用户名: 密码: 验证码:
碱木质素改性以及原竹纤维增强酚醛泡沫材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地球上化石资源的枯竭,人们越来越重视可再生的生物质资源开发利用研究,利用可再生生物质资源完全或部分替代不可再生的矿物资源及其衍生产品制备新型轻质建材,促进了生物质资源高效利用,为生物质资源制备新型生物质基泡沫复合材料提供了一条新的途径,对高分子发泡材料可持续发展具有重大意义。本文利用碱木质素替代石化原料制备环保型酚醛树脂保温发泡材料,减少造纸废液对环境的污染;利用阻燃改性的原竹纤维增强酚醛泡沫,提高泡沫的力学性能,促进生物质资源高效利用;制备低毒性高性能酚醛泡沫复合材料;同时应用制备的泡沫复合材料开发新型轻质阻燃复合板材,为节能保温、轻质隔音建材等方面提供高性能、高安全性的新型材料。论文的主要研究内容和结论如下:
     1.利用碱木质素酚羟基的特性替代部分苯酚,制备碱木质素替代10~40%苯酚量的可发性碱木质素-酚醛树脂,研究了碱木质素引入对树脂制备、结构和性能的影响。结果表明,碱木质素替代苯酚量≤30%的树脂黏度能够达到可发泡性树脂的要求,游离甲醛和苯酚残余量较低,树脂流体符合牛顿流体行为。TGA-DTG-DSC分析表明,随碱木质素替代苯酚量的增加,树脂的热稳定性和放热峰值呈下降趋势,而反应焓变也呈明显降低趋势。~(13)C-NMR核磁共振分析表明,酚醛树脂(PF)的酚核间连接方式基本以对-对位连接方式为主,而碱木质素替代苯酚量30%的树脂(KLPF-30)存在邻-对位和对-对位2种连接方式。通过KLPF-30树脂非等温DSC固化过程分析,建立了固化动力学模型,其中固化体系表观活化能为93.51kJ/mol,反应级数为0.9506。
     2.分析了碱木质素改性对酚醛泡沫力学性能、热稳定性、阻燃性能及其微观结构的影响。结果表明,碱木质素替代苯酚量的增加导致泡沫的压缩强度、弯曲强度、表面粉化度等力学性能的下降,泡孔孔径增大、分布不均匀,但对酚醛泡沫的阻燃性和热稳定性影响较小。根据Gibson-Ashby经典模型建模和密度与力学性能数据的拟合2种方法,建立了碱木质素-酚醛泡沫表观密度-力学性能模型,其结果在密度0.030~0.300g/cm~3范围内基本相符,指数值在1.3941~1.7758范围内,基本接近于Gibson-Ashby公式中的指数。
     3.采用硅烷偶联剂对原竹纤维进行表面改性,改善了其与酚醛泡沫和碱木质素-酚醛泡沫基体的界面相容性;采用改性原竹纤维增强酚醛泡沫和碱木质素-酚醛泡沫,研究了改性原竹纤维对泡沫材料结构、力学、阻燃性能的影响。在力学性能方面,改性原竹纤维的加入能够提高泡孔壁的韧性,对酚醛泡沫和碱木质素-酚醛泡沫的压缩强度、弯曲强度和表面粉化度都具有较明显的促进作用,改性原竹纤维增强酚醛泡沫和碱木质素-酚醛泡沫时加入量分别为3.0%和4%时增强效果最佳。阻燃性能的分析表明,随着原竹纤维加入量的增大,酚醛泡沫和碱木质素-酚醛泡沫的热释放速率、总放热量、质量损失速率、生烟速率(或烟释放速率)和总发烟量(或总烟释放量)等总体都呈上升趋势,说明原竹纤维的加入量降低2种泡沫的阻燃性能;且改性原竹纤维增强酚醛泡沫材料加入量≥5.0、改性原竹纤维增强碱木质素-酚醛泡沫的用量≥4.0%时,泡沫材料的阻燃性能有较大幅度的降低,需对改性原竹纤维进行阻燃改性。
     4.原竹纤维和酚醛泡沫阻燃剂的筛选、评价及其机理研究的结果表明,原竹纤维的阻燃剂木材用磷-氮复合阻燃剂和磷酸二氢铵是磷系阻燃剂,最佳加入量均为15%。三聚氰胺吸热快速分解生成氨和大量氮气等不可燃气体是其对酚醛泡沫起到阻燃作用的关键,2%三聚氰胺阻燃改性酚醛泡沫的氧指数为67.8,比纯酚醛泡沫提高35.06%。通过正交试验确定阻燃工艺为磷酸二氢铵加入量15%、三聚氰胺加入量3%,制备的阻燃型原竹纤维增强碱木质素-酚醛泡沫的氧指数55.6,压缩强度、弯曲强度、掉渣率性能分别为92.99kPa、134.96kPa、7.99%。
     5.采用锥形量热仪对碱木质素-酚醛泡沫(KLPF)、5%原竹纤维增强的碱木质素-酚醛泡沫(5B-KLPF)和阻燃改性的5%原竹纤维增强的碱木质素-酚醛泡沫(ZR-5B-KLPF)在热辐射通量为25、50和75kW/m2条件下的动态燃烧行为进行了对比分析,磷酸二氢铵和三聚氰胺对5B-KLPF泡沫的阻燃改性效果明显,显示出较高的成炭率,较低的热释放和烟释放。同时,基于CONE试验的聚合物材料燃烧的火势增长指数(FGI)、放热指数(THRI_(6min))、发烟指数(TSPI_(6min))、毒性气体生成速率指数(ToxPI_(6min))4个特性指数,建立了聚合物材料火灾危险综合评价体系。KLPF、5B-KLPF和ZR-5B-KLPF3种泡沫的火灾危险综合指数IFHI对比表明ZR-5B-KLPF的火灾危险性最小。
     6.利用原竹纤维、薄竹单板等短生长周期的可再生生物质资源制备了薄竹面改性原竹纤维增强酚醛泡沫夹芯复合板材。确定粘合剂为环氧AB胶、增强材料为天然麻纤维网格布,制备的薄竹面酚醛泡沫夹芯复合板材性能基本达到JC/T1051-2007“铝箔面硬质酚醛泡沫夹芯板”行业标准。确定薄竹单板的阻燃剂为木材用磷-氮复合阻燃剂,最佳载药率为3.80%,并采用锥形量热仪对制备的薄竹面原竹纤维增强酚醛泡沫夹芯复合板材的阻燃效果进行了对比分析。结果表明,阻燃剂对复合板材的阻燃效果非常明显,制备的泡沫夹芯复合板材具有高成炭率、低热释放和低烟释放的特点。同时论文还试制了多种泡沫夹芯复合板材。
With the growing shortage of crude oil resources, considerable research effort has beendevoted to developing new products using renewable biomass resources as raw materials.Using renewable resources and their derivative products to prepare new lightweight buildingmaterial instead of non-renewable mineral resources completely or partially, which couldpromote the efficient use of biomass resources, and provide a new way for the preparation ofnew biomass-based foam sandwich panels. It is of great significance to the sustainabledevelopment of foam material. Due to these reasons, the development of environmentallyfriendly foam sandwich materials has become a popular area of study in China and othercountries.
