用户名: 密码: 验证码:
地下矿生产可视化管控系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪,快速发展的计算机技术、自动控制技术、网络与通讯技术、空间信息技术为古老的采矿业注入了新的活力,采矿业正在向着数字化、智能化甚至无人采矿的方向发展。自从上世纪末提出“数字矿山”的概念以来,其定义、内涵和框架不断得到扩展和延伸。地下矿生产可视化管控系统是地下矿数字矿山建设的重要组成部分,是矿山平行系统、数字矿山、感知矿山的支撑软件。我国地下矿山的信息化建设在取得很大成绩的同时逐渐暴露出一些问题,通过构建管控系统提高地下矿的信息化水平具有重要的现实意义。
     地下矿生产可视化管控系统建立于3DGIS技术、虚拟现实与动画技术、三维建模与可视化技术之上,涉及矿山众多业务和各种生产系统,系统复杂,功能繁多,其功能还会随着数字矿山建设的进程而不断扩展。本文从当前矿山信息化建设的现状和需求出发,以建立一个平台性的地下矿生产可视化管控系统为目标,围绕地下矿空间数据模型与组织方式、自动化建模技术、实时数据集成技术、工况可视化技术、漫游技术和软件体系结构等关键技术展开研究,主要内容和研究成果如下:
     1)从构建矿山平行系统的角度论述了地下矿生产可视化管控系统的定义、目标、功能、主要支撑技术以及在矿山信息化建设中的地位。
     2)讨论了可视化管控系统对矿山空间数据模型的需求,提出了地下矿空间数据模型的总体设计思路,并设计了一种针对井巷工程和生产系统的参数化实体与网络复合数据模型和一种针对地下矿所有要素的面向实体的多维混合时空数据模型。在空间数据模型的层次上解决了分析和可视化的统一性问题、多维属性的支持问题和空间对象行为建模的问题。
     3)研究了地下矿空间数据组织技术。设计了一种覆盖地下矿山所有要素的分类编码体系,解决了地下矿空间要素的编码问题。引入“视点”概念,提出了一种基于视点的空间数据组织方式,实现了三维场景的快速定位与显示控制。
     4)提出了基于参数化实体与网络复合数据模型的自动化建模方案,实现了井巷工程与生产系统的快速建摸与更新。针对地下矿三维建模的需要,提出了一套建模流程和质量控制方法,对于规范地下矿建模工作,提高建模效率和质量具有重要的指导意义。
     5)研究了地下矿工况可视化技术和场景漫游技术。提出了一套可视化方案,包括基于纹理动画的生产系统仿真技术、基于骨骼动画的设备行为仿真技术、基于三维地理网络的人员位置仿真技术和多功能信息面板技术,解决了各生产系统状态、设备行为、人员位置、环境监测值和报警的可视化问题。提出了一种基于虚拟全路径漫游网络和有限状态机的交互式井巷漫游方式,实现了快速而灵活的井巷漫游的功能。
     6)研究了矿山实时数据采集与集成技术,以及利用实时数据控制可视化效果的机制。设计了一种面向对象的层次式状态传递机制和一种通用的数据驱动机制,通过关联对象之间的状态传递方式解决了从各种低层传感器到高层系统的状态传递问题,并以一种统一的方式实现了各种对象动画的控制、信息面板的更新和人员行为和位置的更新。
     7)对管控系统的体系结构进行了研究,提出了“层次式系统+功能插件+服务接口”的管控系统体系结构,奠定了管控系统作为数字矿山支撑软件的架构基础。
     本文的研究成果丰富了数字矿山的理论,解决了构建地下矿生产可视化管控系统的关键技术问题,开发出来的系统在一些地下矿山进行了应用,取得了良好的效果。
In21st century, computer technology, automatic control technology, computer network and communication technology and spatial information technology are developing faster, which injects new vigor to old mining industry. Now, the general development trend in the mining industry is digital, intelligent, remote-control and automatic. Since the concept of "digital mine" was proposed at the end of last century, its definition, connotation and framework are continuously extended. The underground mine production3D visual management and control system (UMPMCS) is an important part of the digital mine, and it is the software platform of mine parallel systems, digital mine and sensory mine as well. While mine information construction in China has made great achievements, some problems have been revealed gradually. The UMPMCS is of important practical significance to promote construction of underground mine information.
     Based on related technologies, such as3D GIS, virtual reality, computer animation,3D modeling and visualization, etc., this UMPMCS involves all kinds of business and production system in the mine. So, it is a complex system with lots of functions, which will be developed further with digital mine construction course. Based on the informatization status and requirements of mines, this paper studies on several key technologies, such as the underground mine spatial data model, the method of spatial data organization,3D automatic modeling technology, real-time data integration technology, visualization technology about working conditions, roaming technology, software architecture technology and so on. It aims to establish a platform of the UMPMCS. The main contents and conclusions are as follows:
     1) From the perspective of building a mine parallel system, this paper represents the definition, objectives, functions and key technologies of the UMPMCS, and the position of UMPMCS in informatization for mining enterprises.
