用户名: 密码: 验证码:
离子聚合物、纳米纤维素增强木塑复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来木塑复合材料以其丰富的原料优势和独特的性能吸引了越来越多的关注,但是目前市场上的木塑复合材料还存在很多的不足之处,如比重大,强度低,特别是冲击韧性差等问题,其根本原因是木粉只起到了填充相的作用,而未真正起到增强相的效果。因此对木塑复合材料的增强改性研究受到越来越多的学者的关注。本次论文利用了两种材料对木塑复合材料进行增强改性,一种为离子聚合物,一种为为植物纳米纤维素。
     首先本次论文以HDPE为基体材料,木粉为填充材料,利用HAKKE minilab对木塑复合材料挤出成型,分析离子聚合物对木塑复合材料的增容增韧效果,并与传统的偶联剂-马来酸酐接枝聚乙烯(MAPE)进行对比,结论如下:
     (1)离子聚合物对木塑复合材料流变性能的影响:随着钠离子聚合物含量的增加,木塑复合材料的剪切应力和表观粘度都呈现出降低的趋势,表明钠离子聚合物的加入可以增加熔体的流动性。而添加4%的钠离子聚合物和4%的锌离子聚合物的复合材料的剪切应力和表观粘度均要低于添加和未添加MAPE的复合材料的值,表明与MAPE偶联剂相比,离子聚合物更能够提高木塑复合材料的流动性能。
     (2)离子聚合物对木塑复合材料力学性能的影响:随着钠离子聚合物含量的提高,复合材料的拉伸强度显示出了稳定的上升趋势,但是复合材料的弹性模量呈现出明显的降低趋势,而抗弯强度呈现出了增加的趋势,且添加钠离子聚合物的复合材料的抗弯强度要高于添加MAPE复合材料的抗弯强度。表明离子聚合物起到了偶联剂的作用,提高了木粉和塑料之间的界面相容性。
     发现离子聚合物对提高木塑复合材料的冲击韧性起到了突出的贡献,当添加4%的钠离子聚合物时,复合材料的抗冲击韧性为40.2J/m,且随着离子聚合物含量的增加,复合材料的冲击韧性出现了近似线性的提高。
     (3)离子聚合物对木塑复合材料热膨胀系数的影响:在低温区(-20℃-30℃),添加了4%的钠离子聚合物的复合材料的LCTE为64.11×10-6/℃,比纯的HDPE降低了61.89%,表明离子聚合物比传统的偶联剂MAPE更能限制木塑复合材料的热膨胀;在低温段(-20℃-30℃)和中温段(0℃-60℃),复合材料的LCTE都是随着钠离子聚合物含量的增加呈现出先降低后增加的趋势。
     (4)DMA分析表明,当在低于60℃时,添加2%和4%的钠离子聚合物的WPC的储能模量E’要高于添加0%和6%的钠离子聚合物,而当温度大于60℃时候,随着钠离子聚合物含量的提高,其E’则显示出了降低的趋势,随着钠离子聚合物含量的增加,复合材料的损耗模量呈现出降低的趋势;与MAPE相比,在玻璃化转变点之前,三种木塑复合材料的储能模量的大小为:4%MAPE﹥4%钠离子聚合物﹥0%Additives,而在玻璃化转变点以上,则添加钠离子聚合物的复合材料的储能模量要低于添加MAPE和不添加任何助剂的复合材料,未添加任何助剂的木塑复合材料的损耗模量要远远高于添加4%MAPE和4%钠离子聚合物的复合材料。
     5)FTIR分析表明,当添加4%的钠离子聚合物后,可以发现复合材料上引入了羧基基团,表明离子聚合物和木质纤维发生了化学反应,增强了木粉和塑料基体的界面相容性。
     其次以杨木粉和脱脂棉为原料,通过酸碱处理和研磨处理制备出了纳米纤维素纤丝,并以木粉和HDPE作为原材料,利用真空抽滤法将制备的纳米纤维素分散到HDPE基体中,通过挤出成型的手段研究纳米纤维素对木塑复合材料的增强效果,结论如下:
     (1)随着木粉纳米纤维素含量的增加,复合材料的熔体的表观粘度呈现出升高的趋势,表明杨木粉纳米纤维素的加入增加了木塑复合材料熔体的粘度;
     (2)添加木粉和脱脂棉两种纳米纤维素的木塑复合材料的抗弯强度和弹性模量都随着纳米纤维素含量的增加呈现出明显的增加趋势,未添加纳米纤维素的木塑复合材料的抗弯强度为28.6Mpa,添加20%的木粉纳米纤维素和20%的脱脂棉纳米纤维素后的复合材料抗弯强度分别为41.2Mpa和37.1Mpa;
     (3)热膨胀系数分析发现随着纳米纤维素含量的增加,添加两种纳米纤维素的木塑复合材料的LCTE值都呈现出了降低的趋势,添加脱脂棉纳米纤维素的复合材料降低幅度没有添加杨木粉纳米纤维素的复合材料显著;
     (4)DMA分析表明,随着纳米纤维素含量的增加,木塑复合材料的储能模量和损耗模量都显示出了升高的趋势,表明纳米纤维素的加入增强了木塑复合材料的刚性特征和粘性特征;
     (5)SEM对纳米纤维素增强的木塑复合材料液氮脆断断面进行观察分析,采用真空抽滤法添加10%和20%含量的木粉纳米纤维素后,在复合材料的断面出现均匀分布的网状细丝,部分纤丝的直径达到纳米尺度,与木粉纳米纤维素增强效果相比,脱脂棉纳米纤维素的复合材料断面虽然也有细丝覆盖,但是细丝的效果并不明显,分散也不均匀。
     最后以纳米纤维素为增强材料,通过挤出成型的方法制备出了纳米纤维素/HDPE复合材料,采用两种方法对纳米纤维素进行分散,一种为以PEO作为分散剂将纳米纤维素分散到HDPE中,另一种方法为真空抽滤法将纳米纤维素分散到HDPE基体中,对比了两种方法制备的复合材料的性能,结论如下:
     (1)流变性能分析表明,随着纳米纤维素含量的增高,两种方法制备的复合材料的剪切应力和表观粘度都显示出了近似线性的增加趋势,当纳米纤维素的含量为50%时,采用分散剂法制备的复合材料的剪切应力和表观粘度都要远远低于真空抽滤法分散纳米纤维素制备的复合材料。
     (2)随着纳米纤维素含量的增加,两种分散法制备的复合材料的抗弯强度(MOR)和抗弯模量(MOE)都显示出了明显上升的趋势,而利用真空抽滤法制备的复合材料的MOR和MOE则稍低于分散剂法制备的复合材料。
     (3)热膨胀系数测试发现添加少量的纳米纤维素就可以降低HDPE的热膨胀系数,但是随着纳米纤维素含量的增加,则降低的幅度不再明显,而且发现利用分散剂法制备的复合材料的LCTE值比利用真空抽滤法制备的复合材料的LCTE值下降幅度更大。
     (4)DMA测试表明,利用两种方法制备的复合材料的储能模量和损耗模量都随着纳米纤维素含量的增加表现出升高的趋势,当纳米纤维素的含量为50%时,利用分散剂法制备的复合材料的最大储能模量为7793Mpa,而利用真空抽滤法制备的复合材料的最大储能模量为7582Mpa,而真空抽滤法制备的复合材料的损耗模量要远远高于分散剂法制备的复合材料,表明真空抽滤法制备的复合材料要耗费更高的能量,阻尼更高,说明分散剂法对纳米纤维素在HDPE中的分散效果更好。
     (5)利用SEM对复合材料的断面分析发现两种方法制备的复合材料的断面都有均匀分散的网状细丝出现,而且部分细丝的直径达到纳米级别,表明两种方法制备的复合材料,纳米纤维素在塑料基体中都取得了均匀分散,只是利用分散剂法制备的复合材料断面细丝更加均匀致密,HDPE裸露部分较少,因而利用PEO作为分散剂对纳米纤维素的分散效果更好。
