Reviews,211,42 (1):71-83
    [10]高福裕等主编,矿物学[M],北京:地质出版社,1985
    [11]王晔,中国铅行业发展及展望[J],有色金属工程,2011,1(1):27-29
    [12]韦振明,潘菊芬,赖春华,等.某铅锌银硫化矿的分段电位调控浮选[J],金属矿山,2010,5:81-88
    [13]顾帼华.硫化矿电位调控浮选及原生电位浮选技术[J],有色金属,2000,52(2):18-22
    [14]李舲值,林大泽.锡铁山铅锌矿原生电位调控浮选研究[J],中国工程科学,2005(9):364-369
    [15]王淀佐,浮选理论的新进展[M],北京:科学出版社,1992
    [16]云霞,马铜林.原生电位调控浮选新工艺在锡铁山铅锌矿的应用[J],甘肃冶金,2009,31(4):107-108
    [17]M Radivojevic, T Rehren, E Pernicka, D Sljivar, M Brauns. On the origins of extractive metallurgy:new evidence from Europe Original Research Article[J], Journal of Archaeological Science,2010,3 (1):2775-2787
    [18]汪金良,吴艳新,张文海.铅冶炼技术的发展现状及旋涡闪速炼铅工艺,有色金属科学与工程,2011,2(1):14-18
    [19]张红耀,王吉坤.旋涡柱铅闪速熔炼工艺研究进展[J],云南冶金,2010,39(6):37-49
    [20]陈海清,马兆华,刘亚雄.QSL炼铅法在我国的工业实践及主要操作参数的研究[J],湖南有色金属,2006,6:23-26
    [21]李若贵,我国铅锌冶炼工艺现状及发展[J],中国有色冶金,2010,6:13-19
    [22]张合文译,基夫赛特-焦滤层法-熔炼含铅锌铜原料的通用工艺[J],有色冶炼,1998(3):20-25
    [23]郭海军,工业化的基夫赛特法铅熔炼工艺[J],世界有色金属,2007,7:17-23
    [24]曹异生,国际铅工业进展及前景展望[J],中国金属通报,2008,43:34-37
    [25]李卫锋,张晓国,郭学益,张传福.我国铅冶炼的技术现状及进展[J],中国有色冶金,2010,2:29-33
    [26]何德文,周欢年,刘蕾.铅冶炼技术进展及污染防治[J],2011,40:18-19
    [27]M Renzi, I Montero-Ruiz, Ml Bode. Non-ferrous metallurgy from the Phoenician site of La Fonteta (Alicante, Spain):a study of provenance [J], Journal of Archaeological Science,2009,36(11):2584-2596
    [28]M Mihaljevic, M Zuna, V Ettler, O Sebek, et al. Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Pribram, Czech Republic) [J], Science of The Total Environment,2006,372(1):334-344
    [29]G. Nazari, D Dixon, D Dreisinger. The role of galena associated with silver-enhanced pyrite in the kinetics of chalcopyrite leaching during the GalvanoxTM process[J], Hydrometallurgy,2012, (111-112):35-45
    [30]I Chernyshova. An in situ FTIR study of galena and pyrite oxidation in aqueous solution[J], Journal of Electroanalytical Chemistry,2003 (558) 83-98
    [31]A Baba, F Adekola. A study of dissolution kinetics of a Nigerian galena ore in hydrochloric acid, Journal of Saudi Chemical Society[J], Corrected Proof, Available online 16 February 2011
    [32]A Baba, F Adekola, S Panda. Bioleaching of Zn(Ⅱ) and Pb(@) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria[J], Transactions of Nonferrous Metals Society of China,2011,21(11):2535-2541
    [33]R Zarate-Gutierrez, G. Lapidus, R Morales, Aqueous oxidation of galena and pyrite with nitric acid at moderate temperatures[J], Hydrometallurgy,2012, (115-116):57-63
    [34]陈国发.重金属冶金学[M],北京:冶金工业出版社,2003
    [35]Sinadinovic D, Kamberovic Z, Sutic A. Leaching kinetics of lead from lead(2): sulphate in aqueous calcium chloride and magnesium chloride[J], Hydrometallurgy,1997,47:137-147
    [36]Balaz P Influence of solid state properties on ferric chloride leaching of mechanically activated galena[J], Hydrometallurgy,1996,40(3):359-368
