用户名: 密码: 验证码:
轻质阻燃酚醛泡沫材料的制备与构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国城市建筑火灾频发,不仅威胁人民生命和财产安全,还产生大量有害烟雾,污染环境。引发城市建筑火灾的主要着火源之一就是广泛应用于现代建筑外墙中的有机保温材料。建筑材料的阻燃问题已成为国内外关注的热点。酚醛泡沫作为一种自阻燃型泡沫塑料,在燃烧过程中不会发生熔融,流滴,亦不会产生大量毒性烟雾,具有难燃、低烟、低毒特性和耐热性等优点,将在建筑领域作为理想的隔热结构材料而将得到更为广泛的应用。
     传统高固含酚醛树脂的生产过程中,均采用苯酚及含量为37%左右的甲醛溶液作为反应单体,制备的酚醛树脂(固含量约50%)需经过脱水方可达到可发性酚醛树脂对固含量(70~85%)的要求,不可避免地产生大量的工业废水。同时由于酚醛泡沫自身存在的易粉化、生产成本高等缺点,有必要针对可发性酚醛树脂及泡沫存在的问题展开研究,解决树脂生产过程中的废水问题,开发性能优良的酚醛泡沫。
     针对可发性酚醛树脂及酚醛泡沫存在的问题,本论文采用先进新型不脱水工艺,直接合成固含量在70~85%的可发性高固含甲阶酚醛树脂。分析了树脂制备过程中甲醛/苯酚(F/P)摩尔比、催化剂对可发性高固含甲阶酚醛树脂性能的影响;讨论了酚醛泡沫制备工艺,重点分析了酸固化剂对酚醛泡沫性能的影响,创建了酚醛泡沫表观密度-力学性能模型;采用不同的木质纤维表面处理方法制备纤维复合酚醛泡沫;采用无卤协同阻燃系统制备复合酚醛泡沫;采用酸化处理无机材料制备复合酚醛泡沫。论文主要的研究内容和结论如下:
     1.高固含甲阶酚醛树脂的制备及性能研究
     采用NaOH为催化剂,制备不同F/P摩尔比的高固含甲阶酚醛树脂,研究F/P摩尔比对高固含甲阶酚醛树脂性能的影响。研究表明,当F/P=2.0时,树脂的性能较优。粘度为2567mPa·s,固体含量为79.25%,凝胶时间为725s,游离苯酚含量为3.01%,游离甲醛含量为0.86%,羟甲基浓度为36.56%,此时树脂的热稳定性也是最高的。树脂在600℃残炭量随着F/P摩尔比的增加而逐渐降低。固化动力学分析表明,低F/P摩尔比的高固含甲阶酚醛树脂拥有较高的Ea值。并且五种树脂的固化反应级数都为非整数,表明其固化反应都是很复杂的。
     2.催化剂对酚醛树脂及泡沫性能的影响
     采用氢氧化钡(Ba(OH)_2)、三乙胺((C_2H5)_3N)和氢氧化钠(NaOH)为催化剂,制备可发性高固含甲阶酚醛树脂,研究催化剂对树脂性能的影响。研究表明,3种催化剂的催化效率依次为:NaOH>(C_2H_5)_3N>Ba(OH)_2。以NaOH为催化剂制备的酚醛树脂和泡沫的性能最优。以其为催化剂制备的酚醛树脂的粘度为8625mPa·s,固体含量为79.88%,游离苯酚和甲醛分别为3.36%、0.5%,凝胶时间为397s,900℃时的残炭量为59.31%。以NaOH为催化剂制备的酚醛泡沫的压缩及弯曲强度分别为0.24MPa、0.39MPa,掉渣率为11.1%,极限氧指数为44.5%,初始分解温度为107℃,900℃时的残炭量为60.15%,泡孔较小,泡孔分布较为均匀,泡孔直径维持在100~200μm的范围内。
     3.酚醛泡沫的制备工艺及其密度-力学性能模型研究
     采用聚山梨酯-80为表面活性剂、石油醚为发泡剂、混合酸为固化剂制备酚醛泡沫,研究表面活性剂、发泡剂和混合酸固化剂的添加量对酚醛泡沫性能的影响。研究表明,适宜的表面活性剂添加量树脂质量的10%,适宜的发泡剂添加量约为树脂量的5%,适宜的固化剂为以盐酸/磷酸/对甲苯磺酸/水复配的6#酸固化剂,且适宜的添加量为树脂质量的15%。建立的酚醛泡沫密度-力学性能模型指数值基本接近于简化的Gibson-Ashby公式中的指数,指数值在1.2352~2.1672范围内,压缩性能指数在1.2521~1.4848范围内,弯曲性能指数在1.2352~2.1672范围内。
     4.酚醛泡沫发泡模型分析
     采用聚山梨酯-80为表面活性剂、石油醚为发泡剂、混合酸为固化剂制备酚醛泡沫,研究表面活性剂、发泡剂和混合酸固化剂的添加量对酚醛泡沫发泡速度和泡沫平均泡孔直径的影响。通过实验数据拟合得到的不同表面活性剂添加量、发泡剂、固化剂及发泡温度与发泡速度的关系模型,及不同表面活性剂添加量、发泡剂、固化剂及发泡温度与泡沫平均泡孔直径的关系模型,可以为酚醛泡沫的应用研究提供一定的理论基础,对于酚醛泡沫制备工艺条件的优化具有一定的指导意义。
     5.无卤阻燃剂协同阻燃酚醛泡沫复合材料性能研究
