用户名: 密码: 验证码:
C/C复合材料HfC抗烧蚀涂层的制备、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高炭/炭(C/C)复合材料的耐烧蚀性能,满足新一代固体火箭发动机对喷管材料的要求,本文采用化学气相沉积法(CVD)在C/C复合材料表面制备了抗烧蚀性能优异的HfC涂层、HfC多层复合涂层和Hf(Ta)C复相涂层。
     针对气态输送HfCl4计量难以精确控制的技术难点,设计和开发了一种新型送粉装置,实现了HfCl4粉末在低压条件下的精确输送,为CVD-HfC涂层的微观结构控制提供了技术保障。
     系统研究了沉积工艺参数对HfC涂层显微组织结构的影响,探索了CVD-HfC涂层结构形态形成的基本规律,实现了CVD-HfC涂层组织结构的可控形成,获得了三种具有典型结构特征的HfC涂层:具有等轴晶结构的HfC1型涂层、具有针状晶组织结构的HfC T型涂层和具有柱状晶组织结构的HfC2型涂层。
     以HfC涂层的沉积速率和沉积均匀性为研究对象,建立了涂层沉积过程控制因素与涂层沉积均匀性的关联性。沉积温度、C/Hf比和氢气浓度的增加均可加快涂层的沉积;在损耗效应和边界层阻碍效应的共同作用下,涂层沉积速率随沉积区间的下降逐渐降低。沉积过程受表面反应控制时,HfC涂层的沉积均匀性较好;沉积过程受扩散控制时,HfC涂层的沉积均匀性稍差。
     采用纳米压痕硬度仪研究了HfC涂层的力学性能,建立了涂层微观组织结构与力学性能的对应关系,探讨了微观组织结构对涂层力学性能的影响机制。孔隙导致涂层负载能力降低是HfC1型涂层力学性能较低的原因;HfC2型和HfC T型涂层较高的力学性能主要得益于致密的结构和紧密的组织排列。
     利用氧乙炔焰研究了HfC涂层的抗烧蚀性能,分析了涂层微观组织结构在烧蚀过程中的演变规律,探讨了HfC涂层的烧蚀过程及烧蚀控制机制,提出了HfC涂层的超高温烧蚀机理。单一结构HfC涂层中,HfC1型涂层的烧蚀稳定性最好,质量烧蚀率为-0.05mg·cm-2·s-1; HfC T型和HfC2型涂层出现了开裂和部分脱落;具有多层复合结构的HfC涂层烧蚀性能优异。HfC涂层通过隔离、消耗氧化气氛实现对C/C基体的烧蚀防护,涂层的烧蚀速率主要取决于HfC的氧化控制机制。多孔HfO2、HfCxOy和Hf02熔体的生成可使HfC氧化控制机制发生变化,随着烧蚀的进行,HfC涂层的烧蚀率逐步降低。
     采用化学气相共沉积法制备了Hf(Ta)C和Hf(Zr)C复相涂层,研究了复相涂层的相组成、微观结构和烧蚀性能。Hf(Ta)C复相涂层由HfC和HfTaC2组成,具有等轴晶结构特征。HfTaC2的形成有利于涂层在烧蚀过程中形成致密的氧化物层,涂层烧蚀过程中形成的高温稳定Hf6Ta2017相可提高氧化产物的抗热震性能。Hf(Zr)C复相涂层由HfC和ZrC组成,随着CH4过饱和度的降低,涂层组织结构逐渐致密,具有等轴晶结构的Hf(Zr)C复相涂层抗热震性能较好。
     综上所述,利用CVD法在C/C复合材料表面制备了抗烧蚀性能优异的HfC涂层、HfC多层复合结构涂层和Hf(Ta)C复相涂层,为高性能C/C喷管材料的烧蚀防护研究奠定了基础。
In order to improve the ablation resistance performance of carbon/carbon (C/C) composites and meet the higher requirements for nozzle materials of the new type solid rocket motor, HfC coating, multilayerd-structure HfC coating and Hf(Ta)C coating with outstanding anti-ablation properties were successfully prepared on C/C composites by chemical vapor deposition (CVD).
     A novel powder carrier was designed and developed to solve the technical problem of HfCl4transport. The accurate control of HfCl4flow at low pressure condition provides technical support for the structural control of HfC coating.
     The influences of deposition process on the microstructure of HfC coating were investigated systematically, the basic laws of the structural formation of HfC coating are explored and the controlled formation of coating structure is achieved. HfC coatings with typical structures were prepared, the type1with equiaxed-crystal structure, the type T with needle-crystal structure and the type2with columnar-ctystal structure.
     Based on the deposition rates and homogeneities of HfC coating, the relatedness between homogeneity of HfC coating and the controlled mechanisms of deposition process were established. The deposition rate increases with the increased temperature, C/Hf ratio and concentration of H2. With the decline of deposition interval, the deposition rate decreases due to the effects of the loss of reactive gases and the diffusion barrier of boundary layer. HfC coating has favorable homogeneity with the deposition process controlling by surface reaction, while has lower homogeneity with the deposition process controlling by diffusion process.
     The mechanical properties of HfC coating were investigated by nanoindentor. The relatedness between mechanical properties and coating structure were established and the influence mechanisms of the structure on the mechanical properties were explored. The reduced capacity of load resulting from the pores is the main reason for the lower mechanical properties of HfC1coating. The increased mechanical properties of HfC T and HfC2coatings are mainly attributed to the dense crystal-arranged structures.
     The ablation properties were investigated by oxyacetylene torch. The structural evolution of HfC coating during ablation process was investigated. The ablation process and the controlled mechanism of HfC coating were discussed, the ablation mechanism of HfC coating at ultral high temperature was proposed. Among the HfC coatings with single structure, the HfC1coating has the favorable ablation properties with mass ablation rates of-0.05mg·cm-2·s-1, while part of the HfC T and2coatings cracks and peels during ablation. Moreover, the multilayerd HfC coating exhibits outstanding ablation resistance. The HfC coating can protect the C/C composites by sacrificial oxidation, the ablation rate of HfC coating depends on the controlled mechanism of oxidation. The oxidation mechanism changes with formation of porous HfO2, HfCxOy and molten HfO2, the ablation rate of HfC coating decreases gradually.