Recently,wood plastic composites(WPC) draw more and more attention because ofabundant raw materials and excellent properties. However, WPC products still have a lot ofdisadvantages on the market, such as large specific weight, low strength, especially poor impacttoughness, and the main reason is that wood floor only plays a role in filling phase, other than theeffect of reinforcement phase. Therefore, more and more scholars focus on study ofreinforcement modification of WPC. Two reinforcing materials were used to modify WPC in thispaper, one is ionomer, and the other one is biocellulose nanofibers.
     In this paper, in order to evaluate the effect of improving the compatibility and impacttoughness, WPC was extruded by HAKKE minilab using HDPE as matrix, and wood floor asfiller, and compared with the effect of traditional coupling agent-maleic anhydride graftedpolyethylene(MAPE), the conclusions were as follows:
     (1)The influence of ionomer on the rheological properties: both of the shear stress andapparent viscosity showed decline trend with sodium ionomer increasing, which indicated thesodium ionomer could improve the flow ability of WPC melt. Compared with MAPE, the shearstress and apparent viscosity of WPC adding4%sodium ionomer and4%zinc ionomer weremuch lower, which also revealed ionomer could improve the flow ability of WPC much moreefficiently.
     (2)The effect of ionomer on mechanical performance of WPC: the tensile strength and thebenging strength of WPC showed ascending trend with ionomer increasing, but the bendingmodulus showed decline trend, and the bending strength of WPC adding sodium ionomer washigher than that adding MAPE, which demonstrated ionomer played a part in coupling agent, andimprove the interfacial strength.
     Ionomer played an important role in improving the impact toughness of WPC, and theimpact toughness of WPC was40.2J/m when adding4%sodium ionomer. The impact toughnessshowed approximate linear enhancement with ionomer increasing.
     (3) The effect of ionomer on the coefficient of thermal expanding of WPC: in the lowtemperature range(-20℃-30℃), the LCTE of WPC adding4%sodium ionomer was64.11×10-6/℃, which was reduced61.89%than pure HDPE, both in the low temperature range(-20℃-30℃))and middle temperature range(0℃-60℃), the LCTE of WPC showed firstlydecreases and then inceases trend with sodium ionomer increasing.
     (4) The DMA analysis indicated:The storage modulus of WPC adding2%sodium ionomerand4%sodium ionomer were higher than which adding0%sodium ionomer and6%ionomerwhen below60℃, but E’ showed dicline trend as sodium ionomer increased when above60℃. Itis different for loss modulus which showed decline trend at all temperature range. Comparedwith MAPE, the values of E’ for three WPCs was as follows before glass transition point(Tg):4%MAPE>4%sodium ionomer>0%aditives,but over Tg, the E’ of WPC adding sodium ionomer was a little lower than which adding MAPE and0%aditives. The loss modulus of WPCadding0%aditives was much higher than it adding4%MAPE and4%sodium ionomer.