     In this thesis, environmentally friendly PF foaming materials were prepared using alkalilignin to replace crude oil resources, which reduce the pollution of papermaking waste onenvironment. Reinforced phenolic foams by natural bamboo fiber were also prepared. Theaddition of bamboo fiber could improve the mechanical properties of foam and promote theefficient use of biomass resources. In addition, the reinforced PF foams were modified byflame-retardant modification of natural bamboo fiber and phenolic foam, which could bestowfoam materials with low toxicity and high performance. Meanwhile a new lightweightfire-retardant panel for energy-saving insulation and sound insulation were also prepared usingmodified PF foam compositing material as core materials to develop, lightweight buildingmaterials, damping materials, decoration and other aspects with high performance and highsafety. The main research contents and conclusions are as follows:
     1. First, modified PF resins were prepared by utilizing alkali lignin as phenol’ssubstitution to prepare PF resin instead of phenol partially. Prepared alkali lignin-phenolicresin has a phenol substitution level in the range of10~40%. The effects of alkali lignin on thestructure, preparation and properties of the resin were studied in detail. When the formaldehydeto phenol (F/P) molar ratio is1.8and the substitution level of phenol less than30%, the viscosity of prepared resin could meet the demand of expandable resin, in this case the residualfree formaldehyde and phenol is very low. The analysis of rheological properties showed thatthe prepared resin possessed Newton fluid behavior when alkali lignin's substitution lever wasin the range of10%to30%. TGA-DTG-DSC analysis illustrated that thermal stability and theexothermic peak of the resin decreased with the increase of the substitution level of alkalilignin to phenol, and the reaction enthalpy also showed an obvious downtrend.13C-NMRanalysis suggested that connected mode between pure PF phenol internuclear connections waspara-position based, while in the resin with30%of alkali lignin substitution level (KLPF-30)there existed ortho-and and on-para two different linkages. DSC analysis showed that Theanalysis of non-isothermal DSC showed cured process of KLPF-30resin. The cure kineticmode was also established, the apparent activation energy of the curing system was93.51kJ/mol and the reaction order was0.9506.
     2. By studying the influence of curing agent on mechanical properties, oxygen index andthermal stability of the phenolic foam, we took hydrochloric acid-phosphoric acid-organicacid-water mixed curing agent as the curing agent of PF foam and alkali lignin-phenolic foam.The effects of alkali lignin's substitution level on mechanical properties, thermal stability,flame retardant properties and microstructure of PF foam were analyzed. The analysis resultsshowed that compressive strength, flexural strength, foam powder surface salinity and othermechanical properties decreased with the increase of alkali lignin's substitution level, and thepore of foam material showed enlargement size and uneven distribution. While the flameretardant and thermal stability of phenolic foam showed changing tendency with the variationof alkali lignin content. The mathematical models of the density-mechanical properties of thealkali lignin-PF foam were established according to the classical Gibson-Ashby model and fitmodel of density and mechanical properties data, and the established model was basicallyconsistent with real testing data in the density range of0.030~0.300g/cm3, and the obtainedindex was close to the simplified Gibson-Ashby formula's index value in the range of1.3941~1.7758.
     3. The compatibility between natural bamboo fiber and PF foams or alkalinelignin-phenolic foams was improved using silane coupling agent KH550as bamboo fiber'ssurface modification agent, and then the effect of modified bamboo fiber on the flame retardant,mechanical and the structure of modified compositing foams were studied. For theirmechanical properties, modified bamboo fiber improved the toughness of cell walls andincreased compression strength, flexural strength and surface powder degree of foams. Theoptimal addition of modified bamboo fiber for reinforced PF foam and alkali lignin-phenolicfoam was3%and4%, respectively. Smoke release characteristics and heat release rate of PFfoam and alkali lignin-phenolic foam modification with different addition amount of bamboofiber were measured by cone calorimeter. The analysis results displayed that the heat releaserate, total heat release, mass loss rate, smoke production rate (or smoke release rate) and thetotal amount of smoke (or total smoke release amount) of PF foam and alkali lignin-phenolicfoam showed uptrend with the increase in bamboo fiber content, which indicated that theaddition of bamboo fiber could reduce the flame retardant properties of PF foam and alkalilignin-phenolic foam. Especially when bamboo fiber content in PF foam is≥5%and in alkalinelignin-phenolic foam is≥4%, the flame retardant properties of foam materials had a greatreduction, so it is necessary to carry flame retardant modification for bamboo fiber.
     4. The best fit flame retardant of nature bamboo fiber and PF foam was explored. Theanalysis results showed that N-P composed of flame retardant and ammonium dihydrogenphosphate (ADP) flame retardant was fitted for nature bamboo fiber. Two kinds of flameretardants are phosphorus flame retardant and their retardant mechanism were consistent, andthe optimum addition amount was15%. The mechanism of flame retardant of melamine wasthat rapid decomposition of ammonia and nitrogen that are not combustible gas and theseplayed the key role for PF foam's flame retardant property. Oxygen index of2%melamineflame retardant modified PF foam was67.8, which was over35.06%than that of PF foam.Orthogonal testing analysis showed the optimal flame retardant for nature bamboo fiber is ADPand optimal content was15%, the optimal flame retardant for alkali lignin-phenolic foam agentwas melamine and optimal content was3%. Oxygen index of lignin-phenolic foam reinforced by flame retardant nature bamboo fiber could reach55.6. The compressive strength, bendingstrength and dregs rate of lignin-phenolic foam were92.99kPa,134.96kPa and7.99%,respectively.