     Hf(Ta)C and Hf(Zr)C coatings were co-deposited on C/C composites by CVD. The phase composition, microstructure and ablation properties of these coatings were investigated. The Hf(Ta)C coating which formed with equiaxed-crystal structure, is composed of HfC and HfTaC2-Compared with HfC coating, the formation of HfTaC2is reasonable to the formation of dense oxide layer during ablation and the thermal shock resistance of Hf(Ta)C coating increases due to the formation of stabled Hf6Ta2O17. The Hf(Zr)C coating is composed of cubic HfC and ZrC. The density of Hf(Zr)C coating increases with the reduced concentration of CH4. The Hf(Zr)C coating with equiaxed-crystal structure has the favorable thermal shock resistance during ablation.
     In a word, HfC coating, multilayerd HfC coating and Hf(Ta)C coating were prepared on C/C composites with excellent anti-ablation performance, which is benefical to the further research of ablation protection for high performance C/C nozzle materials.
引文
[1]郑晓慧.Cf/SiC复合材料用玻璃陶瓷系抗氧化涂层的设计、制备与性能研究[D].长沙:国防科技大学,2009.
    [2]陈亚莉.国外航空材料发展现状与趋势[J].军民两用技术与产品:2011,15-17.
    [3]刘大响,金捷.21世纪世界航空动力技术发展趋势与展望[J].中国工程科学:2004,6(9):1-8.
    [4]王春利.航空航天推进系统[M].北京:北京理工大学出版社,2003.
    [5]董师颜,张兆良.固体火箭发动机原理[M].北京:北京理工大学出版社,1996.
    [6]查理.固体火箭发动机技术[J].国防科技,2004,7:25-28.
    [7]宋桂明,周玉,王玉金,等.固体火箭发动机喉衬材料[J].固体火箭技术,1998,21(2):51-56.
    [8]R.A. Ellis, M. Berdoyes. An example of successful international cooperation in rocket[J]. Acta Astronautica,2002,51(1-9):47-56.
    [9]R.A. Ahmad. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System[J]. Heat Transfer Engineering,2005,26(10): 30-45.
    [10]W.P. Edward. History of solid rocket motors[J]. AIAA,1992,3978-3998.
    [11]林德春.复合材料应用于空间固体火箭发动机[J].高科技纤维与应用,1996,11-12:1-6.
    [12]蔡顺才,刘侃.固体火箭发动机用低成本、低烧蚀喉衬材料[J].飞航导弹,1995,12:30-33.
    [13]P. Thakre, V. Yang. Chemical Erosion of Carbon-Carbon/Graphite Nozzles in Solid-Propellant Rocket Motors[J]. Journal of Propulsion and Power,2008,24(4): 822-33.
    [14]黄坚定,唐菊花.国外大型团体发动机喷管性能分析[J].固体火箭技术,2004,19(2):9-16.
    [15]O.B Kovalev. Motor and plume particle size prediction in solid-propellant rocket motors[J]. Journal of Propulsion and Power,2002,18(6):1199-1210.
    [16]O.B Kovalev. Prediction of the size of aluminum-oxide particles in exhaust plumes of solid rocket motors [J]. Combustion Explosion and Shock Waves,2002, 38(5):535-46.
    [17]阮崇智.我国固体推进技术发展的回顾与展望[J].宇航材料工艺,1999,6:27-29.
    [18]林德春,张德雄.固体火箭发动机材料现状和前景展望[J].宇航材料工艺,1999,4:1-5.
    [19]Q. Xu, X.H. Zhang, J.C. Han, et al. Ablation behavior of titanium diboride-copper-nickle FGM[J]. Rare Metal Materials and Engineering,2004, 33(10):1072-1075.
    [20]E.M. Nambus. Analysis of acoustic emission behavior in graphite materials for solid rocket motor[J]. Advances in Nondestructive Evaluation,2004, 270-273(1-3):479-484.
    [21]E.M. Nambus. Strength and toughness of graphite materials for solid rocket motor [J]. Designing, Processing and Properties of Advanced Engineering Materials,2004,449(1-2):709-712.
    [22]R.D. Patton, C.U. Pittman Jr, L. WANG, et al. Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites [J]. Composites Part:A a-Applied Science and Manufacturing,2002, 33(2):243-251.
    [23]S. Forde, M. Bulman, T. Neill. Thrust augmentation nozzle (TAN) concept for rocket engine booster applications [J]. Acta Astronautica,2006,59(1-5):271-277.
    [24]M. Bussiere, V. Ariane. Solid rocket booster nozzle development status[J]. AAIA, 3063-3094.
    [25]V.E. Bachrach. Material development and solid rocket motor[J]. AAIA, 1219-1287.
    [26]尹健,张红波,左劲旅.预制体中添加碳化钨的C/C复合材料结构与烧蚀性能[J].固体火箭技术,2011,34(3):360-363.
    [27]王家兴,魏志军,王宁飞.变推力固体火箭发动机非稳态影响因素研究[J].北京理工大学学报,2011,31(9):1018-1022.
    [28]吴学辉,程邦勤,陶增元.推重比10一级发动机技术改进方案分析[J].航空动力学报,2005,20(1):38-43.
    [29]何小明,常海萍.高推重比发动机热端部件发展的技术途径与战略对策[J].航空科学技术,1999,6:32-34.
    [30]L. Donald, Schmidt, E. Kenneth, et al. Unique applications of Carbon-Carbon composites materials (Part One) [J]. Sample Journal,1999,35(3):27-39.
    [31]L. Donald, Schmidt, E. Kenneth, et al. Unique applications of Carbon-Carbon composites materials (Part Two) [J]. Composites Part:A a-Applied Science and Manufacturing,1999,35(4):51-63.