     采用多聚磷酸铵(APP)为阻燃剂,季戊四醇(PER)为成炭剂,氧化锌(ZnO)、三氧化钼(MoO_3)、氯化亚铜(CuCl_2)、氯化亚锡(SnCl_2)为协效剂,分别组成四种协同阻燃系统并制备复合酚醛泡沫,研究协同阻燃系统对复合泡沫的阻燃性能的影响。研究表明,四种协同阻燃系统均能显著提高复合酚醛泡沫的氧指数,复合酚醛泡沫的极限氧指数基本都维持在73%左右,而阻燃系统对复合泡沫的热稳定性影响不是很显著。四种协同阻燃体系复合酚醛泡沫的热释放速率、平均热释放、总热释放、有效燃烧热、耗氧量、总氧消耗、一氧化碳产量和一氧化碳产率显著降低,但是比消光面积和总烟产率却显著提高。阻燃系统在泡沫中的阻燃机理是属于气相阻燃机理。在所有阻燃系统中,APP/PER/ZnO是一种比较适合作为酚醛泡沫阻燃改性的阻燃系统。
     6.纤维表面改性及其复合酚醛泡沫性能研究
     采用碱、偶联剂和碱与偶联剂复合处理的方法对木质纤维进行表面改性,制备纤维复合酚醛泡沫,研究纤维改性对酚醛泡沫性能的影响。研究表明,处理后的纤维复合泡沫的强度都较未处理纤维复合泡沫有不同程度的提高,尤其以氢氧化钠与硅烷偶联剂A-171复合处理方法和硅烷偶联剂KH-792处理方法处理后的纤维复合泡沫的各项性能较优。这说明纤维处理后,纤维表面与树脂基体之间的界面相容性明显得到改善。处理后的纤维复合泡沫的极限氧指数较未处理纤维复合泡沫都有不同程度的降低,这说明纤维处理,对阻燃效果是没有积极意义的。
     7.无机复合酚醛泡沫制备及性能研究初探
     采用15%磷酸对粉煤灰和膨润土进行酸化处理,制备无机复合酚醛泡沫,研究无机材料酸化处理及其添加量对复合酚醛泡沫性能的影响。研究表明,酸化处理后的无机材料复合泡沫的强度都较未酸化处理的无机材料复合泡沫有不同程度的提高,经过酸化处理的无机复合泡沫的泡孔较小,泡孔分布较为均匀,尤其酸化处理的粉煤灰复合泡沫的各项性能较优。这说明经酸化后的粉煤灰较适合作为复合酚醛泡沫的填料。但无机复合泡沫的极限氧指数较酚醛泡沫都有不同程度的降低。
In recent years, the fires of urban high-rise buildings frequently occur in China, which notonly imperil people's lives and properties, but also produce a large number of harmful smokeand pollute the environment. One of the main ignition sources of city building fires is organicthermal insulation materials, which are widely used in the exterior wall of modern building.Thereby, flame retardant construction materials have been receiving increasing attention. As akind of flame retardant foam featured with non-moltening, difficuity in producing flow drops,less toxic smoke generation during the combustion process, flame retardation, low toxicity andheat resistance, phenolic foam would be used as an ideal thermal insulation material and getmore extensive applications in the construction field.
     Traditional high solid resol phenolic resins (HSRPRs)(70~85%), which are prepared bydehydration of phenolic resins (about50%) that are synthesized by reaction between phenoland formaldehyde solution (37wt%), would usually generate a large amount of industrialwastewater. Meanwhile, phenolic foams (PFs) have some disadantages, such as fragility, highproduction cost, etc. Hence, it is necessary to study and develop an efficent way to solve theexisting problems in phenolic resins and foams, as well as to prevent the contamination ofwaste water during the process of resins production. To this end, we aim to develop highperformance PFs.