     2) The requirements for spatial data model in the UMPMCS are discussed, and the general design idea of the underground mine spatial data model is presented. According to this idea, a new parametric entity-network data model (PENDM) for roadways and production systems and a new multi-dimensional hybrid spatio-temporal data model for mines are designed. The models solved the some problems, such as analysis and visualization with the same model, support for multidimensional attribute and modeling the behavior of spatial objects.
     3) Technologic methods to organize underground mine spatial data are studied, a feature classification code system is designed to resolve coding problem for all features in underground mines. By introducing viewpoint concept, a viewpoint-based method of spatial data organization is presented to achieve quick localization and controlling over the information displayed in3D scene.
     4) An automatic modeling scheme based on the PENDM is proposed to realize quick modeling and dynamic update of roadways and production systems. A procedure and some quality control methods are established for setting up a3D scene of the underground mine. They can standardize modeling practices and improve the efficiency and equality of3D modeling.
     5) Visualization technology about working conditions and roaming technology are studied. A visualization scheme including production system simulation technology based on texture animation, device behavior simulation technique based on skeletal animation, personnel positioning simulation technique based on3D geographic network is presented. With this scheme, the visualization of production system state, device behavior, personnel positioning, environment-monitoring data and warning can be realized. A roaming method based on virtual full path roaming network and finite state machine is presented for fast roadway roaming.
     6) Real-time data collecting and integration technology and data-based effect-control mechanism are researched. An object-oriented hierarchical state passing mechanism and a general data-driving mechanism are presented. Then, the state can passed from bottom sensors to the higher level systems with the aid of associated objects, and the animation control of objects, updating information panels and updating personnel behavior and position are handled in a uniform way.
     7) Software architecture of the UMPMCS is researched, and a hierarchical system+plug-ins+service interface architecture is proposed. Based on the system architecture, the UMPMCS establish the fundamental status in the digital mine.
     Research results of this paper have enriched the digital mine theory and solved key problems of building UMPMCS. Software system based on these results has developed and the application in some underground mines has achieved good effect.
引文
[1]张钦礼,王新民,邓义芳编著.采矿概论[M].北京:化学工业出版社,2007.
    [2]古德生.21世纪矿业[J].有色冶金设计与研究,2002,23(4):1-5.
    [3]尹久龙.大红山铜矿井下综合通讯系统的构建与应用研究[J].湖南有色金属,2011,27(2):7-9.
    [4]张俊锴.工业以太网在矿井综合自动化生产中的研究与应用[D].上海:复旦大学,2007.
    [5]鲁远祥,徐贵发.工业以太网技术在煤矿综合监控系统中的应用[J].矿业安全与环保,2006,33(1):32-33,36.
    [6]荆永滨,王李管,魏建伟等.地下矿山开采的智能化及其实施技术[J].矿业研究与开发,2007,27(3):49-52.
    [7]吴立新.中国数字矿山进展[J].地理信息世界,2008,6(5):6-13.
    [8]于润沧.有色金属矿业科技创新的重要领域[J].中国有色金属,2009,(3):29-30.
    [9]国家安全监管总局通信信息中心.发达国家的安全生产信息化建设[J].劳动保护,2010,(7):22-23.
    [10]王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489,514.
    [11]王宝华,方东.航天测控虚拟现实系统的设计实现[J].飞行器测控学报,2002,21(1):5-9,20.
    [12]王文铭,电子计算机在采矿工业中的应用[J].本钢技术,1995,(5):46-49.
    [13]Watson W D, Ruppert L F. A geostatistical approach to predicting sulfur content in the Pittsburgh coal bed[J], International Journal of Coal Geology,2001,48(1-2):1-22.
    [14]Hwang C K, Cha J M, Kim K W, et al. Application of multivariate statistical analysis and a geographic information system to trace element contamination in the Chungnam Coal Mine area, Korea [J]. Applied Geochemistry,2001,16(11-12):1455-1464.
    [15]Dowd P A, Li S. Knowledge and geographical information-based system for noise impact assessment of surface mining and quarrying projects[J]. Mining Technology, 2000,109(11):1-13.
    [16]Lukacs Z.加拿大采矿工业信息管理的必要性[J],国外金属矿,2002,(1):14-20
    [17]Scoble M. Mining as an information business. Information Needs of the Mining Industry Learning Seminar. Edmonton,2000.
    [18]Knights P F, Daneshmend L K. Open systems standards for computing in the mining industry. CIM Bulletin,2000,93(1042):89-91.
    [19]Skinner T. Mine Information Needs. Information Needs of the Mining Industry Learning Seminar. Edmonton,2000.
    [20]Lipsett. Mine Information System:Needs and Opportunities. Information Needs of the Mining Industry Learning Seminar. Edmonton,2000.
    [21]Inostroza P, Pezo AC, Nieto A. SOMI:Towards a Standard Representation of Mining Objects[EB/OL]. http://www.somi.cl/documentos/20090615-PaperIFACMMM-English_REV.pdf,2009.
    [22]Shuey S A. Mining technology for the 21st century:Inco digs deep in Sudbury [J]. Engineering and Mining Journal,1999, (2):7-11.