    [32]L. Donald, Schmidt, E. Kenneth, et al. Unique applications of Carbon-Carbon composites materials (Part Three) [J]. composites Part:A a-Applied Science and Manufacturing,1999,35(5):47-55.
    [33]管映亭,金志浩.C/C复合材料致密化制备技术发展现状与前景[J].固体火箭技术,2003,26(1):59-63.
    [34]韩杰才,郝晓东,杜善义.碳/碳复合材料研究的现状和进展(一)[J].宇航材料工艺,1994,4:1-5.
    [35]L.M. Manocha, A. Warrier, S. Manocha, et al. Thermophysical properties of densified pitch based carbon/carbon materials—Ⅰ. Unidirectional composites[J]. Carbon,2006,44(3):480-487.
    [36]S.S. Tzeng, W.C. Lin. Mechanical behavior of two-dimensional carbon/carbon composites with interfacial carbon layers[J]. Carbon,1999,37:2011-2019.
    [37]I.J. Davies, R.D. Rawlings. Mechanical properties in compression of CVI-densified porous carbon/carbon composite[J]. Composites Science and Technology,1999,59:97-104.
    [38]M.V. Rao, P. Mahajan, R.K. Mittal. Effect of architecture on mechanical properties of carbon/carbon composites [J]. Composite Structures,2008,83(2): 131-142.
    [39]K. Goto, H. Hatta, D. Katsu, et al. Tensile fatigue of a laminated carbon-carbon composite at room temperature[J]. Carbon,2003,41(6):1249-1255.
    [40]L.N. Peng, G.Q. He, J. Li, et al. Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor [J]. Carbon, 2012,50(4):1554-1562.
    [41]黄坚定,叶定友.中国空间用固体火箭发动机的发展[J].固体火箭技术,1996,19:1-5.
    [42]叶定友,张德雄.中国航天固体火箭推进技术的发展[J].中国航天,2012,12-24-27.
    [43]左劲旅,张红波,熊翔,等.喉衬用炭_炭复合材料研究进展[J].碳素,2003,16(2):7-11.
    [44]朱良杰,廖东娟.C/C复合材料在美国导弹上的应用[J].宇航材料工艺,1993,4:12-14.
    [45]王文新.推重比10一级发动机的材料和工艺分析[J].航空工艺技术,1996,4:39-41.
    [46]李国栋.C/C抗烧蚀TaC、TaC/SiC涂层的制备及其抗烧蚀机理[D].长沙:中南大学,2006.
    [47]田四朋,唐国金,李道奎,等.固体火箭发动机喷管结构完整性分析[J].固体火箭技术,2005,28(3):180-183.
    [48]戴永耀.碳/碳复合材料及其在航空上的应用前景[J].材料工程,1993,11:43-46.
    [49]王雅雷.化学气相渗透TaC、SiC/TaC改性C/C复合材料的制备及其力学性能[D].长沙:中南大学,2008.
    [50]孙国栋,李贺军,付前刚,等.SiC涂层化学气相沉积过程的数值模拟[J].西安交通大学学报,2007,41(9):1070-1074.
    [51]付前刚,李贺军,史小红,等.沉积位置对化学气相沉积SiC涂层微观组织的影响[J].西安交通大学学报,2005,39(1):49-52.
    [52]T.H. Li, X.L. Zheng. Oxidation behaviour of matrix-modified carbon-carbon composites at high temperature[J]. Carbon,1995,33(4):469-472.
    [53]R.Y. Luo, J.W. Cheng, T.M. Wang. Oxidation behavior and protection of carbon-carbon composites prepared using rapid directional diffused CVI techniques[J]. Carbon,2002,40:1965-1972.
    [54]J. Yin, H.B. Zhang, X. Xiong, et al. Ablation properties of carbon/carbon composites with tungsten carbide[J]. Applied Surface Science,2009,255(9): 5036-5040.
    [55]J.C. Han, X.D. He, S.Y. Du. Oxidation and ablation of 3D carbon-carbon composite at up to 3000 ℃[J]. Carbon,1995,33(4):473-478.
    [56]T.L. Dhami, O.P. Bahl, B.R. Awasthy. Oxidation-resistant carbon-carbon composites up to 1700 ℃[J]. Carbon,1995,33(4):479-490.
    [57]G.L. Vignoles, Y. Aspa, M. Quintard. Modelling of carbon-carbon composite ablation in rocket nozzles[J]. Composites Science and Technology,2010,70: 1303-1311.
    [58]陈林泉,毛根旺,霍东兴,等.无喷管助推器喉部侵蚀燃烧规律研究[J].固体火箭技术,2009,32(2):167-170.
    [59]B. Chen, L.T. Zhang, L.F. Cheng, et al. Erosion resistance of needled carbon/carbon composites exposed to solid rocket motor plumes[J]. Carbon, 2009,47(6):1474-1479.
    [60]J. Yin, X. Xiong, H.B. Zhang, et al. Microstructure and ablation performances of dual-matrix carbon/carbon composites[J]. Carbon,2006,44(9):1690-1694.
    [61]张红波,尹健,熊翔.C/C复合材料烧蚀性能的研究进展[J].材料导报,2005,19(7):97-103.
    [62]刘建军,苏君明,陈长乐.炭/炭复合材料烧蚀性能影响因素分析[J].炭素,2003,2:15-19.
    [63]S. Farhan, K.Z. Li, l.j. Guo, et al. Effect of density and fibre orientation on the ablation behaviour of carbon-carbon composites[J]. New Carbon Materials,2010, 25(3):161-167.
    [64]C. Donghwan, Y. Byong 11. Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites[J]. composites Science and Technology,2001,61:271-280.
    [65]尹健,张红波,熊翔,等.不同预制体结构炭/炭复合材料烧蚀性能[J].复合材料学报,2007,24(1):40-44.