     In this thesis, an advanced and undehydrated technology was used to synthesize HSRPRswith the solid content of70~85%. The effects of formaldehyde/phenol (F/P) molar ratio andcatalysts on the properties of HSRPRs were inverstigated in the process of HSRPRspreparation. The process of PFs was also studied. Particularly, we analyzed the effects of acidcuring agent on the properties of PFs in detail, and created the mathematical model of apparentdensity-mechanical properties of PFs. The wood fibers modified by different surface treatmentmethods were used to enhance PFs. Halogen-free synergistic flame retardant systems wereused to prepare the flame retardant composite PFs. The acid pretreatment method was applied to modify inorganic materials and to prepare inorganic material composite PFs. The mainresults and discoveries are described as follows:
     1. preparation and characteration of HSRPRs
     A series of HSRPRs were synthesized with different molar ratios of formaldehyde tophenol (1.6,1.8,2.0,2.2and2.4) using sodium hydroxide as catalyst. HSRPRs with bestproperties were obtained when the F/P molar ratio was2.0. These HSRPRs have the viscosityof2567mPa·s, solid content of79.25%, gel time of725s, free formaldehyde content of0.86%,free phenol content of3.01%and hydroxymethyl concentration of36.56%. And the thermalstability was also the best. The residue (600℃) of HSRPRs decreased when the F/P molarratios increased. The low F/P molar ratios of HSRPRs had higher Ea values than that of highmolar ratios, indicating that less heat was needed to cure HSRPRs at high molar ratios thanthose at low molar ratios. The reaction orders of five different F/P molar ratios werenon-integer, and the result indicated that the curing reaction was quite complicated. The resulthad a guiding significance on choosing the right F/P molar ratios during the manufacturing ofHSRPRs.
     2. The effects of catalysts on the properties of HSRPRs and PFs
     Barium hydroxide (Ba(OH)_2), triethylamine ((C_2H_5)_3N) and sodium hydroxide (NaOH)were chose as catalysts in the synthesis of HSRPRs and the preparartion of PFs at70℃. Theeffects of different catalysts on the properties of HSRPRs and PFs were investigated. Theresults showed that the catalytic efficiency of three kinds of catalysts was listed as follows:NaOH>(C2H5)3N>Ba(OH)2. The optimal properties of phenolic resins and foams wereachieved when the phenolic resins were prepared with NaOH as catalyst. And the viscosity,solid content, free phenol, free formaldehyde, gel time and the amount of residual carbon of theresin (NaOH as catalyst) were8625mPa·s,79.88%,3.36%,0.5%,397s and59.31%(900℃)respectively. The compression strength, bending strength, mass loss rate, limited oxygen index(LOI), initial decomposition temperature and the amount of residual carbon of PFs (NaOH ascatalyst) were0.24MPa,0.39MPa,11.1%,44.5%,107℃and60.15%(900℃) respectively. And PFs was characterized to have smaller cells with a diameter of100~200μm, and relativelyuniform cell distribution.
     3. Research on the preparation process and model of density-mechanical properties of PFs
     Surfactant (polysorbate-80), blowing agent (petroleum ether), and curing agent (mixedacid) were selected to prepare PFs at70℃. The influences of amount of surfactant, blowingagent and curing agent on the properties of PFs were investigated. The results showed that thesuitable amount of surfactant and blowing agent were10%and5%respectively, and theproperties of foams was the best using hydrochloric acid/phosphoric acid/p-toluene sulfonicacid/water as curing agent, and the suitable amount of curing agent was15%. Themathematical model of density-mechanical properties was established by the foam model ofGibson-Ashby's mechanical properties and density. The results showed that there was a goodexponential relationship between mechanical properties and density. The exponential valueswere in the range of1.2352~2.1672. The exponential values of compression properties were inthe range of1.2521~1.4848, and the exponential values of bending properties were in the rangeof1.2352~2.1672.
     4. Study on foaming model of phenolic foam
     Polyoxyethylene-80(surfactant), petroleum ether (blowing agent) and mixed acids (curingagent) were selected to prepare PFs at different foaming temperatures. The effects of foamingtemperature, amount of surfactant, foaming agent, curing agent on the foaming speed andaverage cell diameter of PFs were investigated. Foaming speeds and average cell diameter ofPFs were obtained by experiments tests. The mathematical models of foaming speed andaverage cell diameter were obtained by nonlinear fitting of these experiment data. The modelof foaming speed, which reflected a relationship between foaming temperature, amount ofsurfactant, foaming agent, curing agent and the growth speed of foam volume, was set up. Andthe model of average cell diameter, which reflected a relationship between foamingtemperature, amount of surfactant, foaming agent, curing agent and average cell diameter offoam, was established. These models could provide basic theories for the guidance to the research on the application of PFs. In the meantime, It is meaningful for this basic theory toguide the preparation of PFs and optimize preparation technology.
     5. Preparation and characteration of PFs with Eco-friendly Halogen-free Flame Retarant
     The retardant additives, including eco-friendly halogen-free flame retardants (APP), charforming agent (PER), and synergist (ZnO, MoO_3, CuCl_2, and SnCl_2), were added in HSRPRsto fabricate the flame retardant composite phenolic foams (FRCPFs). The effects of theseretardant additives on the performance and properties of FRCPFs were investigated. It wasfound that LOIs of FRCPFs significantly increased and reached to around73%. HRR, AHRE,THR, EHC, O_2C, TOC, and emission of toxic gases (COP and COY) remarkably decreased,while for SEA and TSR, they significantly increased. The flame-retardant system agreed withthe gasphase flame-retarding mechanism. The results showed that FRCPFs had excellentfire-retarding performance, although it has a minor negative effect in respect of reduction in thesmoke release. APP/PER/ZnO was concluded as a better flame-retardant system for PFs.