    [37]Salih Aydogan, Ali Aras, Gokhan Ucar, Murat Erdemoglu. Dissolution kinetics of galena in acetic acid solutions with hydrogen peroxide[J], Hydrometallurgy,2007, (89)189-195
    [38]Irma Cisneros-Gonza'lez, Mercedes T, Oropeza-Guzma'n, Ignacio Gonza'lez. An electrochemical study of galena concentrate in perchlorate medium at pH 2.0: the influence of chloride ions[J], Electrochimica Acta,2000,45:2729-2741
    [39]陈家越.方铅矿湿法冶金探索[J],宁德师专学报(自然科学版),2000,12(1):47-49
    [40]Salih Aydogan, Murat Erdemoglu, Gokhan Ucar, Ali Aras. Kinetics of galena dissolution in nitric acid solutions with hydrogen peroxide[J], Hydrometallurgy, 2007, (88):52-57
    [41]R Zarate-Gutierrez, G. Lapidus, R Morales. Pressure leaching of a lead-zinc-silver concentrate with nitric acid at moderate temperatures between 130 and 170℃[J], Hydrometallurgy,2010, (104):8-13
    [42]J Nava, M Oropeza, I Gonza'lez. Electrochemical characterisation of sulfur species formed during anodic dissolution of galena concentrate in perchlorate medium at pH 0, Electrochimica Acta,2002 (47):1513-1525
    [43]刘辉,覃文庆,解晶莹,等.氯化介质中PbS固体表面的氯络合-溶解行为[J],化学通报,2006,7:498-502
    [44]T Patrick. Proceedings of the TMS Fall Extraction and Processing Conference[C], 2003(1):461-466
    [45]D Gabriel. Kinetics and mechanism of the bacterial and ferric sulphate oxidation of galena[J], Hydrometallurgy,2004,75(1-4):99-110
    [46]周丽,李和平,徐丽萍.硫酸铁溶液中方铅矿溶解的混合电位振荡现象[J],中南大学学报(自然科学版),2006,37(3):579-582
    [47]Liao M X, Deng T L. Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach[J], Minerals Engineering,2004, 17(1):17-22
    [48]R Smart, C Greet. Diagnostic leaching of galena and its oxidation products with EDTA[J], Minerals Engineering,2002,15(7):515-522
    [49]Zhang Sheng, Li Jian-ping, Wang Yu-rong, Hu Guang-qian. Dissolution kinetics of galena in acid NaCl solutions at 25-75oC[J], Applied Geochemistry, 2004 (19):835-841
    [50]A Kholmogorov, O N Kononovab. Recovery of lead from sulfide concentrate after mechanochemical activation using nitric acid[J], Chinese J. Chem. Eng., 2005,13(1):91-95
    [51]P Balaz. Influence of solid state properties on ferric chloride leaching of mechanically activated galena[J], Hydrometallurgy,1996,40:359-368
    [52]P Balaz, L Takacsb, M Luxova. E Godocikova and J Ficeriova, Mechanochemical processing of sulphidic minerals[J], International Journal of Mineral Processing, 2004,74(S):365-371
    [53]Wang S, Fang Z, Wang Y, Chen Y. Electrogenerative leaching of galena with ferric chloride[J], Minerals Engineering,2003,16(9):869-872
    [54]Hu Hui-ping, Chen Qi-yuan, Yin Zhoul-an, Hang Ping-min, Tang Ai-dong. Oxidation behavior of mechanically activated galena in thermogravimetry (TG) [J], Thermochimica Acta,2003,395:139-144