     (5) The FTIR analysis showed that: it could be found that the carboxyl group was brought inWPC adding4%sodium ionomer, which indicated ionomer and fiber involved chemical reactionand improved the interfacial compatibility of wood floor and polymer matrix.
     Then the cellulose nanofibers(CNF) were prepared via acid and alkali treatment combinedwith mechanical treatment with poplar floor and cotton as raw material. The CNF was dispersedinto HDPE matrix by vacuum filtration and then all the materials were extruded by a HAKKEminilab, and the effect of WPC reinforced by CNF was as follows:
     (1)The apparent viscosity of WPC melt showed increased trend with poplar CNFincreasing, which indicated the viscosity of melt was increased by poplar CNF.
     (2)The MOR and MOE of WPC adding poplar and cotton CNF showed visble increasedtrend as CNF levels increased, and the MOR of WPC without CNF was28.6Mpa,but the MORof WPC adding20%poplar CNF and20%cotton CNF were41.2Mpa and37.1Mpa separately.
     (3)The LCTE of WPC adding poplar CNF and cotton CNF were both showed declinetrend with CNF content increasing, the only diffrence was the LCTE of WPC adding cotton CNFwas litter higher than which adding poplar CNF.
     (4)The DMA analysis showed the storage modulus and loss modulus were both increasingas CNF increased, which indicated the adding of CNF enhanced the stiffness and viscosity ofWPC.
     (5)The SEM photographes showed there was well dispersed net-like fibers on the fracturesection of WPC adding10%and20%poplar CNF using vacuum filtration, and part of silk wasnanoscale. Compared with WPC adding poplar CNF, which adding cotton CNF also had silk onthe fracture section, but the fibers were not clear very much and the dispertion effect was notvery perfect.
     Finally the CNF/HDPE composite was extruded with poplar CNF as reinfored material, andtwo dispersing mathod was used to make CNF dispersed into HDPE uniformly, one is to usePEO as dispersing agent, and the other is vacuum filtration, and the conclusions were as follows:
     (1) rheological properties showed that: the shear stress and apparent viscosity both showedapproximatly linear increasing trend with CNF increasing, and the stress and apparent viscosityof WPC using dispersing agent method was much lower than which using vacuum filtrationmethod when the content of CNF was below50%.
     (2) The MOR and MOE of WPC using two dispersing methods both showed increasingtrend as CNF increased, but which using vacuum filtrition method were little lower than usingdispersing agent method.
     (3)The LCTE showed adding a little CNF could decreased the LCTE of HDPE, but thelower rate was not evident any more as CNF increasing. The LCTE of composite usingdispersing agent method declined much more than which using vacuum filtrition method.
     (4) The DMA analysis showed the storage modulus and loss modulus both showedincreasing trend using two dispersing methods as CNF increasd. The maximum storage modulus was7793Mpa using dispersing agent method when CNF content was50%, but the maximumstorage modulus was7582Mpa using vacuum filtration method, but the loss modulus usingvacuum filtration was much higher than using dispersing agent method, which indicated thecomposite prepared using vacuum filtrition method would consume much energy and damperwas much higher, and the dispersing agent method was much better.
     (5) The SEM photographs showed there exsited well-dispersed silks on the fracture sectionof CNF/HDPE compostes prepared with two dispersing methods, and part of silks werenanoscale, which indicated CNF were well dispersed into HDPE matrix using two methods, butthe silks on the fracture section of composite using dispersing agent method was mcuh uniformand dense, and the part of naked HDPE was lesser.
引文
[1] Fei Yao, Qinglin Wu. Coextruded Polyethylene and Wood-Flour Composite:Effect of Shell Thickness,Wood Loading, and Core Quality[J]. Journal of Applied Polymer Science.2010(10):3594–3601.
    [2]Stark,N.M., L.M.Matuana.2009.Co-extrusion of WPCs with a clear cap layer to improve colorstability,4thWood Fiber Polymer Composites International Symposium,March30-31,2009,Bordeaux,France,pp.1-13.
    [3]Bauser, M.,Sauer, G.,Siegert, K. Extrusion. ASM International:Materials Park, Ohio, USA,2006.
    [4]黄润州.芯表结构木塑复合材料机械性能与热膨胀性能的研究[D].博士论文.南京林业大学.2012,6.
    [5] Wu,J.S.,Yu,D.M.,Chan,C.M. Effect of fiber pretreatment condition on the interfacial strength andmechanical properties of wood fiber/PP composites.J Appl Polym Sci.2000,76(7):1000-1010.
    [6]周吓星,林巧佳,陈礼辉.聚丙烯/竹粉发泡复合材料的性能研究[J].塑料工业.2011,39(2):110-118.
    [7] Bledzki,A.K.,Faruk,O.Wood fibre reinforced polypropylene composites: Effects of fibre geometry andcoupling agent on physico-mechaical properties.Appl Compos Maser.2003,10:365-379.
    [8]王鹏.高填充木塑复合材料流变行为与结晶性质研究[D].博士论文.上海交通大学.2011,4.