    [23]Shuey S A. Remote Mining Technology [J]. Engineering and Mining Journal,2002, (1): 24-27.
    [24]于润沧.我国采矿业发展知识经济的战略思考[A].第六届全国采矿会议论文集[C].中国矿业(专集),1999:80-82.
    [25]王宝山.煤矿虚拟现实系统三维数据模型和可视化技术与算法研究[D].郑州:中国人民解放军信息工程大学,2006.
    [26]Kizil M. Virtual reality applications in the Australian minerals industry [C]. In Proceedings of Application of Computers and Operations Research in the Minerals Industries.2003:569-574.
    [27]Bise C J. Virtual reality:Emerging technology for training of miners[J]. Mining Engineering,1997,34(1):37-41.
    [28]Squelch A.Virtual Reality for Mine Safety Training in South Africa[J]. The Journal of the South African Institute of Mining and Metallurgy,2001, (7):209-216.
    [29]Denby B, Schofield D. Role of virtual reality in safety training of mine personnel[M]. Mining Engineering,1999,28(10):59-64.
    [30]Boulanger P, Lapointe J F, Wong W. Virtualized reality:An application to open-pit mine monitoring[C]. In 19th International Society for Photogrammetry and Remote Sensing(ISPRS) Congress. Berlin:Springer-Verlag,2000,33(B5/1):92-98.
    [31]崔凤禄,何晓群.全矿井综合自动化平台的研究[J].工矿自动化,2005,(z1):9-11.
    [32]胡穗延.全矿井综合自动化控制系统[J].煤矿自动化,1998,(03):3-5.
    [33]芦东平,潘一山.矿山微震监测结果可视化[J].辽宁工程技术大学学报(自然科学版),2008,27(z1):107-109.
    [34]李光斌.范各庄矿全矿井综合自动化系统改造[J].河北煤炭,2008,(5):1-2,31.
    [35]Zhang Jin, Xiao Jie. Architecture and application of integrated spatial information service platform for digital mine.Transactions of Nonferrous metals Society of China, 2011,21(3):706-711.
    [36]Gu Qinghua, Lu Caiwu, Li Faben, et al. Monitoring dispatch information system of trucks and shovels in an open pit based on GIS/GPS/GPRS[J]. Journal of China University of Mining and Technology,2008,18(2):288-292.
    [37]周科平,郭明明,杨念哥等.地下矿山开拓运输仿真系统研究[J].计算机系统应用,2008(11):6-10.
    [38]Cai Linqin, Zheng Xuesong, Qu Hongchun. Risk Accident Simulation Using Virtual Reality and Multi-agent Technology [J].International Journal of Digital Content Technology and its Applications,2011,5(11):181-190.
    [39]苌道方,韩可琦,魏连江.虚拟现实技术在综采工作面仿真中的应用[J].矿业研究与开发,2004,(01):41-43,46.
    [40]申闰春,才庆祥,张幼蒂等.虚拟现实技术在露天矿生态重建仿真中的应用[J].中国矿业大学学报,2002,(01):4-8.
    [41]鹿浩,罗周全,杨彪等.虚拟现实技术及其在矿业中的应用[J].中国钨业,2007,(04):22-25,32.
    [42]Li Mei, Chen Jingzhu, Mao Shanjun, et al. VRLane:a Desktop Virtual Navigation and Safety Monitoring Porgram for Underground Coal Mine. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. ⅩⅩⅩⅦ. Part B5,WG V/4,2008:681-686.
    [43]毕林.数字采矿软件平台关键技术研究[D].长沙:中南大学,2010.
    [44]谭正华.三维可视化环境下采矿设计与生产规划关键技术研究[D].长沙:中南大学,2010.
    [45]Wu Lixin, Yang Keming, Qi Anwen, et al. Information classification & management for MGIS and digital mine[C]. Towards Digital Earth:Proc of 1st Int Sym on DE. Beijing:Science Press,1999:999-1004.
    [46]Hu Jinxing, Wu Lixin, Yin Zuoru, et al. Study on digital mine and related key technologies [C]. Towards Digital Earth:Proc of Int Sym on DE. Beijing:Science Press,1999:421-426.
    [47]张新,赵红蕊,陈宜金.人类可持续发展与“数字矿山”研究[J].东北测绘,1999,(04):5-6.
    [48]吴立新,殷作如,邓智毅,等.论21世纪的矿山——数字矿山[J].煤炭学报,2000,(04):337-342.
    [49]吴立新.论数字矿山及其基本特征与关键技术[A].中国煤炭学会.第六届全国矿山测量学术讨论会论文集[C].中国煤炭学会:2002:68-72.
    [50]吴立新,殷作如,钟亚平.再论数字矿山:特征、框架与关键技术[J].煤炭学报,2003,(01):1-7.
    [51]吴立新.数字地球、数字中国与数字矿区[J].矿山测量,2000(1):6-9.
    [52]编辑部.2020年的矿山技术发展展望[J].世界采矿快报,1999,(05):23-27.
    [53]王李管,曾庆田,贾明涛.数字矿山整体实施方案及其关键技术[J].采矿技术,2006,(03):493-498.