    [55]Erika Godockova, Peter Balaz, Eva Boldizarova. Structural and temperature sensitivity of the chloride leaching of copper, lead and zinc from a mechanically Activated complex sulphide[J], Hydrometallurgy,2002,65:83-93
    [56]Liu Qing-you, Li He-ping, Zhou Li. Experimental study of pyrite-galena mixed potential in a flowing system and its applied implications[J], Hydrometallurgy, 2009,96:132-139
    [57]Peng Yong-jun, S Grano. Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids[J], Journal of Colloid and Interface Science,2012,347(1):127-131
    [58]王吉坤,冯桂林,徐晓军,等.有色金属矿产资源的开发及加工技术[M],昆明:云南科技出版社,2000年
    [59]杨显万,邱定蕃.湿法冶金[M],北京:冶金工业出版社,2002年
    [60]陈家镛.湿法冶金的研究与进展[M],北京:冶金工业出版社,1995年
    [61]M.Kobayashi, etal. A critical review of the ferric chloride leaching of galena[J]. Canadain Metalurgicall.Quarterly,1990,29(3):201-211
    [62]Long Huai-zhong, Chai Li-yuan, Liu Hui, Hydro-chemical conversion of galena in FeC13-KCl solution[J], Trans. Nonferrous Met. Soc. China,2009,19 (8):1331-1335
    [63]夏星,杨天足,刘伟峰,等.贵锑选择性氯化浸出富集金过程中铅的行为研究[J],贵金属,2008,29(1):5-10
    [64]Gong Ya-Jun, Chen Jia-Yong. Kinetics of conversion of galena into lead carbonate in ammonium carbonate solution in the presence of cupric ion[J]. Hydrometallurgy,1993,33:177-195
    [65]Gong Qian, Gong Ya-jun. Oxidation of galena in ammonium carbonate solution and applied reactor[J]. Transactions of Nonferrous of China.1995,5(3):41-44
    [66]朱国才,方兆珩,陈家墉.多硫化物浸取含金硫化矿的研究[J],贵金属,1995,15(2):26-31
    [67]陆克源,于红,安振涛,等清洁工艺生产铅[J],化学进展,1998,10(3):343-346
    [68]吴萍,马宠,李华伦.钼铜铅锌硫化矿脱铅富硫新工艺[J],矿产综合利用,2001(5):13-16
    [69]张保平,唐谟堂.氨浸法在湿法炼锌中的优点及展望[J],江西有色金属研究,有色金属,1992,44(4):36-51
    [70]陈孟杰,许晏彰,林正雄.废铅蓄电池极板粉末湿式处理回收铅[J],过程工程学报,2009,9(2):71-75
    [71]司云森,杨显万.硅氟酸溶液中方铅矿的阳极氧化动力学研究[J],有色金属,2009,54(4):59-60
    [72]Y Saddeek, M Gaafar, S Bashier. Structural influence of PbO by means of FTIR and acoustics on calcium alumino-borosilicate glass system[J], Journal of Non-Crystalline Solids,2010,356(20-22):1089-1095
    [73]王金良,孟良荣,胡信国.铅蓄电池产业链铅污染和铅资源分析-铅蓄电池用于电动汽车的可行性分析[J],电池工业,2011,16(4):242-245
    [74]邱广涛,潘继先,黄伟昌,等.铅酸蓄电池极板清洁生产的研究[J],蓄电池,2011,48(5):195-199
    [75]黄仲权.我国铅锌工业发展的现状与对策建议[J],世界有色金属,2004,8:4-7
    [76]伊晓波.中国铅酸蓄电池产业发展分析[J],中国有色金属,2010,15:38-39
    [77]舒月红,陈红雨.推行清洁生产促进铅酸蓄电池行业可持续发展[J],蓄电池,2010,47(4):147-151
    [78]刘辉,从铅的矿物资源及二次资源直接制备超细粉体材料的研究[J],中南大学硕士学位论文,2005
    [79]间智刚,胡信国.铅酸蓄电池正极材料硫酸铅的研究[J],电源技术,2003,27(5):145一147
    [80]包有富,王金玉,等.碳酸铅作为正极活性物质的性能[J],电池,2004,2:106-108
    [81]戴忠旭,汪的华,邹津耘,周运鸿.碳酸铅作为铅酸蓄电池电极材料的研究[J],环境科学,1999,20(3):55-58
    [82]包有富,尹鸽平,童一波.PbCO3作为铅酸电池正极铅膏材料[J],电池,2002,32(4):230-232
    [83]包有富,胡信国,童一波.废旧铅酸电池的回收和再利用[J],电源工业,2002,7(2):92-93
    [84]马国正,董李,熊正林,等.铅铅酸蓄电池生产中的节能减排新工艺[J],材料研究与应用,2010,4(4):264-267
    [85]李娟,龚良玉,夏熙.α-PbO纳米粉体的固相合成及其对Mn02电极材料的改性作用[J],应用化学,2001,18(4):264-268
    [86]龚良玉,曹艳霞,刘海东.低热固相氧化反应合成二氧化铅纳米片[J],无机盐工业,2008,40(10):21-25
    [87]夏熙,龚良玉.Pb02纳米粉体的固相合成及其对Mn02电极材料的改性作用[J],化学学报,2002,6(1):87-92.