     5. The combustion characteristics of alkali lignin-phenolic foam (KLPF),5%naturebamboo fiber reinforced alkali lignin-phenolic foam (5B-KLPF) and5%flame retardantmodified bamboo fiber reinforced alkali lignin-phenolic foam (ZR-5B-KLPF), were analyzedby using the cone calorimeter under the condition of thermal radiation flux at25,50and75kW/m2. Flame retardant ADP and melamine had obvious effect on modifying5B-KLPFfoam, and5B-KLPF foam had a high char yield, low heat release and smoke release.Meanwhile, the fire risk comprehensive evaluation system of polymer material was establishedby analyzing the data of fire growth index (FGI), heat index (THRI_(6min)), smoking index(TSPI_(6min)), toxic gas generation rate index (ToxPI_(6min)) via CONE test, the fire dangerindex-IFHI of these3kinds of foams showed that ZR-5B-KLPF had the minimum fire hazard.The mechanical and flame retardant properties of alkali lignin-phenolic foam had promoted toobtain a certain degree of promotion via flame retardant modification and nature bamboo fiberreinforced.
     6. The reinforced PF foam sandwich panels were manufactured using renewable bamboofiber, sliced bamboo veneer and bamboo lamina as raw materials. The nature bamboo fiberreinforced PF foam sandwich panel was prepared with epoxy adhesive and natural hemp's fibermesh fabrics. The properties of the sandwich panels reinforced by natural hemp's fibers meshfabrics could closely meet the demands of industry standard (JC/T1051–2007)"Aluminum foilfaced rigid phenolic foam sandwich panels". In order to improve the mechanical properties andprocessability of sandwich panels, alkali lignin-phenolic sandwich panels was prepared byusing bamboo lamina existed in market as raw material. N-P compositing flame retardant andADP flame retardant were much fitted for sliced bamboo veneer and bamboo lamina, and theoptimal retention rate was3.80%and3.58%, respectively. A comparative analysis of flameretardant properties of natural bamboo fiber reinforced sliced bamboo veneer PF foamsandwich panels and natural bamboo fiber reinforced bamboo lamina alkaline lignin-phenolic foam sandwich panels were studied by using the cone calorimeter. The results showed thatthese2kinds of flame retardants had obvious effect on each composite plate. The preparedfoam sandwich panels had high char yield, low heat release and smoke release. Meanwhile, avariety of foam sandwich panels were also trial-manufactured.
引文
[1]鲍国芳.新型墙体与节能保温建材[M].北京:机械工业出版社,2008,10-16.
    [2]轻型板材设计手册编辑委员会.轻型板材设计手册[M].北京:中国建筑工业出版社,2009,1-5.
    [3]钱伯章.节能保温材料的研发进展[J].国外塑料,2010(2):32-36.
    [4] Singh D, Ohri S. Effect of reactant ratio and temperature on the characteristics of phenol-formaldehydefoams[J]. Journal of Applied Polymer Science,1982,27(4):1191~1196.
    [5] Harald M, Frank Peter W, Heinz W. Elastic foam based on a melamine-formaldehyde condensationproduct and its use[P]. EP17672,1980.
    [6] Armin A, Klaus H, Christof M, et al. Antimicrobially modified melamine/formaldehyde foam[P].EP2134774,2009.
    [7]中国绝热节能材料协会秘书处.发展绝热节能材料给力节能减排——2010年绝热节能材料行业经济运行分析[J].保温材料与节能技术,2011,(3):17-19.
    [8]覃文清.新型节能保温材料现状及阻燃技术的研究[J].新型建筑材料,2011,(18):75-75,81.
    [9] Carlson. Method for preparing phenolic foams using anhydrous aryl sulfomc acid catalysts[P] USP.4,478,958;1985.
    [10] Lamartine. Foamed and cross-linked phenolic resin and method for making same[P]. USP,5,852,064;1998.
    [11]王军晓,刘新民,潘炯玺等.夹芯板材用硬质酚醛泡沫性能的研究[J].塑料科技,2005,166(2):24-26.
    [12] Clark. Phenolic foams[P]. USP,4,900,759;1990.
    [13] Rader. Method for making a closed-cell phenolic resinfoam, foamable composition, and dosed-cellphenolic resin foam[P]. USP,6,013,689;2000.
    [14] Harris. Celular plastic material based on phenolic resin[P]. USP,20020198268.
    [15]钱志屏.泡沫塑料[M].北京:中国石化出版社,1998,80-91.
    [16] Geyer W, Muehltal, seibert H, et al. Process for the Production of Ploymerthacrylimide FoamMaterials. US:5928459,1999.
    [17] Klett J. Pitch-Based Carbon Foam and Composites[P]. US:6261485,2001.
    [18] Rickle G K, Denslow K R. The effect of water on phenolic foam cell structure[J]. Journal of CelluarPlastic,1988,24(1):70-78.
    [19] N. S. Cetin, N. Ozmen. Use of organsolv lignin in phenol-formaldehyde resins for particle boardproduction[J]. International of adhesion and adhesives.2002,(22):477.
    [20]张蔚,姚文斌,李文彬.竹纤维加工技术的研究进展[J].农业工程学报,2008,24(10):308-312.
    [21] Feng H J, Hu L F, Qaisar M, et a1. Anaerobic domestic wastewater treatment with bamboo carrieranaerobic baffled reactor[J]. Int Biodeterioration&Biodegradation,2008,62(3):232-238.
    [22] Jakubowicz I, Yarahmadi N, Petersen H. Evaluation of the rate of abiotic degradation of biodegradablepolyethylene in various environments[J]. Polymer Degradation and Stability,2006,91(7):1556-l561.
    [23] Majumdar A, Mukhopadhyay S, Yadav R. Thermal properties of knitted fabrics made from cotton andregenerated bamboo cellulosic fibres[J]. International Journal of Thermal Sciences,2010,49(10):2042-2048.