    [66]尹健,张红波,熊翔,等.热解炭结构对C/C复合材料烧蚀性能的影响[J].材料研究学报,2007,21(1):10-14.
    [67]黄海明,杜善义,吴林志,等.C/C复合材料烧蚀性能分析[J].复合材料学报,2001,18(3):76-80.
    [68]J.Q. Liao, T.F. Chen, B.Y. Huang, et al. Influence of the pore structure of carbon fibers on the oxidation of C/C composites[J]. Carbon,2002,40:617-636.
    [69]F. Smeacetto, M. Salvo, M. Ferraris. Oxidation protective multilayer coatings for carbon-carbon composites[J]. Carbon,2002,40:583-587.
    [70]X. Xiong, Y.l. Wang, Z.K. Chen, et al. Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers[J]. Solid State Science,2009,11:1386-1392.
    [71]Z.K. Chen, X. Xiong, B.Y. Huang, et al. Phase composition and morphology of TaC coating on carbon fibers by chemical vapor infiltration[J]. Thin solid films, 2008,516:8248-8254.
    [72]侯党社,李克智,李贺军,等.C/C复合材料SiC/W-Mo-Si抗氧化复合涂层研究[J].材料保护,2008,41(2):43-46.
    [73]Q.F. Tong, J.P. Shi, Y.Z. Song, et al. Resistance to ablation of pitch-derived ZrC/C composites[J]. Carbon,2004,42:2495-2500.
    [74]S.F. Tang, J.Y. Deng, S.J. Wang, et al. Ablation behaviors of ultra-high temperature ceramic composites [J]. Materials Science and Engineering A,2007, 465(1-2):1-7.
    [75]X.T. Shen, K.Z. Li, H.J. Li, et al. The effect of zirconium carbide on ablation of carboncarbon composites under an oxyacetylene flame [J]. Corrosion Science, 2011,53:105-112.
    [76]X.T. Shen, K.Z. Li, H.J. Li, et al. Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites [J]. Carbon,2010,48: 344-351
    [77]A. Sayir. Carbon fiber reinforced hafnium carbide composite[J]. journal of material science,2004,39:5995-6003.
    [78]D. Zhao, C.R. Zhang, H.F. Hu, et al. Ablation behavior and mechanism of 3D C/ZrC composite in oxyacetylene torch envirnment[J]. Composites Science and Technology,2011,71:1392-1396.
    [79]李照谦,李贺军,曹翠微,等.C/C复合材料ZrC/SiC抗烧蚀涂层性能研究[J].固体火箭技术,2011,34(1):105-108.
    [80]王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对炭_炭复合材料烧蚀机理的影响[J].新型碳材料,2006,21(1):9-13.
    [81]胡兴华,吴明铂,查庆芳.炭/炭复合材料抗氧化研究进展[J].碳素,2006,3:38-44.
    [82]薛宁娟,郝志彪,李瑞珍,等.炭/炭复合材料抗氧化研究进展[J].材料导报,2003,17:229-32.
    [83]张勇,周声劢,夏金童.炭/炭复合材料高温抗氧化研究进展[J].碳素技术,2004,23(4):20-25.
    [84]刘桂香.炭/炭复合材料的抗氧化研究[D].上海:中国科学院上海冶金研究所,2000.
    [85]宋永忠,翟更太,宋进仁,等.BN改性碳基复合材料氧化行为的研究[J].宇航材料工艺,2001,(6):31-39.
    [86]魏连峰,李克智,吴恒,等.SiC改性C/C复合材料的制备及其烧蚀性能[J].硅酸盐学报,2011,39(2):251-255.
    [87]L.C. Erica, S. Luke, Walker. Improved ablation resistance of C/C composites using zirconium diboride and boron carbide [J]. Journal of the European Ceramic Society,2010,30:2357-2364.
    [88]黄海明,杜善义,施惠基.含钽(Ta) C/C复合材料烧蚀分析[J].复合材料学报,2003,20(3):13-16.
    [89]D.W. Makee. Borate treatment of carbon fibers and carbon/carbon composites for improved oxidation resistance[J]. Carbon,1986,24(6):737-741.
    [90]易茂中,葛毅成,彭春兰.预浸涂对航空刹车副用C/C复合材料抗氧化涂层性能的影响[J].中国有色金属学报,2002,12(2):260-263.
    [91]S.P. Li, K.Z. Li, H.J. Li, et al. Effect of HfC on the ablative and mechanical properties of CC composites[J]. Material Science and Engineering A,2009,1-2: 61-67.
    [92]李淑萍,李克智,郭领军,等.HfC改性CC复合材料整体喉衬的烧蚀性能研究[J].无机材料学报,2008,23(6):1155-1158.
    [93]崔红,苏君明,李瑞珍,等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报,2000,18(4):669-673.
    [94]崔红,李瑞珍,苏君明,等.多元基体抗烧蚀炭/炭复合材料的微观结构分析[J].固体火箭技术,2001,24(3):63-7.
    [95]相华,徐永东,张立同,等.液相先驱体转化法制备TaC抗烧蚀材料[J].无机材料学报,2006,21(4):893-898.
    [96]W.C. Liu, Y.L. Wei, J.Y. Deng. Caron-fiber-reinforced C-SiC binary matrix composites[J]. Carbon,1995,33(4):441-447.
    [97]刘文川,邓景屹,魏永良.碳纤维增强C-SiC梯度基复合材料研究[J].高技术通讯,1997,(4):1-6.
    [98]陈招科.化学气相渗透法制备含TaC相C/C复合材料及其氧化烧蚀性能[M].长沙:中南大学,2007.
    [99]S.Labruquere, X. Bourrat, R. Pailler, et al. Structure and oxidation of C/C composites:role of the interface[J]. Carbon,2001,39:971-984.
    [100]F.H. Zeng, X. Xiong, G.D. Li, et al. Microstructure and mechanical properties of 3D fine-woven punctured C/C composites with PyC/SiC/TaC interphases[J]. Transactions of Nonferrous Metals Society of China,2009,19(6):1428-1435.