    [54]陈建宏,周科平,古德生.新世纪采矿CAD技术的发展:可视化、集成化和智能化[J].科技导报,2004,(12):35-38.
    [55]孙豁然,徐帅.论数字矿山[J].金属矿山,2007,(02):1-5.
    [56]王青,吴惠城,牛京考.数字矿山的功能内涵及系统构成[J].中国矿业,2004,13(1):7-10.
    [57]卢新明,尹红.数字矿山的定义、内涵与进展[J].煤炭科学技术,2010,38(1):48-52.
    [58]僧德文,李仲学,张顺堂,等.数字矿山系统框架与关键技术研究[J].金属矿山,2005,(12):47-50.
    [59]王运敏.“十五”金属矿山采矿技术进步与“十一五”发展方向[J].金属矿山,2007,(12):1-9.
    [60]谭得健,徐希康,张申.浅谈自动化、信息化与数字矿山[J].煤炭科学技术,2006,(01):23-27.
    [61]张申,丁恩杰,赵小虎,等.数字矿山及其两大基础平台建设[J].煤炭学报,2007,32(9):997-1001.
    [62]吴立新,汪云甲,丁恩杰,等.三论数字矿山——借力物联网保障矿山安全与智能采矿[J].煤炭学报,2012,37(03):357-365.
    [63]张申,丁恩杰,徐钊,等.物联网与感知矿山专题讲座之三:感知矿山物联网的特征与关键技术[J].工矿自动化,2010,(12):117-121.
    [64]周强,许世范,孙继平.矿山数字神经系统研究[J].煤炭学报,2003,28(3):280-284.
    [65]倪旻.工业控制组态软件的产品对比及发展趋势[J].测控技术,2000,19(9):38-40.
    [66]林伟.浅谈组态软件发展趋势[J].自动化博览,2003,20(1):45-47.
    [67]庄春华,王普,孙崇正,等.虚拟现实组态软件的研究与开发[J].仪器仪表学报,2006,27(z3):2587-2588,2627.
    [68]李建,庄春华,王普,等.基于WTK的虚拟现实组态软件研究与开发[J].自动化仪表,2006,27(z1):56-58,62.
    [69]张会清,时菁,庄春华,等.三维监控场景中空间管道快速连接组态的研究与实现[J].北京工业大学学报,2010,36(3):300-305.
    [70]张全贵,王普,闰健卓,等.三维组态软件设计中场景快速组态及交互方法研究[J].信息与控制,2010,39(4):492-496.
    [71]何博,牛群,费敏锐.Web虚拟现实技术在远程监控系统中的研究[J].自动化仪 表,2009,(03):6-9.
    [72]邹诗苑,费敏锐,茅龚丹,等.集成组态软件与虚拟界面的远程火电监控实验平台研究[J].自动化仪表,2011,32(4):40-42,46.
    [73]华钢,周磊,任凯.地下煤矿人员定位跟踪系统发展综述[J].矿山机械,2008,(06):36-40.
    [74]张露露,陈宜金.基于Skyline的数字矿山三维综合监测系统的应用研究[J].测绘信息与工程,2011,(05):32-34.
    [75]郭军.基于3DGIS技术的三维虚拟矿井设计研究[J].工矿自动化,2007(5):1-4.
    [76]吕鹏飞,郭军.我国煤矿数字化矿山发展现状及关键技术探讨[J].工矿自动化,2009,35(9):16-20.
    [77]郑贵洲,申永利.地质特征三维分析及三维地质模拟现状研究[J].地球科学进展,2004,(2):218-223.
    [78]Turner A K. Challenges and trends for geological modelling and visualisation[J]. Bulletin of Engineering Geology and the Environment,2006,65(2):109-127.
    [79]Watt A, Watt M. Advanced animation and Rendering techniques theory and practice. New York:Addison-Wesley Publishing Company,1992.
    [80]Steketee S N, Badler N I. Parametric keyframe interpolation incorporating kinetic adjusment and phrasing control[J]. Computer Graphics,1985,19(3):255-262.
    [81]Burdea G, Coiffet P. Virtual Reality Technology[J]. Teleoperators and Virtual Environments,2003,12(6):663-664.
    [82]林珲,龚建华.论虚拟地理环境[J].测绘学报,2002,31(1):1-6.
    [83]Stoter J, Zlatanova S.3D GIS, where are we standing[EB/OL]. http://www. gdmc.nl/zlatanova/publications.htm,2003.
    [84]刘陵,方军,陈利生,等.三维GIS的研究现状及其发展趋势[J].矿山测量,2011,(02):71-75.
    [85]王志杰,汪云甲,伏永明,等.基于虚拟现实技术的矿山三维建模、显示及漫游系统[J].测绘工程,2006,15(1):44-47.
    [86]姜小轶,孙运生,王安.三维地理信息系统(3D-GIS)的发展现状及趋势[J].世界地质,1998,(04):59-63.
    [87]吴信才,曾文,徐少平,等.基于SCADA和GIS技术的供水管网调度系统[J].测绘通报,2004,(6):49-52.