     6. Modification of the wood fiber surface and the research on the preparation andcharacteration of wood fiber composite PFs
     The wood fibers pretreated by alkali, coupling coupling agents and alkali-couplingcoupling agents were used to prepare fiber composite PFs. The effects of wood fibers onproperties of PFs were studied. The results showed that the mechnical properties of treatedfiber composite PFs increased to different levels, compared with untreated fiber composite PFs.Especially the properties of treated fiber composite PFs were better while using silane couplingagent (A-171)-sodium hydroxide composite treatment and silane coupling agent (KH-792)treatment method. The results indicated after pretreatment, the interfacial compatibilitybetween fiber surface and resins significantly improved. But limiting oxygen indexs of treatedfiber composite PFs decreased to different levels, compared with untreated fiber composite PFs.This indicated that there was no positive effect of fiber modification on the flame retardant ofwood fiber composited PFs.
     7. Preparation and initial investigation of inorganic materials composite PFs
     Pulverized fuel ash and bentonite were modified to phosphate by15wt%phosphoric acidand used to prepare inorganic material composite PFs. The effects of acidification method ofinorganic materials and amount of inorganic materials on the properties of PFs wereinvestigated. The results showed that the mechnical properties of acidification-treated inorganicmaterials composite PFs increased to different levels, compared with untreated inorganicmaterial composite PFs. The cells of PFs were smaller and cell distribution was relativelyuniform. Particularly, the properties of acidification-treated pulverized fuel ash composite PFswere better. The results showed that the suitable inorganic material for composite PFs waspulverized fuel ash treated by acidification method. But limited oxygen indexs of inorganicmaterial composite PFs decreased to different levels, compared with phenolic foam.
引文
[1]高正超.我国当前火灾特点及发展趋势.武警学院学报.2002,18(4):46~49
    [2]马榴强,贺光庆.环保型酚醛树脂合成工艺链及其经济分析.热固性树脂.2008,23(5):24~27
    [3]马榴强,贺光庆.多聚甲醛合成酚醛树脂的技术经济分析.石油化工技术与济.2008,24(2):11~14
    [4]李超.一种磷酚醛树脂的合成工艺.CN1995085A,2007.
    [5]张莉.酚醛泡沫绝热材料的常温制备及性能研究.武汉理工大学硕士学位论文.2006,1~3
    [6]夏春.壳法用酚醛树脂微波合成的研究.华中科技大学博士学位论文.2005,1~2
    [7]唐路林,李乃宁,吴培熙.高性能酚醛树脂及其应用研究.北京:化学工业出版社.2009,24~25
    [8]李和平.木材胶黏剂.北京:化学工业出版社.2008,78
    [9]黄发荣,万里强,杨元一,等.酚醛树脂及其应用.北京:化学工业出版社.2011,28
    [10]殷永忠,山永年,毛乾聪,等.酚醛树脂及其作用.北京:化学工业出版社.1990,26
    [11] LB Manfredi, O de la Osa, NF Galego, et al. Structure-properties relationship for resols with differentformaldehyde/phenol molar ratio. Polymer.1999,40:3867~3875
    [12] GA Astarloa, JM Echeveriak, MD Martin, et al. Influence of the initial formaldehyde to phenol molarratio (F/P) on the formation of a phenolic resol resin catalyzed with amine. Polymer.2000,41:6797~6802
    [13] BD Park, B Riedl. YS Kim, et al. Effect of synthesis parameters on thermal behavior of phenol-formaldehyde resol resin. Journal of Applied Polymer Science.2002,83:1415~1424
    [14] GA Astarloa, JM Echeveríak, MD Martin, et al. Kinetics of phenolic resol resin formation by HPLCBarium hytdroxide. Polymer.1998,39(15):3467~3472
    [15] GA Astarloa, JM Echeveríak, A Vázquez, et al. Influence of the amount of catalyst and initial pH on thephenolic resol resin formation. Polymer.2000,41:3311~3315
    [16] P Luukko, L Alvila, T Holopainen, et al. Effect ofalkalinity on the structure of phenol~formaldehyderesol resins. Journal of Applied Polymer Science.2001,82:258~262
    [17] GA Astarloa, JM Echevería, CC Riccardi, et al. Influence of the temperature on the formation of aphenolic resol resin catalyzed with amine. Polymer.2002,43:2239~2243
    [18]车剑飞,肖迎红,陆怡平,等.纳米粒子改性硼酚醛树脂的研究.塑料工业.2001,29(6):17~18
    [19]谭晓明,黄乃瑜,谢洪泉.硼酸钠/甲阶酚醛树脂配合物的热固化过程和耐热性.应用化学.2002,19(1):76~79
    [20]赵会明,郑怀礼.正交试验法在合成磷钼酚醛树脂中的应用.重庆建筑大学学报.2000,22(5):118~121
    [21] SJ Park, MK Seo. The effects of MoSi2on the oxidation behavior of carbon/carbon composites. Carbon.2001,39(8):1229~1235
    [22]顾宜,田巧.耐热性苯并恶嗪树脂复合物及其制备方法和用途:CN1884376A.2006.