    [9] Anatole A klyosov. Wood plastic composites[M].John wiley&Sons.2007.
    [10]冯彦洪,李展洪,瞿金平.聚乳酸/剑麻复合材料流变性能表征[J].化工学报.2011,1(62):269-275.
    [11] Blyler L L, Daane J H.An analysis of Brabender torque rheometer data [J]. Polymer Engineering and Science,1967,7(3):178.
    [12] Marquez A, Quijan o J, Gaulin M.A calibration technique to evaluate the power-law parameters ofpolymer melts using a torqu rheometer [J]. Polymer Engineering and Science,1996,36(20):2256-2263.
    [13] Cheng Baojia, Zhou Chixing, Yu Wei.Evaluation of rheological parameters of polymer melt s in torquerheometers [J]. Polymer Testing,2001,20(7):811-818.
    [14]Marcovich N E,Reboredo M M,Kenny J,et al.Rheology of particle suspensionsin viscoelastic media.Woodflour-polypropylene melt[J].Rheologica Acta,2004,43(3):293-303.
    [15]ShenoyA.V.Rheology of Filled Polymer Systems[M].Dordrecht:KLUWER ACADEMICPUBLISHERS,1999.
    [16]蒋佳荔.木材动态粘弹性的温度、时间与频率响应机理研究[D].博士论文.东北林业大学.2009,6.
    [17]Williams M.L.,Landel R.F.,Ferry J.D.The temperature dependence of relaxation mechanisms in amorphouspolymers and other glass-forming liquids. Journal of the American Chemical Society,1955,77(14):3701-3705.
    [18] M.J. John, Thomas, S. Biofibres and biocomposites[J]. Carbohydrate Polymers,2008,71(3):343-364.
    [19] D. Klemm, Heublein, B., Fink, H.-P., et al. Cellulose: Fascinating Biopolymer and Sustainable RawMaterial[J]. Angewandte Chemie International Edition,2005,44(22):3358-3393.
    [20]S.J. Eichhorn, Baillie, C.A., Zafeiropoulos, N., et al. Review: Current international research into cellulosicfibres and composites[J]. Journal of Materials Science,2001,36(9):2107-2131.
    [21] N.Graupner, Herrmann, A.S., Müssig, J. Natural and man-made cellulose fibrereinforced poly(lactic acid)(PLA) composites: An overview about mechanical characteristics and application areas[J]. Composites Part A:Applied Science and Manufacturing,2009,40(6-7):810-821.
    [22] W.K.Czaja, Young, D.J., Kawecki, M., et al. The Future Prospects of Microbial Cellulose in BiomedicalApplications[J]. Biomacromolecules,2006,8(1):1-12.
    [23] S.Eichhorn, Dufresne, A., Aranguren, M., et al. Review: current international research into cellulosenanofibres and nanocomposites[J]. Journal of Materials Science,2010,45(1):1-33.
    [24] I. Siró, Plackett, D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose,2010.
    [25] M.A.S. Azizi Samir, Alloin, F. Review of Recent Research into Cellulosic Whiskers, Their Properties andTheir Application in Nanocomposite Field[J]. Biomacromolecules,2005,6(2):612-626.
    [26] M.A. Hubbe, Rojas, O.J., Lucia, L.A., et al. Cellulosic nanocomposites, review[J]. Bioresources,2008,3(3):929-980.
    [27]D.J.Gardner, Oporto, G.S., Mills, R., et al. Adhesion and Surface Issues in Cellulose and Nanocellulose[J].Journal of Adhesion Science and Technology,2008,22545-567.
    [28]S.Kamel.Nanotechnology and its applications in lignocellulosic composites, a mini review[J]. eXPRESSPolymer Letters,2007,1(9):546-575.
    [29]D.Klemm, Schumann, D., Kramer, F., et al. Nanocellulose Materials–Different Cellulose, DifferentFunctionality[J]. Macromolecular Symposia,2009,280(1):60-71.
    [30]T.H. Wegner, Jones, P.E. Advancing cellulose-based nanotechnology[J]. Cellulose,2006,13(2):115-118.
    [31] E.L. HIRST. The Chemistry of Cellulose[J]. Nature,1956,677-678.
    [32] Y.Nishiyama, Langan, P., Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβfrom Synchrotron X-ray and Neutron Fiber Diffraction[J]. Journal of the American Chemical Society,2002,124(31):9074-9082.
    [33] Y. Nishiyama, Sugiyama, J., Chanzy, H., et al. Crystal Structure and Hydrogen Bonding System inCellulose Iα from Synchrotron X-ray and Neutron Fiber Diffraction[J]. Journal of the American ChemicalSociety,2003,125(47):14300-14306.
    [34] I. Sakurada, Nukushina, Y., Ito, T. Experimental determination of the elastic modulus of crystallineregions in oriented polymers[J]. Journal of Polymer Science,1962,57(165):651-660.
    [35]陈文帅.生物质纤维素纳米纤丝制备及其结构性能研究[D].硕士论文.东北林业大学.2010,6.
    [36]J. Araki, Wada, M., Kuga, S. Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethyleneglycol) Grafting[J]. Langmuir,2000,17(1):21-27.
    [37]J. Araki, Wada, M., Kuga, S., et al. Birefringent Glassy Phase of a Cellulose Microcrystal Suspension[J].Langmuir,2000,16(6):2413-2415.