    [88]徐帅.地下矿山数字开采关键技术研究[D].沈阳:东北大学,2009.
    [89]王家耀.空间信息系统原理[M].北京:科学出版社,2001.
    [90]程朋根,龚健雅.地勘三维空间数据模型及其数据结构设计[J].测绘学报,2001,30(1):74-81.
    [91]张子平.三维地理信息系统空间分析算法若干问题研究[D].武汉:武汉大学,2002
    [92]杨必胜.城市三维地理信息系统的建模研究[D].武汉:武汉大学,2002
    [93]Zlatanova S, Rahrnan A, Shi W. Topological models and frameworks for 3D spatial objeets[J]. Computers & Geosciences,2004,30(4):419-428.
    [94]吴立新,史文中.论三维地学空间构模[J].地理与地理信息科学,2005,21(1):1-4.
    [95]程朋根.地矿三维空间数据模型及相关算法研究[D].武汉:武汉大学,2005.
    [96]肖乐斌,钟耳顺,刘纪远.GIS空间概念模型的研究[J].武汉大学学报(信息科学版),2001,26(5):387-392.
    [97]Pfund M. Topologic data structure for a 3D GIS[C]. In:Proceedings of International Society for Photogrammetry and Remote Sensing Journal, Vol.34, Part 2W2, May, Bangkok, Thailand,2001:233-237.
    [98]Usery E L. A Feature-Based Geographic Information System Model[J]. Photogrammetric Engineering & Remote Sensing,1996,62(7):833-838.
    [99]Tang A Y, Adams T, Usery E L. A spatial data model design for feature-based geographical information systems [J]. International Journal of Geographical Information Science.1996,10(5):643-659.
    [100]郑坤,刘修国,吴信才,等.顾及拓扑面向实体的三维矢量数据模型[J].吉林大学学报(地球科学版),2006,36(3):474-479.
    [101]熊书敏,郑坤,吴信才.基于实体模型的三维GIS矢量数据管理[J].地理空间信息,2006,4(1):18-20.
    [102]Yuan M. Temporal GIS and spatio-temporal modeling[C]. International Conference/Workshop Integrating GIS and Environmental Modeling, January,1996
    [103]李阳东,刘妙龙,童小华.时空数据模型的研究与进展[J].计算机应用研究,2008,25(5):1281-1284.
    [104]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(1):7-15
    [105]马荣华,黄杏元,贾建华等.矿山地理信息系统中巷道模型的研究[J].测绘学报,2000,29(4):356-361
    [106]李海霞,贾建华,杨硕.适合矿井巷道特点的三维数据结构研究[J].矿山测量,2000,(4):10-12
    [107]汪云甲、伏永民.矿井巷道三维自动建模方法研究[J].武汉大学学报(信息科学版).2006,31(12):1097-1100
    [108]谭正华,王李管,毕林等.平面连通巷道三维实体分层建模方法[J].武汉大学学报(信息科学版).2010,35(3):360-363.
    [109]周智勇,陈建宏,杨立兵.大型矿山地矿工程三维可视化模型的构建[J].中南大 学学报(自然科学版),2008,39(3):423-428.
    [110]胡勇,武殿良,韦乃琨.基于虚拟环境的矿山运输系统实时监控技术研究[J].系统仿真学报,2008,20(9):109-116.
    [111]孔令标,侯运炳.基于三维地理网络的矿井供电自动设计系统[J].金属矿山,2005,350(8):52-55.
    [112]Emgard K L, Zlatanova S. Design of an integrated 3D information model[C]. Rumor, F., Coors, Z. (eds.) UDMS annual. Taylor & Francis Urban and regional datamanagement, London,2008:143-156.
    [113]华钢,周磊,任凯.地下煤矿人员定位跟踪系统发展综述[J].矿山机械,2008,36(6):36-40.
    [114]宋宏伟,刘刚.井巷工程[M].北京:煤炭工业出版社,2007.
    [115]中国煤炭建设协会.GB50417-2007煤矿井下供配电设计规范[S].北京:中国计划出版社,2007.
    [116]施式亮,李湖生.矿井避灾路线选择系统开发的理论与实践[J].湘潭矿业学院学报,1998,13(3):8-13
    [117]陈忠强,王李管,毕林.矿床三维可视化建模技术的应用与发展[J].现代矿业,2009,28(9):59-62.
    [118]杜道生.地理信息标准化的最新进展[J].地球信息科学,2003,5(2):74-78.
    [119]陈华根,吴健生,王家林,等.利用编码技术快速实现地学成果可视化及其意义[J].物探化探计算技术,2003,25(3):279-283.
    [120]刘振全,阎凤林.数字海图的数据组织与要素编码规则.海洋测绘,2001,(2):34-37.
    [121]梁军,金文华.基于实体特征的城市基础地理信息分类编码方案[C].∥中国地理信息系统协会2001年年会论文集.2001:136-140.
    [122]许惠平,周云轩,孙运生,等.全球地学断面(GGT)地理信息系统的编码技术.长春科技大学学报,2002,30(2):190-193
    [123]何建邦,李新通,毕建涛,等.资源环境信息分类编码及其与地理本体关联的思考[J].地理信息世界,2003,1(5):6-11.