    [23] HJ Kim, Z Brunovska, H Ishida. Synthesis and thermal characterization of polybenzoxazines based onacetylene-functional monomers. Polymer.1999,40(23):6565~6573
    [24] YX Wang, H Ishida. Cationic ring-opening polymerization of benzoxazines. Polymer.1999,40(16):4563~4570
    [25] MA Espinosa, V Cadiz, M Galia. Synthesis and characterization by benzoxazine-based phenolicresins:Crosslinking study. Journal of Applied Polymer Science.2003,90(2):470~481
    [26] MA Espinosa, V Cadiz, M Galia. Development of novel flame-retardant thermosets based onbenzoxazine-phenolic resins and a glycidyl phosphinate. Journal of Polymer Science Part A: PolymerChemistry.2004,42(2):279~289
    [27] H Ishida, S Ohba. Synthesis and characterization of maleimide and nitrile-functionalized benzoxazines.Polymer.2005,46(15):5588~5595
    [28] S Das, DC Prevorsek, BT Debona. Phenolic-triazine resins yield high-performance thermosetcomposites. Modon Plastics.1990,67(2):4~8
    [29] A David, EL Angel, DA Javier, et al. Synthesis and characterization of novel polyimides with bulkypendant groups. Journal of Polymer Science Part A: Polymer Chemistry.1999,37(19):805~814
    [30]彭进,张琳琪,邹文俊,等.双马来酰亚胺改性酚醛树脂的合成研究.金刚石与磨料磨具工程.2003,134(2):45~47
    [31]阎业海,刘金阁,赵彤,等.一种适用于树脂传递模塑工艺的双马来酰亚胺改性酚醛树脂.高技术通讯.2002,5:56~59
    [32] YF Liu, JG Gao. Curing Kinetics of Boron~Containing Phenol-Formaldehyde Resin Formed fromParaformaldehyde. International Journal of Chemical Kinetics.2002,11:638~644
    [33] YF Liu, JG Gao, RZ Zhang. Thermal properties and stability of boron-containing phenol-formaldehyderesin formed from paraformaldehyde. Polymer degradation and stability.2002,77:495~501
    [34] BD Park, B Riedl.13C-NMR study on cure-accelerated phenol-formaldehyde resins with carbonates.Journal of Applied Polymer Science.2000,77:841~851
    [35] A Pizzi, R Garcia, S Wang.On the networking mechanisms of additives-accelerated phenolformaldehyde polycondensates. Journal of Applied Polymer Science.1997,66,255~266
    [36]殷宜初.国内外酚酸泡沫的开发与应用.保温材料与建筑节能.2004,10:46~48
    [37] Gillfoam. MC Gill Crop. Technical Information.2008.
    [38] PermaRock phenolic external insulation system. PermaRock products Ltd. technical information.2007.
    [39] Knauf phenolic laminate, Kknauf Drywall Technical Information.2009.
    [40] Koolthelm. Kingspan Insulation Ltd. Technical Information.2006.
    [41] Tfipolymer. CP-Chemical Company. Technical Information.2006.
    [42] Thermo-cor. American Foam Technologies, Inc. Technical Information.2008.
    [43] Neoma. AsahiKASEI Technical Information.2007.
    [44] Glen EW Saidla, Hampton Falls, NH Fiber foam and process. US4163824,1979.
    [45] JP OS-286069,1993.
    [46]殷锦捷,戴英华,崔享家.新型增韧阻燃酚醛树脂泡沫塑料的研制.应用化工.2010,39(2):247~250
    [47]秦特夫.改善木塑复合材料界面相容性的途径.世界林业研究.1998,3:46~50
    [48]刘涛,何慧,洪浩群,等.木塑复合材料研究进展.绝缘材料.2008,41(2):38~41
    [49]李兰杰,朱胜杰,刘赞,等.干燥处理对PE/松木粉复合材料性能的影响.合成树脂及塑料.2005,22(3):22~25
    [50] K Renneckar, RK Johnson, A Zink-Sharp, et al. Fiber Modification By Steam-explosion:13C NMR andDynamic Mechanical Analysis Studies of Co-refined Wood And Polypropylene. Composite Interfaces.2005,12(6):559~580
    [51] AK Bledzki, S Reihmane, J Gassan. Properties and Modification Methods for Vegetable Fibers forNatural Fiber Composites. Journal of Applied Polymer Science.1996,59:1329~1336
    [52]李思良,曾湘云,刘易凡.木粉填充PP的力学性能.塑料.1998,27(3):30~32
    [53] AK Mohanty, M Misra, LT Drzal. Sustainable biocomposites from renewable resources: Opportunitiesand challenges in the green materials world. Journal of Polymers and Environment.2002,10(1):19~26
    [54]王俊勃,赵川,高晓丁,等.苎麻纤维增强酚醛复合材料的研究.纤维复合材料.2001,1:13~15
    [55]刘丽妍,王瑞.亚麻纤维增强热固性树脂复合材料板材的研究.玻璃钢/复合材料.2004,(4):29~32
    [56]刘丽妍,黄故.亚麻增强热塑性树脂基复合材料的开发.天津工业大学学报.2005,24(4):5~7
    [57] D Bachtiar, SM Sapuan, MM Hamdan. The effect of alkaline treatment on tensile properties of sugarpalm fiber reinforced epoxy composites. Materials and Design.2008,29:1285~1290
    [58] MS Islam, KL Pickering. Influence of alkali treatment on the interfacial bond strength of industrialhemp fiber reinforced epoxy composites effect of variation from the ideal stoicheometric ratio of epoxyresin to curing agent. Advanced Materials Research.2007,29/30:319~322