    [24]吴会贤,刘锁箱.竹纤维的性能[J].人造纤维,2008,38(2):12-14,29.
    [25]方太君,孟家光,陈莉娜等.竹纤维的研宄开发现状[J].针织工业,2005,12:20-23.
    [26] Knop A, Pilato K A. Phenolic Resin: Chemistry, Application and Performance, Future Directions[M].Berlin: Springer-Verlag,1985.
    [27] Gorbaty L. Phenolic Resins, Chemical Economics Handbook, Plastics and Resins[M].580.0900A,1994.
    [28]黄发荣,万里强等.酚醛树脂及其应用[M].北京:化学工业出版社,2011,15-42.
    [29]殷荣忠,山永年,毛乾聪等.酚醛树脂及其应用[M].北京:化学工业出版社,1990,84-95.
    [30] Philip C, Miller T, Sina T. Compressive properties of rigid polyurethane foams[J]. Polym PolymCompos,1999,7(2): l17.
    [31] Ingo kleba, Edmund Haberstrob. All-pbenolic Sandwich Structures for Aircraft Interior Application[C].46thInt’1SAMPE Symposium,2001,2562-2572.
    [32] Matin I Coben. Low Smoke and Low Beat Release Structural Phenolic Foam[C].39thInt’1SAMPESymposium,1994,2975-2982.
    [33] Shiwen Lei, Quangui Guo, Dongqing Zhang, et a1. Preparation and properties of the phenolic foamswith controllable nanometer pore structure[J]. Journal of Applied Polymer Science,2010,(117):3545-3550.
    [34] Bu Gi Kim, Dai Gil Lee. Development of microwave foaming method for phenolic insulation foams[J].Journal of materials processing technology,2008,(201):716-719.
    [35] Hongbin Shen, Andre J Lavoie, Steven R Nutt. Enhanced peel resistance of fiber reinforced phenolicfoams[J]. Composites: Part A,2003,(34):941-948.
    [36] Cla’udio G Dos-Santos, Marcelo A Costa, Willy A De Morais, et o1. Phenolic foams from wood tarresols[J]. Journal of Applied Polymer Science,2010,(115):923-927.
    [37] Young Woo Nam, Tae Uk Park and Dong Kwon Kim. A study on the effects of reaction conditions onthe characteristics of resol resins for foams by statistical analysis[J]. Korean Journal of ChemicalEngineering.2006,23(5):726-730.
    [38] P. S. Parameswaran, Eby Thomas Thachil.Influence of Ether Linkages on the Properties of ResolPhenolic Resin[J]. International Journal of Polymeric Materials.2007,56:177-185.
    [39]刘兵,唐晓君,吕晟楠.酚醛泡沫发泡倍率的研究[J].新型建筑材料,2013(2):62-64.
    [40] D R Mulligan. Cure monitoring for composites and adhesives[J]. Rapra Review Reports,2003,14(8):3-109.
    [41] X Ramis, A Cadenato, J M Morancho, el at. Curing of a thermosetting powder coating by means ofDMTA, TMA and DSC[J]. Polymer,2003,(44):2067-2079.
    [42]何平笙,金邦坤,李春娥.热固性树脂及树脂基复合材料的固化—动态扭振法及其应用[M].北京:中国科学技术大学出版社,2011,1-15.
    [43] Jane Pajua, T nis Pehk, Peep. Christianson Structure of phenol-formaldehyde polycondensates[J].Proceedings of the Estonian Academy of Sciences.2009,58(1):45-52.
    [44] Janne Monni, el at.. Online monitoring of synthesis and curing of phenol–formaldehyde resol resins byRaman spectroscopy[J]. Polymer.2008,49:3865-3874.
    [45] Vijaya K. Rangari, Tarig A. Hassan, Yuanxin Zhou, el at. Cloisite clay-infused phenolic foamnanocomposites[J]. Journal of Applied Polymer Science.2007,103(1):308-314.
    [46] Hongbin Shen, Steven Nutt. Mechanical characterization of short fiber reinforced phenolic foam[J].Applide Science and Manufacturing.2003,34(9):899-906.
    [47] Seung-Hwan Lee, Yoshikuni Teramoto, Nobuo Shiraishi. Resol-type phenolic resin from liquefiedphenolated wood and its application to phenolic foam[J]. Journal of Applied Polymer Science,2002,84(3):468-472.
    [48] Chung-jen Tseng, Kuang-te Kuo. Thermal radiative properties of phenolic foam insulation[J]. Journal ofQuantitative Spectroscopy and Radiative Transfer.2002,72(4):349-359.
    [49]何继敏.新型聚合物发泡材料及技术[J].北京:化学工业出版社,2008,50-105.
    [50] F. Riahi, R. Doufnoune,C. Bouremel.Subtitution of Pentane by a Mineral Clay as a Blowing Agent forPhenolic Foam[J]. International Journal of Polymeric Materials.2007,56:929-938.
    [51] Bu Gi Kim, Dai Gil Lee. Development of microwave foaming method forphenolic insulation foams[J].Journal of Materials Processing Technology,2008,201:716-719.
    [52]唐路林等.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2008,48-59.
    [53]向帮龙,管蓉,杨世芳.微孔发泡机理研究进展[J].高分子通报.2005,6:7-15.
    [54] Myung Seok Yun, Woo Il Lee. Analysis of bubble nucleation and growth in the pultrusion process ofphenolic foam composites[J]. Composites Science and Technology,2008,68:202-208.
    [55] Myung Seok Yun, Woo Il Lee. Analysis of pulling force during pultrusion process of phenolic foamcomposites[J]. Composites Science and Technology.2008,68:140-146.
    [56] C. Gontier, A. Bouchou. Vinot. A mechanical model for the computation of phenolic foams incompression[J]. International Journal of Mechanical Sciences.2001,43:2371-2384.
    [57] A. Desai,S.R. Nutt,M.V. Alonso.Modeling of Fiber-reinforced Phenolic Foam[J]. Journal of CellularPlastics.2008,44(5):391-413.