    [88]夏熙,龚良玉,李娟.纳米PbO粉体改性MnO2的循环伏安行为[J],应用化学,2001,18(12):953-957
    [89]龚良玉,夏熙,李娟.固相合成β-PbO纳米粉体及相关过程的研究[J],无机材料学报,2001,16(5):969-972
    [90]杜江燕,李人宇,朱晓蕾,等.铅(Ⅱ)化合物与NaOH室温条件下的固相化学反应研究[J],无机化学学报,1999,15(3):383-387
    [91]马凤国,邵自强,宋缪毅,等.纳米级氧化铅粉体的合成[J],合成化学,2001,Vol.9,No.5,449-451
    [92]Zeng Shu-wen, Liang Yen-nan, Lu Hai-fei. Synthesis of symmetrical hexagonal-shape PbO nanosheets using gold nanoparticles[J], Materials Letters, 2012,67(1):74-77
    [93]C Hernan, L Morale. Spray pyrolysis as a method for preparing PbO coating amenable to use in lead-acid batteries[J], Power Sources,2002(108):35-40
    [94]M Cruz, L Hernan, J Morales, L Sanchez. Spray pyrolysis as a method for preparing PbO coatings amenable to use in lead-acid batteries [J], Journal of Power Sources,2002, (108) 35-40
    [95]M Cruz, J Morales, L Sanchez. Positive thin electrodes obtained from hydro thermally synthesized 4BS for lead-acid batteries[J], Journal of Power Sources,2006, (157):579-583
    [96]M H Cao, C W Hu, G Peng. Selected-control synthesis of PbO2 and Pb3O4 single-crystalline nanorods[J], Journal of the American Chemical Society,2003,125 (17):4982-4983
    [97]Chen Kuang-Cai, Wang Chang-Wei, Lee Yong-Ill, Liu Hong-Guo. Nanoplates and nanostars of β-PbO formed at the air/water interface[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,373(1-3):124-129
    [98]M Sonmez, R Kumar, Leaching of waste battery paste components. Part 1:Lead citrate synthesis from PbO and PbO2, Hydrometallurgy,2009,95(1-2):53-60
    [99]徐本军.从方铅矿精矿和软锰矿直接制备硫酸铅和四氧化三锰材料的研究[D],中南大学博士论文,2005
    [100]Lin Gun-liu. Chuna Chenglin, etal, Formation of diamond by decarbonation of MnCO3[J], Solid state communications,2000,118:195-198
    [101]华一新,刘纯鹏,等.微波促进MnO2分解的动力学[J],中国有色金属学报,1998,(3):497-501
    [102]华一新,姚刚,等.用差热-差重联合法研究软锰矿的碳热还原[J],昆明理工大学学报,1998,23(3):85-90
    [103]A Khalid, Qiumei Zeng, Kangbing Wu, Kaixun Huang, Mn3O4 nanoplates and nanoparticles:Synthesis, characterization[J], electrochemical and catalytic properties, Journal of Solid State Chemistry,2010,183(3):744-751
    [104]朱刚,焦宝娟.四氧化三锰的简易制备及其作为电池阳极材料的电化学性能研究[J],应用化工,2011,40(5):836-838