    [59] AN Towo, MP Ansell. Fatigue evaluation and dynamic mechanical thermal analysis of sisal fiber-thermosetting resin composites. Composites Science and Technology.2008,68:925~932
    [60] Qin TF, Huang LH, Li GY. Effect of Chemical Modification on the Properties of Wood/PolypropyleneComposites. Journal of Forestry Research.2005,16(3):241~244
    [61] KL Pickering, A Abdalla, C Ji, et al. The effect of silane coupling agents on radiata pine fiber for use inthermoplastic matrix composites. Composites Part A: Applied Science and Manufacturing.2003,34:915~926
    [62] G Cantero, A Arbelaiz, R Llano-Ponte,et al.Effects of fibre treatment on wettability and mechanicalbehaviour of flax/polypropylene composites. Composites Science and Technology.2003,63:1247~1254
    [63] AK Bledzk, J Gassan. Composites reinforced with cellulose based fibers. Progress in Polymer Science.1999,2(24):221~274
    [64] X Colom, F Carrasco, P Pagès, et al. Effects of different treatments on the interface of hdpe/lignocellulosic fiber composites. Composites Science and Technology.2003,63:161~169
    [65] B Liao, YH Huang, GM Cong. Influence of modified wood fibers on the mechanical properties of woodfiber-reinforced polyethylene. Journal of Applied Polymer Science.1997,66:1561~1568
    [66]刘涛,洪凤宏,武德珍.木粉表面处理对PVC/木粉复合体系性能的影响.中国塑料.2005,1:27~30
    [67]徐山青.硅烷处理对Henequen纤维/PHBV树脂可生物降解复合材料界面粘结性能的影响.中国麻业.2002,24(6):33~35
    [68]赵敏,胡圣飞,张冲,等.木塑复合材料界面改性研究进展.化工时刊.2009,23(8):47~51
    [69] NE Zafeiropoulos, DR Williams, CA Baillie, et al. Engineering and characterization of the interface inflax fibre/polypropylene composite materials.Part Ⅰ. Development and investigation of surfacetreatments. Composites Part A: Applied Science and Manufacturing.2002,33:1083~1093
    [70] NE Zafeiropoulos, CA Baillie, JM Hodgkinson. Engineering and characterisation of the interface in flaxfibre/polypropylene composite materials. Part Ⅱ. The effect of surface treatments on the interface.Composites Part A: Applied Science and Manufacturing.2002,33:1185~1190
    [71] M Takatani, I Kohei, K Sakamoto. Cellulose esters as compatibilizers in wood/poly (l-actic acid)composite. The Japan Wood Research Society.2008,54(1):54~61
    [72] R Mahlberg, L Paajanen, A Nurmi, et al. Effect of chemical modification of wood on the mechanicaland adhesion properties of wood fiber/polypropylene fiber and polypropylene/veneer composites. Holzals Roh-und Werkstoff.2001,59:319~326
    [73] S Borysiak, B Doczekalska. Influence of chemical modification of wood on the crystallization ofpolypropylene. Holz als Roh-und Werkstoff.2006,64(6):451~454
    [74] M Shibate, T Kei-lchico, O koichi, et al. Biodegradable Polyester Composites Reinforced with ShortAbaca Fiber. Journal of Applied Polymer Science.2002,85(9):129~138
    [75] HPSA Khalil, H Ismail, HD Rozman, et al. The effect of acetylation on interfacial shear strengthbetween plant fibres and various matrices. European Polymer Journal.2001,37:1037~1045
    [76]郑玉涛,陈就记,曹德榕.改进植物纤维/热塑性塑料复合材料界面相容性的技术进展.纤维素科学与技术.2005,13(1):45~55
    [77] SR Shukla, GV Rao, AR Athalye. Improving graft level during photo induced graft copolymerization ofstyrene onto cotton cellulose. Journal of Applied Polymer Science.1993,49:1423~1430
    [78]钟鑫,薛平,丁筠.改性木粉/PVC复合材料的性能研究.中国塑料.2004,3:62~66
    [79] VN Hristov, ST Vasileva. Deformation Mechanisms and Mechanical Properties of ModifiedPolypropylene/Wood Fiber Composites. Polymer Composites.2004,25(5):521~526
    [80] AK Bledzki, O Faruk, H Monimul. Physic mechanical Studies of Wood Fiber Reinforced Composites.Polymer-plastics Technology an Engineering.2002,41(3):435~451
    [81]刘晓烨,戴干策.黄麻纤维毡的表面处理及其增强聚丙烯复合材料的力学性能.复合材料学报.2006,23(5):63~69
    [82] EH Bakraji, N Salman. Properties of Wood-plastic Composites:Effect of Inorganic Additives.RadiationPhysics and Chemistry.2003,66:49~53
    [83]孙占英,韩海山,戴干策.天然植物纤维的改性及在复合材料中的增强效应.高分子材料科学与工程.2010,26(8):39~41
    [84]李志君,符新,余浩川,等.改性橡胶木粉/HDPE复合材料结构和力学性能的研究.塑料.2006,35(3):1~5
    [85] Y Li, KL Ppickrering. Hemp Fiber Reinforced Composites Using Chelator and Enzyme Treatments.Composites Science and Technology.2008,68:3293~3298