    [38]P. Podsiadlo, Choi, S.-Y., Shim, B., et al. Molecularly Engineered Nanocomposites: Layer-by-LayerAssembly of Cellulose Nanocrystals[J]. Biomacromolecules,2005,6(6):2914-2918.
    [39] S. Beck-Candanedo, Viet, D., Gray, D.G. Induced Phase Separation in Low-Ionic-Strength CelluloseNanocrystal Suspensions Containing High-Molecular-Weight Blue Dextrans[J]. Langmuir,2006,22(21):8690-8695.
    [40]S. Beck-Candanedo, Viet, D., Gray, D.G. Triphase Equilibria in Cellulose Nanocrystal SuspensionsContaining Neutral and Charged Macromolecules[J]. Macromolecules,2007,40(9):3429-3436.
    [41] N. Wang, Ding, E., Cheng, R. Preparation and Liquid Crystalline Properties of Spherical CelluloseNanocrystals[J]. Langmuir,2007,24(1):5-8.
    [42]H.Liu, Liu,D.,Yao, F., et al. Fabrication and properties of transparent polymethylmethacrylate/cellulosenanocrystals composites[J]. Bioresource Technology,2010,101(14):5685-5692.
    [43]D. Liu, Zhong, T., Chang, P.R., et al. Starch composites reinforced by bamboo cellulosic crystals[J].Bioresource Technology,2010,101(7):2529-2536.
    [44]Whiskers in Aqueous Suspensions[J]. Macromolecules,1999,32(6):1872-1875.
    [45]M.Bercea,Navard,P.Shear Dynamics of Aqueous Suspensions of Cellulose Whiskers[J]. Macromolecules,2000,33(16):6011-6016.
    [46]M.A.S. Azizi Samir, Alloin, F., Sanchez, J.-Y., et al. Cross-Linked Nanocomposite Polymer ElectrolytesReinforced with Cellulose Whiskers[J]. Macromolecules,2004,37(13):4839-4844.
    [47]S. Elazzouzi-Hafraoui, Nishiyama, Y., Putaux, J.-L., et al. The Shape and Size Distribution of CrystallineNanoparticles Prepared by Acid Hydrolysis of Native Cellulose[J].Biomacromolecules,2007,9(1):57-65.
    [48] B.M. Cherian, Pothan, L.A., Nguyen-Chung, T., et al. A Novel Method for the Synthesis of CelluloseNanofibril Whiskers from Banana Fibers and Characterization[J]. Journal of Agricultural and Food Chemistry,2008,56(14):5617-5627.
    [49] S. Berlioz, Molina-Boisseau, S., Nishiyama, Y., et al. Gas-Phase Surface Esterification of CelluloseMicrofibrils and Whiskers[J]. Biomacromolecules,2009,10(8):2144-2151.
    [50] G. Siqueira, Bras, J., Dufresne, A. Cellulose Whiskers versus Microfibrils: Influence of the Nature of theNanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties ofNanocomposites[J]. Biomacromolecules,2008,10(2):425-432.
    [51] H. Yano, Sugiyama, J., Nakagaito, A.N., et al. Optically Transparent Composites Reinforced with
    [52]Networks of Bacterial Nanofibers[J]. Advanced Materials,2005,17(2):153-155.
    [53] M. Nogi, Yano, H. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer PotentialInnovation in the Electronics Device Industry[J]. Advanced Materials,2008,20(10):1849-1852.
    [54] M. Nogi, Iwamoto, S., Nakagaito, A.N., et al. Optically Transparent Nanofiber Paper[J].AdvancedMaterials,2009,21(16):1595-1598.
    [55] M. P kk, Ankerfors, M., Kosonen, H., et al. Enzymatic Hydrolysis Combined with Mechanical Shearingand High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels[J]. Biomacromolecules,2007,8(6):1934-1941.
    [56]OKSMAN K, SA IN M.Proceedings of the229th Meeting of the American Chemical Society[C].California:Elsevier,2005.
    [57] FAVIER V, CANOVA G R, CAVA ILLE J Y, et al. Nanocomposite materials from latex and cellulosewhiskers[J].Polymer Advanced Technology,1995,6(5):351-355.
    [58]AZIZIM A S, FANN IE A, SANCHEZ J Y, et al.Cellulose nanocrystals reinforced poly(oxyethylene)
    [J].Polymer,2004,45:4149-4157.
    [59]AZIZIM A S,ALLO IN F, DUFRESNE A.Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J].Biomacromolecules,2005,6(2):612-626.
    [60] A. Chakraborty, Sain, M., Kortschot, M. Reinforcing potential of wood pulp-derived microfibres in a PVAmatrix[J]. Holzforschung,2006,60(1):53-58.
    [61] Q. Cheng, Wang, S., Rials, T., et al. Physical and mechanical properties of polyvinyl alcohol andpolypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulosefibers[J]. Cellulose,2007,14(6):593-602.
    [62] J. Lu, Wang, T., Drzal, L.T. Preparation and properties of microfibrillated cellulose polyvinyl alcoholcomposite materials[J]. Composites Part A:Applied Science and Manufacturing,2008,39(5):738-746.
    [63] A. Iwatake, Nogi, M., Yano, H. Cellulose nanofiber-reinforced polylactic acid[J]. Composites Science andTechnology,2008,68(9):2103-2106.