    [58] Pizzi. Recent developments in eco–effifient bio-based adhesives for wood bonding: opportunities andissues[J]. Journal of Applied Polymer Science.2006,20(8):829-846.
    [59]蒋挺大.木质素[M].北京:化学工业出版社,2009,1-5.
    [60]刘飞跃,曹德榕.制浆废液木质素的利用研究进展[J].纤维素科学与技术,2008,16(1):65-70.
    [61] Kalfoglou G. Modified lignosulfonates as additives in recovery processes involving Chemical recoveryagents[P]. US:4,236,579;1980.
    [62] Lin S Y. Lignin utilization-potential and challenge[J]. Progree in biomass conversion.1963,7(4):36~39.
    [63] D. A. LGoring, R.Vuong, C. Gancet, et al. The flatness of lignosulfonate macromoleculesasdemonstrated by electron microscopy[J]. Journal of Applied Polymer Science.1979,24(4):931-936.
    [64] Sun RC. Physical-chemicale and structural character of alkali liginin[J]. Journal of Wood ChemistryTechnology.1998,18(3):313-331.
    [65] J W Willis, W Q Yean. Molecular meights of ligiosulphonate and carbohydrate leached from sulfitechemimechanical pulp[J]. Journal of Wood Chemistry Technology.1987,7(2):259-268.
    [66] LEI Hong, Pizzi. A, Du Guan-ben. Environmentally Friendly Mixed Tannin/Lignin Wood Resins[J].Journal of Applied Polymer Science.2007,107(1):203-209.
    [67] Pascu, M.C., Macoveanu, el at. Polyolefins/lignosulfonates blends.III. Photooxidation of isotacticpolypropylene epoxidized lignosulfonates blends[J]. Cellulose Chemistry and Technology.2000,34(3-4):399-420.
    [68]罗学刚.高纯木质素提取与热塑改性[M].北京:化学工业出版社,2008,52-74.
    [69]黄冬根,黄志桂.木质素粘合剂的研制状况及发展趋势[J].粘接,1992,13(4):13.
    [70]吴江顺.木质素在木材胶粘剂中的研究与应用.广州化工.2008,36(5):29-31.
    [71]穆有炳,王春鹏,赵临五,储富祥.低游离甲醛羟甲基化木质素磺酸盐-酚醛复合胶黏剂研究.林产化学与工业.2009,29(3):38-42.
    [72]李爱阳,唐有根.木质素改性酚醛树脂的研究[J].中华纸业,2006,27(3):76-77.
    [73] Marko Turunen, Leila Alvila, et al. Modification of Phenol-Formaldehyde Resol Resins byLignin,Starch,and Urea[J]. Journal of Applied Polymer Science,2003,88(7):582-588.
    [74]张金萍,杜孟浩,王敬文.利用竹材液化物制备酚醛泡沫塑料的方法. CN102115574A,2011.
    [75] S. H. Lee, Y. Teramoto, N. Shiraishi. Resol-type phenolic resin from liquefied phenolated wood and itsapplication to phenolic foam[J]. Journal of Applied Polymer Science,2002,84(3):468–472.
    [76] G. Carvalhoac, J. A. Pimentaa, W. N. Santosb, el at. Phenolic and Lignophenolic Closed Cells Foams:Thermal Conductivity and Other Properties[J]. Polymer-Plastics Technology and Engineering,2003,42(4):605-626.
    [77]张文博,牛敏,孙丁阳.意大利杨树皮苯酚液化物制备酚醛发泡材料[J].林产化学与工业,2009,增刊,129-132.
    [78] Y. B. Huang, Z. F. Zheng, H. Pan. Phenolic Foam from Liquefied Products of Walnut Shell in Phenol[J].Advanced Materials Research,2011,236-238:241–246.
    [79] J. H. Lora, W. G. Glasser. Recent Industrial Applications of Lignin: A Sustainable Alternative toNonrenewable Materials[J]. Journal of Polymers and the Environment,2002,10(1-2):39-48.
    [80]胡立红.木质素酚醛泡沫保温材料的制备与性能研究[D].中国林业科学研究院博士学位论文,2012.
    [81]吴强林,方红霞,丁运生等.木质素基酚醛树脂泡沫塑料的结构与性能研究[J].工程塑料应用,2012,40(11):69-73.
    [82] Landrock A H, editor. Handbook of plastic foams[M]. New Jersey: Noyes Publications;1995.
    [83] Baer E. Engineering Design for Plastic[M]. New York: ReinhoM,1964,995.
    [84] Bu Gi Kim, Dai Gil Lee. Development of microwave foaming method forphenolic insulation foams[J].Journal of Materials Processing Technology,2008,201:716-719.
    [85]梅启林,黄志雄,周祖福等.改性酚醛泡沫材料的研究[J].武汉理工大学学报,2002,24(6):22-24.
    [86]马克明.酚醛泡沫塑料的增韧改性[J].沈阳航空工业学院学报,1999,16(1):36-40.
    [87] Takayasu W.(Asahi Chem Ind Co Ltd.) JP2001-011230;2001.
    [88] Ichito M, Hidetoshi M.(Asahi Chem Ind Co Ltd.) JP2000-119424;2000.
    [90] Hongbin Shen, Steven Nutt. Mechanical characterization of short fiber reinforced phenolic foam[J].Composites: Part A.2003,34:899-906.
    [91]程珏,梁明莉,金关泰.聚氨酯预聚物改性酚醛泡沫塑料的研究[J].塑料工业,2004,32(1):7-9.
    [92]杨勇,马晓雄,何斌等.酚醛泡沫塑料研究[J].塑料加工,2005,40(6):19-22.
    [93]曾宪佑,黄畴,黄红明等.丁腈橡胶腰果油改性酚醛树脂的研究[J].化学与生物工程,2005,21(2):21-24.
    [94]李屹,周元康,姚进等.用于摩擦材料的硼-桐油改性酚醛树脂性能的研究[J].润滑与密封,2006,30(1):86-88
    [95]田建团,张炜,郭亚林等.酚醛树脂的耐热改性研究进展[J].热固性树脂.2006,21(2):44-48.
    [96] Li Y, Mai Y W. Ye L. Sisal fibre and its composites: a review of recent developments[J]. CompositeScience and Technology,2000,60:2037-2055.