    [86] BG Kim, DG Lee. Development of microwave foaming method for phenolic insulation foams. Journalof materials processing technology.2008,201,716~719
    [87] SH Lee, Y Teramoto, N Shiraushi. Resol-Type Phenolic Resin from Liquefied Phenolated Wood and ItsApplication to Phenolic Foam. Journal of Applied Polymer Science.2002,84,468~472
    [88] HB Shen, S Nutt. Mechanical characterization of short fiber reinforced phenolic foam.Composites, PartA: Applied Science and Manufacturing.2003,34,899~906
    [89] HB Shen, AJ Lavoie, SR Nutt. Enhanced peel resistance of fiber reinforced phenolic foams. Composites,Part A: Applied Science and Manufacturing.2003,34:941~948
    [90] MS Yun, WI Lee. Analysis of bubble nucleation and growth in the pultrusion process of phenolic foamcomposites. Composites Science and Technology.2008,68:202~208
    [91] WL Li, Q Lin, MF Yan, et al. Reducing the contents of free phenol and formaldehyde in phenolic foam.Journal of Applied Polymer Science.2003,90:2333~2336
    [92]刘新民,郭庆杰.可发性酚醛树脂的合成及性能研究.塑料工业.2007,35(5):4~8
    [93]付争兵.一种低甲醛含量水溶性酚醛树脂的制备.应用化工.2009,38(1):83~86
    [94]王雷,任新娟,高磊,等.降低可发泡性酚醛树脂中游离甲醛含量的研究.应用化工.2009,38(1):83~86
    [95]孙中心,王雷,李东风.可发泡性酚醛树脂合成研究.工程塑料应用.2007,35(11):23~26
    [96] BM Liliana, CR Carmen, O de la Osa, et al. Modelling of resol resin polymerization with variousformaldehyde/phenol molar ratios. Polymer International.2001,50(7):796~802
    [97] K Roczniak, T Biernacka, M Skarzynski. Some properties and chemical structure of phenolic resins andtheir derivatives. Journal of Applied Polymer Science.1983,28:531~542
    [98] T Holopainen, L alvila, J rainio, et al. IR spectroscopy as a quantitative and predictive analysis methodof phenol-formaldehyde resol resins. Journal of Applied Polymer Science.1998,69:2175~2185
    [99] RO Ebewele, BH.River, JA.Koutsky. Relationship between phenolic adhesive chemistry and adhesivejoint performance: Effect of filler type on fraction energy. Journal of Applied Polymer Science.1986,31:2275~2302
    [100] GE Myers, AW Christiansen, RL Geimer, et al. Phenol-formaldehyde resin curing and bonding insteam-injection pressing. I. resin synthesis, characterization, and cure behavior. Journal of AppliedPolymer Science.1991,43:237~250
    [101] S So, A Rudin. Analysis of the formation and curing reactions of resole phenolics. Journal of AppliedPolymer Science.1990,41:205~232
    [102] H Holopainen, L Alvila, TT Pakkanen, et al. Determination of the formaldehyde to phenol molar ratiosof resol resins by infrared spectroscopy and multivariate analysis. Journal of Applied Polymer Science.2003,89:3582~3586
    [103] T Holopainen, L Alvila, J Rainio, et al. Phenol-formaldehyde resol resins studied by13C-NMRspectroscopy, gel permeation chromatography,and differential scanning calorimetry. Journal ofApplied Polymer Science.1997,66:1183~1193
    [104] R Rego, PJ Adriaensens, RA Carleer, et al. Fully quantitative carbon-13NMR characterization of resolphenol-formaldehyde prepolymer resins. Polymer.2004,45,33~38
    [105] G He, B Riedl, AA t-Kadi. Curing process of powdered phenol-formaldehyde resol resins and the roleof water in the curing systems. Journal of Applied Polymer Science.2003,89:1371~1378
    [106] MG Kim, YM Wu, LW Amos. Polymer structure of cured alkaline phenol-formaldehyde resol resinswith respect to resin synthesis mole ratio and oxidative side reactions. Journal of Polymer Science:Part A: Polymer Chemistry.1997,35:3275~3285
    [107] P Luukko, L Alvila, H Timo, et al. Optimizing the conditions of quantitative13C-NMR spectroscopyanalysis for phenol-formaldehyde resol resins. Journal of Applied Polymer Science.1998,69:1805~1812
    [108] L Hong, A Pizzi, A Despres, et al. Ester acceleration mechanisms in phenol-formaldehyde resinadhesives. Journal of Applied Polymer Science.2006,100:3075~3093
    [109] G Carotenuto, L nicolais. Kinetic study of phenolic resin cure by IR spectroscopy. Journal of AppliedPolymer Science.1999,74:2703~2715
    [110] GB He, B Riedl. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in thepresence of wood substrates. Wood Science and Technolgy.2004,38:69~81
    [111] A Knop, L Pilato. Phenolic Resins. Springer-Verlag: New York.1985.