    [101]G.F. Lu, S.R. Qiao, C.Y. Zhang, et al. Oxidation protection of C/Si-C-N composite by a mullite interphase[J]. Composites Part A:Applied Science and Manufacturing,2008,39(9):1467-1470.
    [102]F. Lamouroux, S. Bertrand, R. Pailler, et al. Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites[J]. Composites Science and Technology, 1999,59:1073-1085.
    [103]F. Lamourou. Silicon carbide infiltration of porous C-C composites for improving oxidation resistance[J]. Carbon,1995,33(4):525-535.
    [104]R. Naslain, A. Guette, F. Rebillat, et al. Boron-bearing species in ceramic matrix composites for long-term aerospace applications[J]. Journal of solid state chemistry,2004,177:449-456.
    [105]R. Naslain, R Pailler, X. Bourrat, et al. Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI[J]. Solid state Ionics,2001,141-142: 541-548.
    [106]王雅雷,熊翔,李国栋,等.新型C/C-TaC复合材料的微观结构及其力学性能[J].中国有色金属学报,2008,18(4):608-613.
    [107]熊翔,王雅雷,李国栋,等.CVI-SiC/TaC改性C/C复合材料的力学性能及其断裂行为[J].复合材料学报,2008,25(5):91-97.
    [108]Z.K. Chen, X. Xiong, Y. Long, et al. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers[J]. Applied Surface Science,2009, 255:9217-9223.
    [109]黄剑锋,李贺军,熊信柏,等.炭/炭复合材料高温抗氧化涂层的研究进展[J].新型碳材料,2005,4(20):373-379.
    [110]程基伟,罗瑞盈,王天民.炭/炭复合材料高温抗氧化研究的现状[J].碳素技术,2001,(5):28-33.
    [111]Y.C. Lin, M.R. Elizabeth, G. Richard, et al. One-step synthesis of a multi-functional anti-oxidation protective layer on the surface of carbon/carbon composites[J]. Carbon,2012,50:557-565.
    [112]W. Sun, X. Xiong, B.Y. Huang, et al. ZrC protective coating for carbon/carbon composites[J]. Carbon,2009,47:3365-3380.
    [113]孙威.C/C复合材料锆基抗烧蚀涂层的制备及性能研究[D].长沙:中南大学,2010.
    [114]陈招科,熊翔,李国栋,等.化学气相沉积TaC涂层的微观形貌及晶粒择优生长[J].中国有色金属学报,2008,18(8):1377-82.
    [115]金石译(美国国家材料咨询委员会所属涂层委员会编).高温抗氧化涂层·防止超级合金难熔金属和石墨氧化的涂层[M].北京,科学出版社,1980.
    [116]Z.F. Chen, W.P. Wu, H. Cheng, et al. Microstructure and evolution of iridium coating on the C/C composites ablated by oxyacetylene torch[J]. Acta Astronautica,2010,66:682-687.
    [117]Y.S. Liu, L.F. Cheng, L.T. Zhang, et al. Oxidation protection of multilayer CVD SiC/B/SiC coatings for 3D C/SiC composite[J]. Materials Science and Engineering:A,2007,466(1-2):172-177.
    [118]Z.Q. Li, H.J. Li, W. Li, et al. Preparation and ablation properties of ZrC-SiC coating for carboncarbon[J].2011,258:565-571.
    [119]G.D. Li, X. Xiong, K.L. Huang. Ablation mechanism of TaC coating fabricated by chemical vapor deposition on carbon-carbon composites[J]. Trans Nonferrous Met Soc China,2009,19:s689-s695.
    [120]G0D. Li, X. Xiong, B.Y. Huang, et al. Structural characteristics and formation mechanisms of crack-free multilayer TaC/SiC coatings on carbon-carbon composites[J]. Trans Nonferrous Met Soc China,2008,18:255-261.
    [121]李国栋,熊翔,黄伯云.温度对CVD-TaC涂层组成、形貌与结构的影响[J].中国有色金属学报,2005,15(4):565-571.
    [122]Y. Xiang, W. Li, S. Wang, et al. Ablative property of ZrCSiC multilayer coating for PIP-C/SiC composites under oxy-acetylene torch[J]. Ceramics International, 2012,38(4):2893-2897.
    [123]Y.J. Wang, H.J. Li, Q.G. Fu, et al. Ablative property of HfC-based multilayer coating for C/C composites under oxy-acetylene torch[J]. Applied Surface Science,2011,257:4760-4763.
    [124]Q.M. Liu, L.T. Zhang, F.R. Jiang, et al. Laser ablation behaviors of SiC-ZrC coated carbon/carbon composites[J]. Surface and Coatings Technology,2011, 205:4299-4303.
    [125]L.L. Li, Y.G. Wang, L.F. Cheng, et al. Preparation and properties of 2D C/SiC-ZrB2-TaC composites[J]. Ceramics International,2011,37(3):891-896.
    [126]Y. Long, A. Javed, I. Shapiro, et al. The effect of substrate position on the microstructre and mechanical properties of SiC coatings on carbon/carbon composites[J]. Surface and Coatings Technology,2011,206:568-574.
    [127]Z.K. Chen, X. Xiong, Y. Long. Influence of TaCls partial pressure on texture structure of TaC coating deposited by chemical vapor deposition[J]. Applied Surface Science,2011,257:4044-4050.
    [128]H.B. Li, L.T. Zhang, L.F. Chceng, et al. Oxidation analysis of 2D C/ZrC-SiC composites with different coating structures in CH4 combustion gas environment [J]. Ceramics International,2009,35:2277-2282.
    [129]李国栋,熊翔,黄伯云,等.TaC涂层的氧化特征与氧化机制[J].中国有色金属学报,2007,17(3):360-367.
    [130]H.W. He, K.C. Zhou, X. Xiong, et al. Investigation on decomposition mechanism of tantalum ethylate precursor during formation of TaC on C/C composite material[J]. Materials letters,2006,60(28):3409-3412.