    [105]赵留喜,孙亚光,余丽秀.中国锰银矿资源分布及特性[J],中国矿业,2009,18(7):16-18
    [106]汤林,陈权启,黄可龙.水热法四氧化三锰超细粉体的研制与表征[J],矿冶工程,2003,23(2):63-65
    [107]高翔,鲁安怀,郑辙.锰的氧化物和氢氧化物在污染水体净化中的应用研究现状[J],矿物岩石,2002,22(1):77-81
    [108]刘瑞,秦善,鲁安怀.锰氧化物和氢氧化物中的孔道结构矿物及其环境属性[J],矿物岩石,2003,24(3):28-33
    [109]汤林,陈权启.水热法四氧化三锰超细粉体的正交实验设计及讨论[J],精细化工中间体,2003,33(1):28-33
    [110]P Sahoo, R Srinivasa, Sulphation-roasting of low-grade manganese ores-optimisation by factorial design[J], Int J Mineral Processing,1989,25:147-152.
    [111]黄琼.用氧化锰矿和黄铁矿制取锰产品述评[J],中国锰业,988,3:32-34
    [112]A Lele, etal. Studies on leaching behavior of prereduced manganese ore[J], Trans Indian Inst Met,1980,33(2):2-170
    [113]D Fuerstenau, K Han. Metallurgy and processing of marine manganese nodules[J], Miner Process Technol.Rev,1983,1:1-83
    [114]T Sharma. Physico-chemical processing of low grade manganese ore[J], Int. J.Miner. Process,1992,35(3-4):191-203
    [115]A Kholmogorov, A Zhyzhaev. The production of manganese dioxide from manganese ores of some deposits of the Siberian region of Russia[J], Hydrometallurgy,2000,56(1):1-11
    [116]S Kanungo, R Das. Extraction of metals from manganese nodules of the Indian ocean by leaching in aqueous solution[J], Hydrometallurgy,1988,20:135-146
    [117]田京雷,冯雅丽,李浩然,齐凤杰,唐新华.异化金属还原菌利用发酵制氢废液还原软锰矿[J],北京科技大学学报,2011,33(8):911-915
    [118]宁平,宋文彪.还原软锰矿湿法脱硫生产MnSO4·H2O初步扩大试验[J],昆明工学院学报,1992,17(4):78-83
    [119]李军旗,史连军,金会心,等.软锰矿吸收S02气体制取硫酸锰的实验研究[J],贵州工业大学学报(自然科学版),2003,32(5):4-8
    [120]闫奇操,贵永亮,宋春燕,等.软锰矿浆吸收烧结烟气中S02的研究现状及展望[J],河北理工大学学报(自然科学版),2011,33(2):34-37
    [121]蒋文勇.软锰矿在环境污染治理中的应用[J],四川化工,2008,11(4):48-50
    [122]汪莉,陈尧,蒋文举,等.软锰矿改性污泥活性炭对Cu2+吸附特性的研究,环境科学与技术,2011,34(11):118-121
    [123]汤林,陈权启.水热法四氧化三锰超细粉体的正交实验设计及讨论[J],精细化工中间体,2003,33(1):28-33
    [124]N B Devi, M Madhuchhanda. Simultaneous leaching of a deep-sea manganese nodule and chalcopyrite in hydrochloric acid[J], Metallurgical and Materials TransactionsB,2001,32:777-784.
    [125]N B Devi, M Madhuchhanda, oxidation of chalcopyrite in the presence of manganese dioxide in hydrochloric acid medium [J], Hydrometallurgy.2000,57:57-76.