    [124]曾澜.我国地理空间信息共享的分类方法和地理编码规则研究[J].地理信息世界,2006,4(6):21-27.
    [125]廖书标,陈正阳.军事地理信息分类与编码探讨[J].西部探矿工程,2010,22(3):139-142.
    [126]汶博.基于RIA的战略军事地理信息应用服务系统关键技术的研究[D].郑州:中国人民解放军信息工程大学,2007.
    [127]施仲添,叶智宣,陆宇红,等.关于城市基础空间数据地理信息分类编码的探讨 [J].地理信息世界,2004,2(3):39-41.
    [128]江绵康.上海市基础地理要素编码标准编制研究[J].地理与地理信息科学,2006,22(2):1-4.
    [129]胡金星,吴立新,齐安文等.矿业信息的分类编码研究[J].矿山测量,1999,(4):39-40.
    [130]余正昊,张杰,翟步红,等.煤矿空间信息的标准化研究初探[J].山西建筑,2009,35(13):355-356.
    [131]杜新锋.煤矿地质测量信息分类编码技术及其应用研究[D].西安:煤炭科学研究总院西安分院,2005.
    [132]国家技术监督局.GB7027-86信息分类编码的基本原则和方法.北京:中国标准出版社,1986.
    [133]马荣华,戴锦芳.GIS的分层与特征的数据组织模式[J].地球信息科学,2003,5(3):42-46.
    [134]Robinove C H. Principles of logic and the use of digital geographic information systems. Circular 977, U.S. Geological Survey.1986.
    [135]Usery E L. Category theory and the structure of features in geographic information systems. Cartography and Geographic Information Systems,1993,20(1):5-12.
    [136]ISO/TC211. Geographic information-Part 10:Feature cataloguing methodology. Technical Report.1998.
    [137]OGC. The open GIS abstract specification model. http://ww.opengis.org/public/ab stract.html.1997.
    [138]叶亚琴,左泽均,陈波,等.面向实体的空间数据模型[J].地球科学-中国地质大学学报,2006,31(5):595-599.
    [139]罗忠文.应用对象关系型数据库存储GIS数据[J].地球科学-中国地质大学学报,2002,27(3):267-270.
    [140]杨奎奇,潭海樵.面向对象的巷道三维显示与查询系统模型[J].煤矿现代化,2004,(1):35-36.
    [141]梁建斌,张和生.应用OpenGL进行巷道三维显示研究[J].太原理工大学学报.2006,37,(2):142-145.
    [142]王建民.三维巷道建模及其应用研究[D].太原:太原理工大学,2005.
    [143]魏占营,王宝山,李青元.地下巷道的三维建模及C~(++)实现[J].武汉大学学报:信息科学版,2005.
    [144]王宝山,魏占营.煤矿虚拟环境的巷道三维建模研究[J].测绘学院学报,2005,22(3):204-206.
    [145]Wang Yunjia, Fu Yongming, Fu Erjiang. On 3D Geo-visualization of a Mine Surface Plant and Mine Roadway [J]. Geo-spatial Information Science,2007,10(4):287-292.
    [146]周智勇,陈建宏,汤其旺,等.巷道自动成图及三维建模[J].测绘科学,2010,35(4):182-183,216.
    [147]孙卡,翁正平,张志庭.基于带约束三角剖分的三维巷道建模方法[J].矿业研究与开发,2007,27,(5):64-65.
    [148]栾东丽,刘明.基于曲线插值算法的巷道自动建模[J].信息技术,2008,(12):34-36.
    [149]张志华,侯恩科,赵洲,等.一种新的3D巷道建模法——对称建模法[J].金属矿山,2009,(5):107-111.
    [150]张志华,侯恩科.矿山平巷与立井复合模型构建方法研究[J].金属矿山,2010,(8):132-136.
    [151]孙中昶,卢秀山,田茂义,等.矿山巷道3维建模算法研究及实现[J].测绘学报,2009,38(3):250-254,263.
    [152]赵晓东,谷晓松,王海龙,等.GIS的矿山巷道三维空间构模算法研究[J].测绘科学,2010,35(6):20-22.
    [153]姚建海.煤矿三维巷道建模技术研究[J].太原科技大学学报,2009,30(1):80-83.
    [154]王凤林,王延斌.巷道三维建模算法与可视化技术研究[J].湖南科技大学学报:自然科学版,2009,24(1):91-94.
    [155]徐志强,杨邦荣,王李管,等.巷道实体的三维建模研究与实现[J].计算机工程与应用,2008,(06):202-205.
    [156]谭正华,王李管,毕林,等.平面连通巷道三维实体分层建模方法[J].武汉大学学报(信息科学版),2010,(03):360-364.
    [157]谭正华,王李管,熊书敏,等.基于实测边界线的地下巷道三维建模方法[J].中南大学学报(自然科学版),2012,43(2):626-631.
    [158]葛永慧,王建民.矿井三维巷道建模方法的研究[J].工程勘察,2006,(10):46-49.