    [97] Bos H L. The Potential of Flax Fibres as Reinforcement for Composites Materials[D]. Eindhoven:Technische Universiteit Eindhoven,2004.
    [98]王伟宏,宋永明,高华.木塑复合材料[M].北京:科学出版社,2010,268-289.
    [99] Netravali A N, Chabba S. Composites get greener [J]. Materials Today,2003,22-29.
    [100] Corbiere-Nieollier T, Laban B, Lundquist L, el at. Life cycle assessment of biofibers replacing glassfibers as reinforcement in plastics[J]. Resources, Conservation and Recycling,2001,33:267-287.
    [101] Pervaiz M, Sain M M. Carbon storage potential in natural fiber composites [J]. Resources,Conservation and Recycling,2003,39(4):325-340.
    [102] Joshi S V, Drzalb L T,Mohanty A K,el at. Are natural fiber composites environmentally superior toglass fiber reinforced composites[J]. Composites Part A: Applied Science and Manufacturing,2004,35:371-376.
    [103] Wambua P, Ivens J, Verpoest I. Natura1fibres: can they replace glass in fibre reinforced plastics[J].Composite Science and Technology,2003,63:1259-1264.
    [104] Almanza O, Arcos L O, Rdbago Y, et a1. Structure-property relationships in polyolefin foams[J]. JMacromol Sci: Part B,2001,40(3):603.
    [105] Lin G, Zhang X J, et a1. Study on microstructure and mechanical properties relationship of shortfibers/rubber foam composites[J]. Eur Polym J,2004,40(8):1733.
    [106] Gibson L J,Ashby M F. The mechanics of three-dimensional celular materials[C]//Proceedings of theRoyal Society of London. Series A,1982,382(1782):43.
    [107] Wouterson E M, Boey F Y C, Wong S C, et a1. Nanotoughening versus micro-toughening of polymersyntactic foams[J]. Compos Sci Techn,2007,67(14):2924.
    [108] Hilyard N C. Mechanics of celular plastics[M]. London: Appl Sci Publishers LTD,1982:340.
    [109]杨继,许爱琴.纤维/聚合物泡沫复合材料的增强机理及模量预测[J].材料导报A:综述篇,2012,26(5):86-89.
    [110] Ghaus R. Foaming of PS/wood fiber composites using moisture as a blowing agent[J]. Polym Eng Sci.2000,40(10):21-24.
    [111]丁友江,朱征,安淑英等.聚氨酯泡沫/木质纤维复合材料的制备及其性能初探[J].建筑节能,2010,38(11):62-64.
    [112]盖广清,王立艳,王大壮.植物纤维增强硬泡聚氨酯性能的研究[J].新型建筑材料,2011,12:78-79,82.
    [113]吴素平,容敏智,章明秋等.剑麻纤维/大豆油树脂基泡沫塑料复合材料[J].材料研究与应用,2010,4(4):781-785.
    [114] Rozman H D, Tay G S, Abusamah A. The effect of glycol gype, glycol mixture, and socyanate/glycolratio on flexural properties of oil palm empty fruit bunch-polyurethane composites[J]. J Wood ChemTechn,2003,23(3-4):249.
    [115]蔡永源.现代阻燃技术手册[M].北京:化学工业出版社,2008,1-50.
    [116]欧育湘.塑料足迹系列丛书:阻燃剂[M].北京:国防工业出版社,2009,96-100.
    [117]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003,85-106.
    [118]西泽仁.难燃化技术[M].东京:工业调查会,2003,1-12.
    [119]欧育湘.实用阻燃技术[M].北京:化学工业出版社,2002,24-51.
    [120]于永忠,吴启鸿,葛世成.阻燃材料手册[M].北京:群众出版社,1997,104-132.
    [121]蒋剑春,沈兆邦.生物质热解动力学研究[J].林产化学与工业,2003,23(4):1-6.
    [122] R. H. White, M. A. Dietenberger. Fire safety. In: Wood Handbook, Forest Products Society, Madison,WI,1999.
    [123] Liu N A, Fan W, Dobashi R, et a1. Kinetic modeling of thermal decomposition of natural celulosicmaterials in air atmosphere[J]. Journal of Analytical and Applied Pyrolysis,2002,63(2):303-325.
    [124] Agrawal R K. On the use of the Arrhenius equation to describe cellulose and wood pyrolysis[J].Thermochimica Acta,1985,91:343-349.
    [125]陈纪忠,邓天,蒋斌波.竹材热解动力学的研究[J].林产化学与工业,2005,25(2):11-15.
    [126]胡云楚.硼酸锌和聚磷酸铵在木材阻燃中的成炭作用和抑烟作用[D].中南林业科技大学工业学院博士学位论文,2006.
    [127] Colomba Di Blasi. Modeling and simulation of combustion processes of charring and non-charringsolid fuels[J]. Progress in energy and combustion science,1993,19(l):71-104.
    [128] Nicole M. Stack; Robert H. White, Craig M. Clemons. Heat release rate of wood-plasticcomposites[J]. Sample Journal,1997,33(5):26-31.
    [129] L. Javier Malvar, Robert Tichy, David E Pendleton. Fire issues in engineered wood composites fornaval waterfront facilities[C].46th international SAMPE symposium and exhibition: a materialsand processes odyssey,2001.
    [130] Robert H. White, Mark A. Dietenberger. Cone alorimeter evaluation of wood products[C].15th AnnualBCC conference on flame retardancy,2004:331-342.
    [131] R. H. White, M. A. Dietenberger. Wood products: thermal degradation and fire[M]//Encyclopedia ofMaterials: Science and Technology. Oxford: Elsevier Science Ltd,2001.
    [132] F. L. Browne. Theories of the combustion of wood and its control, a survey of the literature[R]. ReportNo.2136, Forest products laboratory,1958.
    [133]左敏,吕丽华,赵玉萍.阻燃型废弃麻纤维/聚乳酸复合材料的性能分析[J].上海纺织科技,2012,40(9):35-36,51.
    [134]洪莉,胡健,黄铖等. BL-阻燃剂对纸张纤维阻燃的效果[J].纸与造纸,2010,29(6):28-31.