    [131]李淑萍,李克智,郭领军.碳/碳复合材料SiC-HfSi2-TaSi2抗烧蚀复合涂层[J].硅酸盐学报,2009,37(5):804-807.
    [132]Y.H. Chu, H.J. Li, Q.G. Fu, et al. Oxidation protection of SiC-coated C/C composites by SiC nanowire-toughened CrSi2-SiC-Si coating[J]. Corrosion Science,2012,55:394-400.
    [133]G.M. Song, S.B. Li, C.X. Zhao, et al. Ultra-high temperature ablation behavior of Ti2AlC ceramics under an oxyacetylene flame[J]. Journal of the European Ceramic Society,2011,31:855-862.
    [134]舒武炳,郭海明,乔生儒,等.化学气相沉积法制备TiC涂层的相组成和表面形貌[J].西北工业大学学报,2000,18(2):229-232.
    [135]G.R. Holcomb. The high temperature oxidation of hafnium carbide[D]. Klumbus City:The Ohio University,1988.
    [136]G. Wen, S.H. Sui, L. Song, et al. Formation of ZrC ablation protective coatings on carbon material by tungsten inert gas cladding technique [J]. Corrosion Science,2010,52:3018-3022.
    [137]刘巧沐,张立同,刘佳,等.工艺参数对化学气相沉积ZrC涂层形貌和组分的影响[J].复合材料学报,2010,27(5):62-67.
    [138]李国栋,郑湘林,熊翔,等.氢气浓度对常压化学气相沉积ZrC涂层的影响[J].中国有色金属学报,2010,20(9):1795-1801.
    [139]熊炳昆,杨新民,罗方承,等.锆铪及其化合物应用[M].北京:冶金工业出版社,2006.
    [140]J.M. Drexler, K. Shinoda, A.L. Ortiz, et al. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Materialia,2010,58(20):6835-6844.
    [141]J. Jayaraj, D.J. Sordelet, D.H. Kim, et al. Corrosion behaviour of Ni-Zr-Ti-Si-Sn amorphous plasma spray coating [J]. Corrosion Science,2006, 48(4):950-964.
    [142]J. G, T. Grosdidier, F. Bernard, et al. Bulk FeAl nanostructured materials obtained by spray forming and spark plasma sintering[J]. Journal of Alloys and Compounds,2007,434-435:358-361.
    [143]S. Stewart, R. Ahmed, T. Itsukaichi. Contact fatigue failure evaluation of post-treated WC-NiCrBSi functionally graded thermal spray coatings[J]. Wear, 2004,257(9-10):962-983.
    [144]T. Terajima, F. Takeuchi, K. Nakata, et al. Composite coating containing WC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuel spraying[J]. Journal of Alloys and Compounds,2010,504: s288-s291.
    [145]Y.P. Wu, P..H Lin, C.L. Chu, et al. Cavitation erosion characteristics of a Fe-Cr-Si-B-Mn coating fabricated by high velocity oxy-fuel (HVOF) thermal spray[J]. Materials letters,2007,61(8-9):1867-1872.
    [146]李晓梅,陈贵清,孟松鹤,等.热障涂层的研究进展[J].宇航材料工艺,2004,(1):1-6.
    [147]王德朋,苏勋家,侯根良.HfC陶瓷涂层的制备与性能分析[J].广东有色金属学报,2006,16(1):19-21.
    [148]李鹏,黄美东,佟莉娜,等.磁控溅射与电弧离子镀制备TiN薄膜的比较[J].天津师范大学学报,2011,31(2):32-7.
    [149]李新连,吴平,邱宏,等.脉冲磁控溅射法制备单斜相氧化铒涂层[J].物理学报,2011,60(3):1-7.
    [150]杨和梅,陈云富,徐秀英.直流磁控反应溅射制备A1203薄膜的工艺研究[J].科学技术与工程,2010,10(32):7881-7885.
    [151]S. Vincent, Smentkowski. Trends in sputtering[J]. Progress in surface science, 2000,64:1-58.
    [152]J. Musil, P. Baroch, J. Vleck, et al. Reactive magnetron sputtering of thin films: present status and trends[J]. Thin solid films,2005,475(1-2):208-218.
    [153]Z.F. Shi, YJ. Wang, C. Du, et al. The structure, surface topography and mechanical properties of Si-C-N films fabricated by RF and DC magnetron sputtering[J]. Applied Surface Science,2011,258(4):1328-1336.
    [154]李芬,朱颖,李刘合,等.磁控溅射技术及其发展[J].真空电子技术,2011,(3):49-54.
    [155]GQ. Li, G.Y. Li. Microstructure and mechanical properties of hafnium carbide coatings synthesized by reactive magnetron sputtering[J]. Journal of coatings technology and reserch,2010,7(3):403-407.
    [156]L. Cleries, E. Martinez, J.M. Fernandez-Pradas, et al. Mechanical properties of calcium phosphate coatings deposited[J]. Biomaterials,2000,21:967-971.
    [157]H.L. Chan, U. Ekanayake, A. Kumar, et al. Nano-indentation studies of hard coatings prepared by laser ablation[J]. Applied Surface Science,1997,109-110: 58-61.
    [158]Q. Wei, J. Sankar, J. Narayan. Structure and properties of novel functional diamond-like carbon coatings produced by laser ablation[J]. Surface and Coatings Technology,2001,146-147:250-257.
    [159]V.Y. Fominski, S.N. Grigonriev, A.G. Gnedovets, et al. Pulsed laser deposition of composite Mo-Se-Ni-C coatings using standard and shadow mask cconfiguration[J]. Surface and Coatings Technology,206:5046-5054.
    [160]R.Teghil, A. Santagata, M. Zaccagnino, et al. Hafnium carbide hard coatings produced by pulsed laser ablation and deposition[J]. Surface and Coatings Technology,2002,151-152:531-533.