    [159]续爱民,金烨,鲍劲松.虚拟场景中自动漫游路径的多分辨率规划[J].系统仿真学报,2005,17(8):1912-1915.
    [160]王秀梅,曹秋霞,赵建敏.用三坐标数控铣床加工空间曲面时的圆弧插值算法[J].工程图学学报,2007,(4):145-149.
    [161]Dunn F, Parberry O.3D math primer for graphics and game development[M]. Texas: Wordware Publishing Inc,2002:106-111.
    [162]许向阳,陈琪.基于二维平行轮廓线的三维表面重建[J].微计算机应用,2007,(06):580-583.
    [163]中华人民共和国住房和城乡建设部.CJJ/T157-2010城市三维建模技术规范[S].北京:中国建筑工业出版社,2007.
    [164]查瑞传.抽样调查的基本原理和方法(二)[J].统计,1981,(05):20,37-39.
    [165]李成坤.煤矿安全监控系统数据集成方式研究[D].西安:西安科技大学,2008.
    [166]国家安全生产监督管理总局.AQ6201-2006煤矿安全监控系统通用技术要求[S].北京:煤炭工业出版社,2006.
    [167]国家安全生产监督管理总局.AQ 2032-2011金属非金属地下矿山人员定位系统建设规范[S].北京:煤炭工业出版社,2011.
    [168]国家安全生产监督管理总局.AQ 1048-2007煤矿井下作业人员管理系统使用与管理规范[S].北京:煤炭工业出版社,2007.
    [169]国家安全生产监督管理总局.AQ2031-2011金属非金属地下矿山监测监控系统建设规范[S].北京:煤炭工业出版社,2011.
    [170]刘超强,陈中疆.多线程数据采集在矿井监控系统中的实现[J].中州煤炭,2008,(5):28-29,57.
    [171]国家安全生产监督管理总局.MT1008-2006煤矿安全监控系统软件通用技术要求[S].北京:煤炭工业出版社,2006.
    [172]王勇,宁祎.OPC Server在KJ95N型煤矿综合监控系统中的应用[J].工矿自动化,2010,(8):105-106.
    [173]OPC Foundation. OPC Data Access Custom Interface Specification 2.05[S].2003.
    [174]IEC 62541-1:OPC Unified Architecture Specification-Part 1:Overview and Concepts[S]. [S.1.]:IEC,2008.
    [175]王华,刘枫.OPC UA技术及应用[J].工业控制计算机,2008,21(12):38-39,42.
    [176]赵媛,华伟,吕红,等.基于Web Service的信息集成与访问模型研究[J].计算技术与自动化,2010,(2):113-118.
    [177]黄慧君,杜兰,许重阳,丁克胜,等.基于Web Services的虚拟企业信息系统集成框架研究[J].中国制造业信息化,2010,(17):13-17.
    [178]冯锡炜,贾传荧,金昆.基于Web Services服务集成的设计与实现[J].微计算机信息.2006,(03):258-260.
    [179]赵安新,卢建军,穆荣,等.利用Web Services构建分布式远程综合监测系统[J].煤炭科学技术,2008,(2):74-77.
    [180]Tsalgatidou A, Pilioura T. An Overview of Standards and Related Technology in Web Services[J]. Distributed and Parallel Databases,2002,12(2-3):135.
    [181]杨涛,刘锦德.WebServices技术综述——一种面向服务的分布式计算模式[J].计算机应用,2004,24(08):1-4.
    [182]Booth D, Haas H, Mccabe F, et al. Web Service Architecture[EB/OL]. http://www.w3c.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf,2004.
    [183]史丽红,贾存良.动态数据交换在矿井监测监控系统中的应用[J].采矿技术, 2005,(2):41-42.
    [184]姚晓伟,陈在平,尹迅雷.基于OPC技术的现场总线系统集成研究[J].天津理工大学学报,2005,(04):12-14.
    [185]王李管,曾庆田,贾明涛,等.复杂地质构造矿床三维可视化实体建模技术[J].金属矿山,2006,(12):46-49,74.
    [186]毕林,王李管,陈建宏,等.基于VTK的矿体三维可视化研究与实现[J].计算机工程与应用,2008,(10):78-81,97.
    [187]龚元翔,王李管,贾明涛,等.金川Ⅲ矿区复杂地质体三维可视化建模技术研究[J].中国矿山工程,2007,(06):8-12.
    [188]Zhu Qing, Hu Mingyuan, Zhang Yeting, et al. Research and Practice in Three-Dimensional City Modeling[J]. Geo-spatial Information Science,2009,12(1): 18-24.
    [189]赖朝辉,刘修国,花卫华,等.三维数据场可视化技术在数字矿山中的应用[J].金属矿山,2008,(12):131-134,138.
    [190]何满潮,李学元,刘斌,等.非层状岩体三维可视化构模技术研究[J].岩石力学与工程学报,2005,(05):774-779.
    [191]李春民,李仲学,王云海,等.“数字矿山”三维可视化研究[J].系统仿真学报,2006,18(S2):515-518.
    [192]Aliada D. Visualisation of complex models using dynamic texture based simplification, in:Proceedings of IEEE visualisation, San Francisco,1996:101-106.