    [126]A Run, A Sunkar, Y Topkaya. Zinc and lead extraction from Cinkur leach residues by using hydrometallurgical metho[J]d, Hydrometallurgy,2008,93 (1-2):45-50
    [127]R Sahoo, S Das, B Reddy, P Rath. Adsorption of copper on manganese nodule residue obtained from NH3-SO2 leaching[J], Hydrometallurgy, 2001 (62):185-192
    [128]E Giannakopoulos, M Drosos, Y Deligiannakis. A humic-acid-like polycondensate produced with no use of catalyst[J], Journal of Colloid and Interface Science,2009,336(1):59-66
    [129]R Paramguru, K Mishra. Electrochemical phenomena in MnO2-FeS2 leaching in dilute HCl-Part2:Studies on polarization measurements[J], Canadian Metallurgical Quarterly,1998,37:395-403.
    [130]R Paramguru, S B Kanungo. Electrochemical phenomena in MnO2-FeS2 leaching in dilute HCl. part 3:manganese dissolution from indian ocean nodules[J], Canadian Metallurgical Quarterly, Canadian Metallurgical Quarterly,1998,37:405-417
    [131]R Paramguru, S Sircar, S Bose. Direct electrowinning of lead from galena concentrate anodes[J], Hydrometallurgy,1981,7(4):353-373
    [132]吴积权,硫铁矿(FeS2)与二氧化锰矿浸出的工艺实践[J],中国锰业,2004,22(3):40-42
    [133]梅光贵,钟竹前,周元敏.硫铁矿(FeS2)与Mn02浸出的热力学与动力学分析[J],中国锰业,2004,22(1):15-17
    [134]胡全红,刘坚,屈芸.方铅矿的两矿法浸出动力学研究[J],矿冶工程,2007,27(4): 61-63
    [135]刘建辉.闪锌矿-软锰矿湿法浸出制备MnO2, ZnO[J],广东化工,2010,37(4):70-71
    [136]周佩楠.两矿法制液生产电解金属锰的工业实践[J],中国锰业,2009,27(3):44-48
    [137]刘国伟,夏星,潘炳,等,金精矿/软锰矿联合浸出提取金、锰工艺研究[J],矿冶工程,2010,30(6):81-84
    [138]袁明亮,陈可.锰银矿与含砷金矿同时浸出过程探讨[J],化工冶金,2000,(21)2:179-182
    [139]袁明亮,赵国魂.砷金矿与锰银矿同时浸出中的超声强化作用[J],过程工程学报,2003,5:14-16
    [140]袁明亮,陈可,邱冠周.锰银矿与含砷金矿同时浸出过程探讨[J],化工冶金,2000,21(2):179-182
    [141]姚维义,唐漠堂.硫化银锰精矿全湿法提银新工艺[J],金属矿山,2004,337(7):47-51
    [142]张三田.难浸金与贫锰矿资源综合回收工艺探讨[J],中国锰业,2001,19(2):31-33
    [143]贺周初,余蔚蔚,彭爱国,等.低品位锰矿石中有价金属的浸出工艺研究[J], 矿冶工程,2010,30(2):76-82
    [144]曾亮,李仲英,贺周初,等.低品位铁锰型金银矿的硫脲浸出研究[J],贵金属,2008,29(4):16-19
    [145]贺周初,彭爱国,郑贤福,等.两矿法浸出低品位软锰矿的工艺研究[J],中国锰业,2004,22(2):35-37
    [146]陈晓洪.海洋锰结核与有色金属硫化矿同时湿法处理研究[D],硕士学位论文,长沙:中南工业大学,1991
    [147]胡全红,许民.铅精矿全湿法工艺研究[J],有色金属(冶炼部分),2003,2:5-7
    [148]胡全红,许民.三氯化铁浸出铅精矿工艺研究[J],江西化工2001,4:30-33
    [149]徐本军,覃文庆,邱冠周.方铅矿和软锰矿两矿法浸出工艺的研究[J],矿产保护与利用,2005,3:29-33
    [150]李同庆.低品位软锰矿还原工艺技术与研究进展,中国锰业,2008,26(2):4-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700