    [135]杨香莲,韦春,吕建等.剑麻纤维处理方法对SF/PF共混复合材料动态力学性能的影响[J].高分子材料科学与工程,2010,26(2):95-98.
    [136]刘景宏,杨文斌,谢拥群等.阻燃超低密度植物纤维材料的热解动力学分析[J].福建林学院学报,2012,32(4):360-364.
    [137] Carlson J D, Kifer E W, Wojtyna V J, et a1. Phenol formaldehyde resoles for making phenolic foam[P].US,4,539,338;1985.
    [138] Lunt J. Macpherson E J. Meunier P J. Closed cell phenolic foam[P]. US,4,576,972;1986.
    [139]林景雪,陶鑫,伊阳等.酚醛树脂固化动力学研究及其耐热性能评价[J].工程塑料应用,2007,35(10):57-59.
    [140] Rastall M H, Ng N H. MacPherson E J. Modified phenolic foams[P]. US,4,525,492;1985.
    [141]马玉峰,张伟,王春鹏,储富祥.酸固化剂对酚醛泡沫材料性能的影响[J].工程塑料应用,2012,40(11):77-81.
    [142]张伟,庄晓伟,许玉芝等.甲醛/苯酚配比对酚醛泡沫塑料性能的影响[J].工程塑料应用,2010,38(7):4-7.
    [143]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005,23-45.
    [144] GB/T2406-1993.塑料燃烧性能试验方法一氧指数法[S].北京:中国标准出版社,1993.
    [145]刘振海,徐国华,张洪林.热分析仪器[M].北京:化学工业出版社,2006.
    [146]岑可法.高等燃烧学[M].杭州:浙江大学出版社,2002,1-24.
    [147]刘向峰,张军,张和平.高抗冲聚苯乙烯/蒙脱土复合材料的阻燃性研究[J].高分子学报,2004,(5):650-655.
    [148] Alexander B. Morgan, Matthew Bundy. Cone calorimeter analysis of UL94V-rated plastics[J]. Fireand Materials,2007,31:257-283.
    [149]于宝刚.用锥形量热仪研究聚氨酯泡沫的阻燃性能[J].中国塑料,2010,(3):55-59.
    [150]徐晓楠.新一代评估方法—锥形量热仪(CONE)法在材料阻燃研究中的应用[J].中国安全科学学报,2003,13(1): l9-23.
    [151] ISO5660-2002. Reaction-to-fire tests-Heat release, smoke production and mass loss rate [S]. ISO:2002.
    [152]舒中俊,徐晓楠,李响.聚合物材料火灾燃烧性能评价—锥形量热仪试验方法[M].北京:化学工业出版社,2007,19-76.
    [153] Thomas H Q. Chemical modification properties and usage of lignin[M]. New York: KluwerAcademic/Plenum Publishers,2002.
    [154] Brahimi B, RIEDL B. Symposium on polymer surfaces and interfaces character, modification andapplication at the53rd Annual Technical Conference[M]. Boston: Soc of Plast Eng,1995.
    [155]陆立明译.热分析应用手册系列丛书—热固性树脂.苏州:东华大学出版社,2011,15-20.
    [156]刘新民,郭庆杰.可发性酚醛树脂的合成及性能研究[J].塑料工业,2007,35(5):970-974.
    [157]张建俊,于淑娟,增加成等.糖对牛奶布丁流变性的影响[J].现代食品科技,2009,25(3):241-244,248.
    [158] Han C. D., Lem K. W.. Rheology of unsaturated polyester resins. I. Efects of filler and low-profileadditive on the rheological behavior of unsaturated polyester resin[J]. Appl. Polym. Sci.,1983,28(2):743-762.
    [159]张英强,徐耀民,郑康生.苯并环丁烯封端的聚酰亚胺树脂的流变行为研究[J].玻璃钢/复合材料,2009,(4):49-52.
    [160]黄俊,杨仁党.高浓度木浆草浆混合黑液的流变性能研究[J].中华造纸.2009,31(4):59-62.
    [161]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2011,35-54.
    [162]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010,27-43.
    [163]穆有炳. E0级胶合板用工业木质素-酚醛树脂的制备结构与性能研究[D].中国林业科学研究院硕士学位论文,2009.
    [164]周大鹏.快速成型与耐热高强度酚醛注塑料的制备技术及性能研究[D].浙江大学博士学位论文,2005.
    [165]殷勇刚,任蕊,刘春玲等.高邻位热塑性酚醛树脂的合成及固化性能[J].高分子材料科学与工程,2012,28(4):9-13.
    [166] Nitto Denko Corp. Semiconductor device: JP,07-130919.1995-05-19.
    [167] Sumitomo Bakelite Co. Ltd. Epoxy resin composition and semiconductor device: JP.2003-342446.2003-12-03.
    [168] Pretsch E, Btihlmann P, Affolter C. Structure Determination of Organic Compounds: Tables of SpectralData. New York: Springer,2004.
    [169]黄炎明.高分子实用剖析技术[M].北京:中国石化出版社,1997,92-100.
    [170]朱其仁,李锦春,王丽娟.苯酚-亚联苯型酚醛树脂的合成与表征[J].化工学报,2009,60(4):1052-1056
    [170] Jin-wu Wang. Cure Kinetics of Wood Phenol-formaldehyde Systems[D]. Washington State UniversityDepartment of Civil and Environmental Engineering,2007.
    [170] Marko Turunen, Leila Alvila, Tuula T. Pakkanen, el at. Modification of Phenol-formaldehyde ResolResins by Lignin, Starch, and Urea[J]. Journal of Applied Polymer Science,2003,88:582-588.
    [171] N.E. El Mansouri, A. Pizzi, J. Salvado. Lignin-Based Polycondensation Resins for Wood Adhesives[J].Journal of Applied Polymer Science,2007,103:1690-1699.
    [172]王乃兴.核磁共振谱学——在有机化学中的应用[M].北京:化学工业出版社,2010,35-67.
    [173]严宝珍.核磁共振技术与实例[M].北京:科学出版社,2010,40-69.
    [174] Bruce Prime R. Differential scanning calorimetry of the epoxy cure reaction[J]. Polymer Engineeringand Science,1973,13(5):365-37.