    [64]A.N. Nakagaito, Fujimura, A., Sakai, T., et al. Production of microfibrillated cellulose (MFC)-reinforcedpolylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process[J]. CompositesScience and Technology,2009,69(7-8):1293-1297.
    [65] K. Okubo, Fujii, T., Thostenson, E.T. Multi-scale hybrid biocomposite: Processing and mechanicalcharacterization of bamboo fiber reinforced PLA with microfibrillated cellulose[J].Composites Part A: AppliedScience and Manufacturing,2009,40(4):469-475.
    [66] A.N. Nakagaito, Yano, H. The effect of morphological changes from pulp fiber towards nano-scalefibrillated cellulose on the mechanical properties of high-strength plant fiber based composites[J]. AppliedPhysics A: Materials Science&Processing,2004,78(4):547-552.
    [67]曲桂杰等.离子聚合物在Nylon-1010/PP共混物中的增容作用[J].应用化学.1995.4.(13):71-74.
    [68] C.G.Bazuin, A.Eisenberg.Ind.Eng.chem.prod.Res.Rev.20.271(1981).
    [69].J.Fitzgerald, R.A..Weiss.Macromol.Sci.Rev.Marcrol.chem.phyt,C28,99(1988).
    [70] Tom Picket.MATERIALS AND DESIGN TRENDS IN EXTERIOR AUTOMOTIVE PLASTICSAPPLICATIONS. ANTEC2004:3496-3499.
    [71] J.McCoy, T.McQuaide, A.Montalvo. Flexible Thermoplastic Elastomer (TPE) Based on IonomerTechnology. ANTEC2005:3625-3629.
    [72]Jennifer. Lee, Marianna Kontopoulou.LYETHYLENE/POLYETHYLENE ONOMER-BASEDNANOCOMPOSITES. ANTEC2006:253-257.
    [73]魏德庆,社阳等.离子聚合物相互作用研究机理进展[J].皮革化工.1997.5(2):1-6.
    [74] Barry A. Morris and John C. Chen. THE STIFFNESS OF IONOMERS: HOW IT IS ACHIEVED ANDITS IMPORTANCE TO FLEXIBLE PACKAGING APPLICATIONS. ANTEC2003.3157-3161.
    [75]John C. Chen and J. David Londono.BREAK-THROUGH IN HIGH PERFORMANCEIONOMERS:MORPHOLOGY AND PROPERTIES. ANTEC2004:2186-2190.
    [76] Maeknighr.W.J.et.al.Maeromal.Res,1981.16.41.
    [77] Bajain.C.G,Eisenberg A,Ind,Eng.Chem.Prod.Res.Dev.1981.20.271.
    [78] Wison.A D and Prosser, H.J.eds.Dev in Ionic Polymer-1”Appl.Sci.Publ.London1983.
    [79] Holiday,L.Ionic Polymer.Appl Sci.publ,London.1975.
    [80] S.L.Cooper, S. A.visse,R, A.Register, et. al.Polym.Mater.Sci.Eng,1991,65,288.
    [81] W.J.Macknight,J.Polym.Sci.Polym.Symp.Ed,45,113(1974).
    [82] D.J.Yarusso and S.L.Cooper.Macromoleculer.Chem.Phys.C28.65(1988).
    [83] A.Moudden,J.Plym.Sci.Polym.Phys.Edv.15,1977.
    [84] A.Eisenberg and M.Navratill, Macromolecules,7,90(1974).
    [85] M.Joshi and A.Misra.et.al.J.APPL.Polym.Sci,43.311(1991).
    [86] Cary.Fairely et.al.Polym.End Sci,1987,27.20.5495.
    [87] M.J.Sulivan et al.Polym.Eng and Sci,1992.32.8.517.
    [88] M.J.Sulivan et al.Polym.Eng and Sci,1992.32.8.517.
    [89] J.M.Willis and B.D.Favis,Polym.Eng.Sci,28(21),1416(1988).
    [90]OKSMAN K.Improved interaction between wood and synthetic polymers in wood/polymercomposites[J].Wood Science and Technology.1996:197-205.
    [91]TieqiLi,NingYan.Mechanical properties of wood flour/HDPE/ionomer composites[J].Composite.38(2007):1-12.
    [1]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社,2000.
    [2]H u G, Wang B, Gao F. Investigation on the rheological behavior of nylon6/11[J]. Materials Science&Engineering A,2006,426:263-265.
    [3]Li J.The effect of surface modification with nitrc acid on the mechanical and tribological properties ofcarbon fiber reinforced thermoplastic polyimide composite [J]. Surface and InterfaceAnalysis.2009,41:759-763.
    [4]Nair,K.M.;Kumar,R.P.;Thomas,S. Ramamurthy,K.Rheological behavior of short sisal fibre-reinforcedpolystyrene composites,Compos.Part A.2000,31:1231-1240.
    [5]Li TQ,WolcottM P. Theology of wood plastics melts, Part3: Nonlinear Nature of the Flow[J]. Polymer EngSci,2006:114-121.
    [6]Maiti S N, Subbarao R, Ibrahim M N. Effect of wood fibers on the rheological properties of PP/woodfibercomposites [J]. Journal of Applied Polymer Science,2004,91(1):644-650.