    [161]D. Ferro, J.V. Rau, V.R. Albertini, et al. Pulsed laser deposited hard TiC, ZrC, HfC and TaC films on titanium:Hardness and an energy-dispersive X-ray diffraction study[J]. Surface and Coatings Technology,2008,202:1455-1461.
    [162]何捍卫,周科朝,熊翔.C/C复合材料抗烧蚀TaC涂层的制备[J].稀有金属材料与工程,2004,33(5):490-493.
    [163]王毅,徐永东,张立同,等.液相先驱体制备C/C-TaC复合材料[J].固体火箭技术,2007,30(6):541-551.
    [164]侯根良,苏勋家,王延斌,等.液相先驱体转化法制备HfC及其表征[J].航空材料学报,2009,29(1):77-80.
    [165]王延斌,苏勋家,侯根良,等.液相先驱体转化法制备HfC及其表征[J].稀有金属材料与工程,2008,37(4):729-731.
    [166]吴守军,成来飞,张立同,等.化学气相沉积碳化硅涂层缺陷形成的机制及控制[J].硅酸盐学报,2005,33(4):443-446.
    [167]N. Cocera, N. Remirez de Esparza, I. Ocana, et al. Oxidation resistance of highly porous CVD-SiC coated tyranno fiber composites [J]. Journal of the European Ceramic Society,2011,31:1155-1164.
    [168]H.F. Ache, J. Goschnick, M. Sommer, et al. Chemical vapour deposition of hafnium carbide and characterization of the deposited layers by secondary-neutral mass spectrometry[J]. Thin solid films,1993,241:356-360.
    [169]G Emig, G Schoch, O. Wormer. Chemical vapor deposition of hafnium carbide and hafnium nitride[J]. Journal de physique II,1993,3:535-340.
    [170]V. Wunder, N. Popovska, A. Wegner, et al. Multilayer coatings on CFC composites for high-temperature applications [J]. Surface and Coatings Technology,1998,100-101:329-332.
    [171]N.I. Baklanova, T.M. Zima, A.I. Boronin, et al. Protective ceramic multilayer coatings for carbon fibers[J]. Surface and Coatings Technology,2006,201: 2313-2319.
    [172]Q.M. Liu, L.T. Zhang, L.F. Cheng, et al. Low pressure chemical vapor deposition of niobium coating on silicon carbide[J]. Applied Surface Science, 2009,255:8611-8615.
    [173]Q.M. Liu, L.T. Zhang, L.F. Cheng. Low pressure chemical vapor deposition of niobium coatings on graphite[J]. Vacuum,2010,85:332-337.
    [174]段钢锋,赵高凌,林小璇,等.常压化学气相沉积法制备氮化钛薄膜结构和节能性能研究[J].功能材料,2010,41(5):847-50.
    [175]Y.G. Wang, Q.M. Liu, J.L. Liu, et al. Deposition mechanism for chemical vapor deposition of zirconium carbide coatings[J]. Journal of the American Ceramic Society,2008,91(4):1249-52.
    [176]X. Xiong, Z.K. Chen, B.Y. Hhuang, et al. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition[J]. Thin solid films,2009,517:3235-3239.
    [177]Q.M. Liu, L.T. Zhang, L.F. Cheng, et al. Morphologies and growth mechanisms of zirconium carbide films[J]. Journal of coatings technology and reserch,2009, 6(2):269-273.
    [178]M.H. Staia, E.S. Puchi, D.B. Lewis, et al. Microstructural characterization of chemically vapor deposited TiN coating[J]. Surface and Coatings Technology, 1996,86-87:432-437.
    [179]H.P. Jong, H.J. Choong, J.K. DO, et al. Effect of H2 dilution gas on the growth of ZrC during low pressure chemical vapor deposition in the ZrCl4-CH4-Ar system[J]. Surface and Coatings Technology,2008, (203):87-90.
    [180]H.P. Jong, H.J. Choong, J.K. DO, et al. Temperature dependency of the LPCVD growth of ZrC with the ZrCl4-CH4-H2 system[J]. Surface and Coatings Technology,2008, (203):324-328.
    [181]B. Zeng, Z.D. Feng, S.W. Li, et al. Microstructure and deposition mechanism of CVD amorphous boron carbide coatings deposited on SiC substrate at low temperature[J]. Ceramics International,2009,35(5):1877-1882.
    [182]W. Sun, X. Xiong, B.Y. Huang, et al. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition[J]. Applied Surface Science,2009,255:7142-7146.
    [183]刘荣军,张长瑞,周新贵,等.化学气相沉积SiC涂层生长过程分析[J].无机材料学报,2005,20(2):425-429.
    [184]史波,李贺军,李克智,付前刚.化学气相沉积制备MoSi2涂层分析[J].材料导报,2005,19(7):37-40.
    [185]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [186]刘俊吉,周亚平,李松林.物理化学[M].北京:高等教育出版社,2009.
    [187]唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2008.
    [188]张伟刚.化学气相沉积-从烃类气体到固体碳[M].北京:科学出版社,2007.
    [189]P. Wagner, L.A. Wahman, R.W. White, et al. Factors influencing the chemical vapor deposition of ZrC[J]. Journal of nuclear materials,1976,62:221-228.
    [190]马福康,丘向东,贾厚生.铌与钽[M].长沙,中南工业大学出版社,1997.
    [191]X.T. Li, J.L. Shi, GB. Zhang, et al. Effect of ZrB2 on the ablation properties of carbon composites[J]. Materials letters,2006, (60):892-896.
    [192]陈大军,吴护林,张隆平,等.沉积温度对TiB2涂层的组成与形貌的影响[J].航空材料学报,2009,29(3):50-54.
    [193]刘荣军,张长瑞,周新贵,等.稀释气体对化学气相沉积SiC涂层生长行为的影响[J].硅酸盐学报,2004,32(12):1563-1566.
    [194]T. Ogawa, K. Ikawa, K. Iwamoto. Effect of gas composition on the deposition of ZrC-C mixtures [J]. Journal of material science,1979, (14):125-132.