    [193]Catmull E D. Computer Display of Curved Surface[C]. Pro IEEE Conference on Computer Graphics, Pattern Recognition and Data Structure, Los Angles,1975:11-17.
    [194]Blinn J F, Newell M E. Texture and reflection in computer generated images[J]. Communications of the ACM,1976,19(10):542-547.
    [195]卢章平,丁立军,戴立玲,等.基于分类的纹理映射方法综述[J].江苏大学学报(自然科学版),2006,27(5):13-16.
    [196]Burtnyk N, Wein M. Interactive skeleton techniques for enhancing motion dynamics in key frame animation[1]. Communications of the ACM,1976,19(10):564-569.
    [197]Liu Yunhao, Yang Zheng, Wang Xiaoping, et al. Location, localization, and localizability[J]. Journal of Computer Science and Technology,2010,25(2):274-297.
    [198]Kawauchil K, Miyaki T, Rekimoto J. Directional Beaconing:A Robust WiFi Positioning Method Using Angle-of-Emission Information[C]. In Proc.4th Int. Symposium on Location and Context Awareness.Heidelberg:Springer-Verlag,2009: 103-119.
    [199]Shang Jianga, Yu Shengsheng, Zhu Liangfeng.Location-aware systems for short-range wireless networks[C]. In Proceedings of the 2009 International Symposium on Computer Network and Multimedia Technology (CNMT 2009). New Jersey:IEEE, 2009:1-5.
    [200]颜辉武.体视化技术及其在地下水资源研究中的应用[D].武汉大学,2002.
    [201]Jansen-Osmann, Petra. Using desktop virtual environments to investigate the role of landmarks[J]. Computers in Human Behavior,2002,18(4):427-436.
    [202]尚建嘎,刘修国,郑坤.三维场景交互漫游的研究与实现[J].计算机工程,2003,29(2):61-62.
    [203]邹益胜,丁国富,许明恒,等.实时碰撞检测算法综述[J].计算机应用研究,2008,25(01):8-12.
    [204]吴玲达,赵健,杨冰,等.一种虚拟场景的自动漫游方法[J].小型微型计算机系统,2010,31(8):1563-1566.
    [205]史红兵,张毅彬,童若锋,等.虚拟场景自动漫游的路径规划算法[J].计算机辅助设计与图形学学报,2006,18(04):592-597.
    [206]Ken Shoemake. ARCBALL:A User Interface for Specifying Three-Dimensional Orientation Using a Mouse[C]. In:Proceedings of the Conference on Graphies interface'92.1992.
    [207]严蔚敏,吴伟民.数据结构.北京:清华大学出版社,1997:160-166.
    [208]徐小良,汪乐宇,周泓.有限状态机的一种实现框架[J].工程设计学报,2003,10(05):251-255.
    [209]Drumea A, Popescu C. Finite state machines and their applications in software for industrial control [C]. Electronics Technology:Meeting the Challenges of Electronics Technology Progress,2004.27th International Spring Seminar.2004:25-29.
    [210]Harel D. Statecharts:A visual formalism for complex systems[J]. Science of Computer Programming,1987,8(3):231-274.
    [211]武楠,房立金,姜春英等.基于有限状态机的空间对接仿真平台控制系统设计[J].机器人,2007,29(04):378-383.
    [212]Erich Gamma, Richard Helm, Ralph Johnson,et al.Design Patterns:Elements of Reusable Object-Oriented Software[M].Boston:Addison Wesley,1995:338-348.
    [213]周鹏,张骏,史忠科.分段路径寻优算法研究及实现[J].计算机应用研究,2005,(12):241-243.
    [214]Butler D. Virtual globes:The web-wide world[J]. Nature,2006,439(7078):776-778.
    [215]Chang A Y, Parrales M E, Jimenez J, et al. Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries[J]. International Journal of Health Geographics,2009,8:49, http://www.ij-healthgeographics.com/ content/8/1/49
    [216]黄皖毅,林紫峰,章皖秋,等.基于Google SketchUp与Google Earth的校园3维实现[J].测绘与空间地理信息,2011,34(1):100-104.
    [217]Boehln B. Engineering Context(for Software architecture), invited talk, In:Garlan D., ed. Proeeedings of the 1st International Workshop on Architecture for Software Systems Seattle[M]. New York:ACM Press,1995.
    [218]孙昌爱,金茂忠,刘超.软件体系结构研究综述[J].软件学报.2002,13(7):1228-1237.
    [219]Perry D E. Software Engineering and Software Architecture. In:Feng, Yu-lin, ed. Proeeedings of the International Conference on Software:Theory and Practiee[M]. Beijing:Eleetronic Industry Press,2000.
    [220]张友生.层次式软件体系结构模型[J].计算机工程与应用.2004,40(30):20-23.
    [221]尚建嘎,刘修国,张宝一.层次风格固体矿产储量估算软件体系结构设计[J].计算机应用研究,2007,24(8):255-261.
    [222]李俊娥,周洞汝.“平台/插件”软件体系结构风格[J].小型微型计算机系统,2007,28(5):876-881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700