    [7]Zhang YingChen, Xie JianFei, Wu HongYan, et al.Crystallization and mechanical properties of nanoZnO/PP/PLA composite filaments[J].Materials Processing and Design,2009,620(22):485-488.
    [8]曾广胜,许超,刘跃军.废纸浆/HDPE复合发泡材料的流变行为及发泡形态[J].化工学报.2011,9(62):2643-2650.
    [9]刘跃军,刘亦武,魏珊珊. EVOH/纳米SiO2复合材料的加工流变性能及应用[J].高分子材料科学与工程.2011,5(27):124-127.
    [10]Emmanuel R. Sadiku, Ronald D. Variables that Determine the Fiber-Matrix Bond Strength inEthylene-Type Ionomer Composites[J].Molecular materials and engineering.2001,286,472-479.
    [11]OksmanK.Improved interaction between wood and synthetic polymers in wood/polymercomposites[J].Wood Science and Technology,1996,30(3):197–205.
    [12]Buchnall C B,Smith R R.Stress-whitening in high-impact polystyrenes[J].Polymer1965,6(8):437–446.
    [13]Buchnall C B.Fracture and failure of multiphase polymers and polymers composites[J].Adv Polym Sci,1978,27:121–148.
    [14]Nakagaito A N,Yano H.The effect of fiber content on the mechanical and thermal expansion properties ofbiocompositesbased on microfibrillated cellulose[J].Chemistry and Materials Science,2008,15(4):555–559.
    [15]Yang H–S,Wolcott M P,Kim H–S,et al.Thermal properties of lignocellulosic filler-thermoplastic polymerbiocomposites[J]. Journal of Thermal Analysis and Calorimetry,2005,82(1):157–160.
    [16]何嘉松,汪军.离子聚合物及其在高分子共混物中的增容作用[J].化学通报,1994(6):6–9.
    [17]姜润喜,刘春生,汪进.PE T离聚物共混体系的结晶与熔融行为研究[J].合成技术与应用.1995,10(3):1-6.
    [18]
    [19]Felix,J.M.;Gatenholm,P.The nature of adhesion in composites of modified cellulose fibers andpolypropylene.J Appl Polym Sci1991,42:609-620.
    [20]Hristov,V.;Vasileva,S.Dynamic mechanical and thermal properties of modified polypropylene wood fibercomposites.Macromol Mater Eng.2003,288:798-806.
    [21]Li Tieqi,Yan Ning.Mechanical properties of wood flour/HDPE/ionomer composites[J].CompositesPart A:Applied Science andManufacturing,2007,38(1):1–12.
    [22]Li T Q,Wolcott M P.Rheology of wood plastic melt.Part1.capilary rheometry of HDPE filled withmaple[J].Polym Eng Sci,2005,45(4):549–559.
    [1]Beck-Candanedo S,Roman M,Gray D G. Biomacromolecules,2005,6(2):1048-1054.
    [2]叶代勇.纳米纤维素的制备[J].化学进展.2007,19(17):1568-1574.
    [3]甄文娟,单志华.纳米纤维素在绿色复合材料中的应用研究[J].现代化工.2008,6(28):85-88.
    [4] Mathew A P,Dufresne A.Morphological investigation of nanocomposites from sorbitol plasticized starchand tunicin whiskers [J]. Biomacromolecules,2002,3:609-617.
    [5]Pu Yunqiao,Zhang Jianguo,Elder T, et a. Investigation into nanocellulosics versus acacia reinforced acrylicfilms [J]. Composites: Part B,2007,38:360-366.
    [6]Alemdar A,Sain M. Biocomposites from wheat straw nanofibers:Morphology,thermal and mechanicalproperties[J].Composites Science and Technology,2008,68:557-565.
    [7]Angls M N,Dufresne A. Plasticized starch/tunicin whiskersnanocomposites[J].Macromolecules,2000,33:8344-8353.
    [8]蒋玲玲,陈小泉.纳米纤维素晶体的研究现状[J].纤维素科学与技术,2008,16(2):73-78.
    [9]Araki, Wada, M., Kuga, S. Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethyleneglycol) Grafting[J]. Langmuir,2000,17(1):21-27.
    [10]陈文帅.生物质纤维素纳米纤丝制备及其结构性能研究[D].硕士论文.东北林业大学.2010,6.
    [11]H.Yano, Sugiyama, J., Nakagaito, A.N., et al. Optically Transparent Composites Reinforced with Networksof Bacterial Nanofibers[J]. Advanced Materials,2005,17(2):153-155.
    [12]Haiying Wang, Dagang Li, Ranran Zhang.Preparation of Ultralong Cellulose Nanofibers and OpticallyTransparent Nanopapers Derived from Waste Corrugated Paper Pulp[J].Bioresources.2013,8(1):1374-1384.
    [13]Q. Cheng, Wang, S., Han, Q. Novel process for isolating fibrils from cellulose fibers by high-intensityultrasonication. II. Fibril characterization[J]. Journal of Applied Polymer Science,2010,115(5):2756-2762.
    [14]J. Morán, Alvarez, V., Cyras, V., et al. Extraction of cellulose and preparation of nanocellulose from sisalfibers[J]. Cellulose,2008,15(1):149-159.
    [1]甄文娟,单志华.纳米纤维素在绿色复合材料中的应用研究[J].现代化工.2008,6(28):85-88.