    [195]V.F. Funke, A.I. Tyutyunnikov, V.S. Makeev, et al. Deposition of niobium and zirconium carbide with vapor-gas phase circulation in a closed circuit[J]. Poroshkovaya Metalluryiya,1976,162:48-50.
    [196]霍艳丽,陈玉峰.气体流量及配比对CVDSiC膜层的影响[J].人工晶体学报,2009,38:255-158.
    [197]李簧,李哲洋,董逊,等.生长源流量对SiC外延生长的影响[J].半导体技术,2008,33:266-268.
    [198]李哲洋,李赟,董逊,等.水平热壁式CVDSiC外延均匀性研究[J].半导体技术,2008,33:269-272.
    [199]苗晋琦,宋建华,赵中琴,等.硬质合金工具强电流直流伸展弧等离子体CVD金刚石涂层的均匀性研究[J].金刚石与磨料磨具工程,2003,2:7-13.
    [200]李保元.多弧离子镀在不锈钢板上沉积TiN的均匀性研究[J].真空,2007,44(5):16-18.
    [201]GM. Pharr. Measurements of mechanical properties by ultra-low load indentation[J]. Materials and Engineering A,1998, (253):151-159.
    [202]O.R. Shojaei, A. Karimi. Comparation of mechanical properties of TiN thin films using nanoindentation and bulge test[J]. Thin solid films,1998,332(1-2): 202-208.
    [203]R. Saha, Z.Y. Xue, Y. Huang, et al. Indentation of a soft metal film on a hard substrate:strain gradient hardening effects[J]. Journal of the mechanics and physics of solids,2001,49(9):1997-2014.
    [204]W.C. Oliver, GM. Pharr. Measurement of hardness and elastic modulus by instrumented indentation:Advanced in understanding and refinements to methodology [J]. journal of material research,2004,19(1):3-20.
    [205]S. Chen. Size dependent nanoindentation of a soft film on a hard substrate [J]. Acta Materialia,2004,52(5):1089-1095.
    [206]B.K. Jang, H. Matsubara. Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation[J]. Materials letters, 2005,59(27):3462-3466.
    [207]C.S. Chen, C.P. Liu, C.Y.A. Tsao. Influence of growth temperature on microstructure and mechanical properties of nanocrystalline zirconium carbide films[J]. Thin solid films,2005,479(1-2):130-136.
    [208]E. Lugscheider, K. Bobzin, S. Barwulf, et al. Mechanical properties of EB-PVD-thermal barrier coatings by nanoindentation[J]. Surface and Coatings Technology,2001,138(1):9-13.
    [209]B.K. Jang, H. Matsubara. Hardness and Young's modulus of nanoporous EB-PVD YSZ coatings by nanoindentation[J]. Journal of Alloys and Compounds,2005,402(1-2):237-241.
    [210]D. Craciun, G. Socol, N. Stefan, et al. Chemical composition of ZrC thin films grown by pulsed laser deposition[J]. Applied Surface Science,2009,255(10): 5260-5263.
    [211]宋贵宏,杜昊,贺春林.硬质与超硬涂层-结构、性能、制备与表征[M].北京:化学工业出版社,2007.
    [212]B. Yan, Z.F. Chen, J.X. Zhu, et al. Effects of ablation at different regions in three-dimensional orthogonal C/SiC composites ablated by oxyacetylene torch at 1800℃[J]. Journal of Materials Processing Technology,2009,209(7): 3438-3443.
    [213]J. Xiao, J.M. Chen, H.D. Zhou, et al. Study of several organic resin coatings as anti-ablation coatings for supersonic craft control actuator[J]. Materials Science and Engineering:A,2007,452-453:23-30.
    [214]L. Weng, X.H. Zhang, W.B. Han, et al. Fabrication and evaluation on thermal stability of hafnium diboride matrix composite at severe oxidation condition[J]. International Journal of Refractory Metals and Hard Materials,2009,27(4): 711-717.
    [215]E.L. Courtright, J.T. Prater, GR. Holcomb, et al. Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium[J]. Oxidation of Metals,1991,36(5-6):423-437.
    [216]朱日彰,何业东,齐慧滨.高温腐蚀剂耐高温腐蚀材料[M].上海,上海科学技术出版社,1995.
    [217]C.B. Bargeron, R.C. Benson. X-ray microanalysis of a hafnium carbide film oxidized at high temperature [J]. Surface and Coatings Technology,1988,36: 111-115.
    [218]Y.L. Wang, X. Xiong, X.J. Zhao, et al. Structural evolution and ablation mechanism of a hafnium carbide coating on a C/C composite in an oxyacetylene torch environment [J]. Corrosion Science,2012,61:156-161.
    [219]GR. Holcomb, GR.St. Pierre. Application of a counter-current gaseous diffusion model to the oxidation of hafnium carbide at 1200 to 1530 ℃[J]. Oxidation of Metals,1993,40(1-2):109-118.
    [220]李淼,徐强,朱石珍,等.Hf6Ta2O17材料的合成和热膨胀性能[J].稀有金属材料与工程,2011,40:612-614.
    [221]M. Li, Q. Xu, L. Wang. High-temperature chemical stability of Hf6Ta2017 ceramic for thermal barrier coatings[J]. Key Engnieering Materials,2012, 512-515:636-638.
    [222]M. Li, Q. Xu, L. Wang. Thermal conductivity of (Hf1-xZrx)6Ta2O17 (x=0,0.1, 0.3 and 0.5) ceramics[J]. Ceramics International,2012,38(5):4357-4361.
    [223]C. Zhao, T. Witters, P. Breimer, et al. Properties of ALD HfTaxOy high-k layers deposited on chemical silicon oxide[J]. Microelectronic Engineering,2007, 84(1):7-10.
    [224]J. Wang, H.P. Li, R. Stevens. Hafnia and hafnia-toughened ceramics[J]. Journal of material science,1992,27:5397-5430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700