    [175]程雷,王汝敏,杨绍昌等. PES改性低温固化双马树脂固化动力学研究[J].中国胶粘剂,2009,18(12): l3-16.
    [176]李守海.橡实基复合高分子材料的制备与性能研究[D].中国林业科学研究院,博士论文,2011.
    [177] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):1702-1706.
    [178] Ozawa T. Kinetic analysis of derivative curves in thermal analysis[J]. Journal of Thermal Analysis andCalorimetry,1970,2(3):301-324.
    [179] Crane L W, Dynes P J, Kaelble D H. Analysis of curing kinetics in polymer composites[J]. J. Polym.Sci.: Polym. Lett. Ed.,1973,11(8):533-540.
    [180]王基夫.可聚合松香基单体的合成表征和应用研究[D].中国林业科学研究院博士学位论文,2009.
    [181] Hatakeyama H, Asano Y, HiroseS, et al. Rigid polyurethane foams containing kraft lignin andlignosulfonic acid in the molecular chain[C]. I/Proceeding of the Pulp and Paper ResearchConference.2001,38-41.
    [182]囤宏志,姜志国,王海侨,李效玉.戊二醛改性酚醛树脂及对泡沫塑料性能的研究[J].化工新型材料.2009,37(3):100-102.
    [183]庄晓伟,张伟,王基夫等.低温发泡制备酚醛泡沫材料及其表征[J].化工新型材料.2010,38(4)(增):144-148.
    [184]大卫·伊夫斯.泡沫塑料[M].北京:化学工业出版社,2006,5-21.
    [185]徐丽,司徒粤,胡剑峰等.基于酚醛三元聚合体系的固化行为及性能[J].高分子材料科学与工程.2009,25(12):137-140.
    [186]鲁郑全,李和平,尹志刚.复合催化己内酰胺改性酚醛树脂泡沫材料的研究[J].化工新型材料.2009,37(8):88-90,11.
    [187] Gibson L J, Ashby M F. Cellular Solids: Structure and properties[M]. Cambridge: CambridgeUniversity Press,1999.
    [188] Christensen, R.M. Mechanics of low density materials[J]. J. Mech. Phys. Solids34,1986.
    [189] Gibson L J, Ashby M F, Zhang J, Triantafillou T C. Failure surfaces for cellular materials undermultiaxial loads. I. Modelling[J]. International Journal of Mechanical Sciences,1989,31(9):635-663.
    [190] Goods S, Neuschwanger C, Henderson C et al. Mechanical properties of Crete, a polyurethane foam[J].Journal of Applied Polymer Science,1998,68(7):1045-1055.
    [191] Philip C, Miller T, Sina T. Compressive properties of rigid polyurethane foams[J]. Polymers andPolymer Composites,1999,7(2):117~124.
    [192]王越平,高绪珊.天然竹纤维与竹浆粘胶纤维的结构性能比较[J].中国麻业,2006,28(2):97-100.
    [193]李新功,吴义强,郑霞.改善竹纤维与生物可降解塑料界面相容性的方法[J].竹子研究汇刊,2009,28(2):6-9.
    [194]王俊勃,赵川,高晓丁等.苎麻纤维增强酚醛复合材料的研究[J].纤维复合材料,2001,18(1):13-15.
    [195]郭文静,王正,鲍哺成等.天热植物纤维与可生物降解塑料生物质复合材料研究现状与发展趋势[J].林业科学,2008,441:157-161.
    [196] Jin Chunde, Du Chungui, Li Yanjun, et al. Fire Retardancy of Sliced Bamboo Veneer Treated byFire-Retardant FRW[J]. Scientia Silvae Sinicae,2011,47(7):156-159.
    [197] Kopf P. W. Formation and Cure of Novolacs: NMR Study of Transient Molecules[J]. Journal ofPolymer Science, Macromolecular Reviews,1973,(11):939-960.
    [198] S. R. Sandler, W. Karo. Polymer Synthesis[M]. New York: Academic Press,1992.
    [199] Ping Li, D. w. Coleman, K. m. Spaulding, et al. Fractionation and characterization of phenolic resinsby high-performance liquid chromatography and gel-permeation chromatography combined withultraviolet, refractive index, mass spectrometry and light-scattering detection[J]. Journal ofchromatography A,2001,(914):147-159.
    [200] G. Vazquez, J.Gonzalez, S.Freire, et al. Effect of chemical modification of lignin on the gluebondperformance of lignin-phenolic resin[J]. Bioresource Technology,1997,60:191-198.
    [201] Shubin Wu, Huaiyu Zhan. Changes in Physico-chemical Characteristics and Structures of Wheat StrawSoda LigninAfter Modification[J]. Journal of South China University of Technology (NaturalScience).1998,26(11):96-104.
    [202] Hirschler M M. Heat Release in Fire[J]. Elesevier, London, UK, Eds, Barauskas V and Grayson S J,1992:357-422.
    [203] Petrella R V. Flammability of Polymers[J]. J Fire Sci,1994,(12):14-16.
    [204]张吉军.模糊层次分析法[J].模糊系统与数学,2000,14(2):80-88.
    [205]陈晓剑,梁梁.系统评价方法及其应用[M].合肥:中国科学技术大学出版社,1993.
    [206]路国忠,闫晶,周丽娟等.改性酚醛泡沫板建筑外墙外保温系统的研究[J].新型建筑材料,2012,(10):64-67.
    [207]亓波,郑超,吕虎等.酚醛树脂在外墙保温防火方面性能研究与应用[J].工程塑料应用,2012,40(2):28-30.
    [208]宋新武,查晓雄.建筑用绝热金属面夹芯板抗弯承载力的试验研究[J].工业建筑,2011,41(3):9-15.
    [209] Charles A H. Handbook of building materials for fire protection[M]. America: McGraw-Hill,2004,450-460.
    [210]王奉强,宋永,孙理超等.利用CONE研究阻燃胶合板的动态燃烧行为[J].建筑材料学报.2012,15(3):366-371,381.
    [211]李坚,王清文,李淑君等.用CONE法研究木材阻燃剂FRW的阻燃性能[J].林业科学,2002,38(5):108-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700