    [2] J. Lu, Wang, T., Drzal, L.T. Preparation and properties of microfibrillated cellulose polyvinyl alcoholcomposite materials[J]. Composites Part A: Applied Science and Manufacturing,2008,39(5):738-746.
    [3] D.M. Bruce, Hobson, R.N., Farrent, J.W., et al. High-performance composites from low-cost plant primarycell walls[J]. Composites Part A: Applied Science and Manufacturing,2005,36(11):1486-1493.
    [4] C. Tang, Liu, H. Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible lighttransmittance[J]. Composites Part A: Applied Science and Manufacturing,2008,39(10):1638-1643.
    [5] A.N. Nakagaito, Fujimura, A., Sakai, T., et al. Production of microfibrillated cellulose (MFC)-reinforcedpolylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process[J]. CompositesScience and Technology,2009,69(7-8):1293-1297.
    [6] F. Quero, Nogi, M., Yano, H., et al. Optimization of the Mechanical Performance of BacterialCellulose/Poly(l-lactic) Acid Composites[J]. ACS Applied Materials&Interfaces,2009,2(1):321-330.
    [7]S. Ifuku, Nogi, M., Yoshioka, M., et al. Fibrillation of dried chitin into10-20nm nanofibers by a simplegrinding method under acidic conditions[J]. Carbohydrate Polymers,2010, In Press, Corrected Proof.
    [8]K. Abe, Yano, H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice strawand potato tuber[J]. Cellulose,2009,16(6):1017-1023.
    [9]陈文帅.生物质纤维素纳米纤丝制备及其结构性能研究[D].硕士论文,东北林业大学,2010.06.
    [10]M. Wada. In Situ Observation of the Crystalline Transformation from Cellulose IIII toIβ[J].Macromolecules,2001,34(10):3271-3275.
    [11]宋永明,王清文.木塑复合材料流变行为研究进展[J].林业科学.2012,8(48):143-149.
    [12]Papathanassiou T D,Guell D C.Flow-induced Alignment incomposite materials[J]. Woodhead PublishingLimited Press,London.1997.
    [13]Zhang S Y,Zhang Y L,Bousmina M.Effects of raw fiber materials,fiber content,and coupling agentcontent on selected properties of polyethylene/wood fiber composites.Polymer Engineering and Science,2007.47(10):1678-1687.
    [14]Azizi H,Ghasemi I.Investigation on the dynamic melt rheological properties of polypropylene/wood flourcomposites.Polymer Composite,2009.30(4):429-435.
    [15]崔益华,Noruziaan Bahman,Lee Stephen.玻璃纤维/木塑混杂复合材料及其协同增强效应[J].高分子材料科学与工程.2006,3(22);231.234.
    [16]欧荣贤,赵辉,王清文.Kevlar纤维-木粉/HDPE混杂复合材料的制备与性能[J].高分子材料科学与工程.2010,10(26):144-147.
    [17]雷芳,陈福林,岑兰.白炭黑增强增韧PP基木塑复合材料的研究[J].塑料.2008,1(37):67-70.
    [18]关苏军,刘恒山,汪丽娜。玄武岩纤维增强木塑复合材料的拉伸和熔融性能[J].功能材料.2010,9(42):245-247.
    [1]Granja PL, Barbosa MA, BaquueyC. Cellulose phosphates as biomaterials[J]. Mineralization of chemicallymodified regenerated cellulose hydrogels. J Master Sci.2001,36:2163–72.
    [2] McCann MC, Wells B, Roberts K. Direct visualization of cross-links in the primary plant cell wall[J]. J CellSci1990,96(2):323–34.
    [3] McCann MC, Wells B, Roberts K. Complexity in spatial localization and length distribution of plant cellwall matrix polysaccharides[J]. Cell Sci1993;166:123–36.
    [4]Roland JC, Vian B, Reis D. Observation with cytochemistry and ultracryotomy on the fine structure of theexpanding walls in actively elongating plant cells[J]. J Cell Sci1975;19:239–59.
    [5] Chanzy H, Imada K, Mollard A, Vuong R, Barnoud F.Crystallographic aspects of sub-elementary cellulosefibrils occurring in the wall of rose cells cultured in vitro[J]. Protoplasma1979;100:303–16.
    [6]Fujino T, Sone Y, Itoh T. Characterization of crosslinks between cellulose microfibrils, and their occurrenceduring elongation growth in pea epicotyl[J]. Plant Cell Physiol2000;41:486–94.
    [7]Dufresne A, Cavaille′JY, Vignon MR. Mechanical behavior of sheets prepared from sugar beet cellulosemicrofibrils[J]. J Appl Polym Sci1997;64:1185–94.
    [8]Bei Wang, Mohini Sain. Isolation of nanofibers from soybean source and their reinforcing capability onsynthetic polymers[J]. Composites Science and Technology.2007,2521-2527.
    [9] Hepworth DG, Bruce DM. The mechanical properties of a composite manufactured from non-fibrousvegetable tissue and PVA[J]. Compos Part A2000;31:283–5.
    [10]Emmanuel R. Sadiku, Ronald D. Variables that Determine the Fiber-Matrix Bond Strength inEthylene-Type Ionomer Composites[J].Molecular materials and engineering.2001,286,472-479.
    [11] Heux L, Chauve G, Bonini C. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystalssuspensions in nonpolar solvents[J]. Langmuir2000;16:8210–2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700