    [112] CN Zarate, MI Aranguren, MM Reboredo. Thermal degradation of a phenolic resin,vegetablefibers,and derived composites. Journal of Applied Polymer Science.2008,107:2977~2985
    [113]欧阳兆辉,伍林,易德莲,等.钼改性酚醛树脂黏结剂的研究.化工进展.2005,24(8):901~904
    [114]吴发超,邓海锋.有机硼改性酚醛树脂的耐热性研究.华北科技学院学报.2007,4(2):29~32.
    [115] I Blanco, L Oliveri, G Cicala, et al. Effects of novel reactive toughening agent on thermal stability ofepoxy resin. Journal of Thermal Analysis and Calorimetry.2012,108:685~693
    [116] I Blanco, L Abate, FA Bottino, et al. Hepta isobutyl polyhedral oligomeric Silsesquioxanes(hib-POSS): a thermal degradation study. Journal of Thermal Analysis and Calorimetry.2012,108:807~815
    [117] I Blanco, L Abate, FA Bottino, et al. Thermal degradation of hepta cyclopentyl, mono phenyl-Polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. PolymerDegradation and Stability.2012,97(6):849~855
    [118] I Blanco, L Abate, FA Bottino, et al. Thermal degradation of differently substituted CyclopentylPolyhedral Oligomeric Silsesquioxane (CP-POSS) nanoparticles. Journal of Thermal Analysis andCalorimetry.2012,107:1083~1091
    [119]理莎莎,齐暑华,刘乃亮,等.国外线形酚醛树脂研究进展.中国塑料.2010,24(7):13~18
    [120]杨光.合成水溶性酚醛树脂用催化剂的选择研究.北京航空航天大学学报.2003,29(5):459~462
    [121]胡茂明,华一鸿,李雪,等.催化剂对Resole酚醛树脂结构与性能的影响.热固性树脂.2011,26(6):20~23
    [122]刘威,刘强,周春华,等.高邻位可发性热固性酚醛树脂的合成及表征.高分子材料科学与工程.2010,26(2):19~25
    [123]王萃萃,戴震,许戈文.硬段阻燃改性水性聚氨酯的研究.中国涂料.2010,8:57~60
    [124]囤宏志,姜志国,王海侨,等.戊二醛改性酚醛树脂及对泡沫塑料性能的研究.化工新型材料.2009,37(3):100~102
    [125]欧育湘,李建军.阻燃剂.北京:化学工业出版社.2006,244~249
    [126]欧育湘.实用阻燃技术.北京:化学工业出版社.2003,61~64
    [127]王慧敏.影响建筑保温性能的几个性能指标.吉林广播电视大学学报.2010,2:77~78
    [128]吴舜英,徐敬一.泡沫塑料成型.北京:化学工业出版社.2000,51
    [129] LJ Gibson, MF Ashby. Cellular solids: structures and properties.2nd ed. Cambridge: CambridgeUniversity Press.1997
    [130]卢子兴,石上路.低密度开孔泡沫材料力学模型的理论研究进展.力学与实践.2005,5(27):13~20
    [131] LJ Gibson, MF Ashby. The mechanics of three-dimensional cellular materials. Proceedings of theRoyal society-A: Mathematical Physical&Engineering Sciences.1982,382:43~59
    [132]庄晓伟,张伟,王基夫,等.低温发泡制备酚醛泡沫材料及其表征.化工新型材料.2010,38(4):144~148
    [133] S Goods, C Neuschwanger, C Henderson, et al. Mechanical Properties of Crete, a Polyurethane foam.Journal of Applied Polymer Science.1998,68:1045~1055
    [134] C Philip, T Miller, T Sina. Compressive Properties of rigid Polyurethane foams. Polymers and PolymerComposites.1999,7(2):117~124
    [135]田森平,吴舜英.塑料加工气泡膨胀过程的数学模型研究.昆明理工大学学报.1999,24(3):107~109
    [136]孙先伟,王敏杰,姜开.泡沫塑料气泡膨胀过程的数学模型与数值模拟研究.塑料科技.2001,144(4):16~19
    [137]田森平,吴舜英.气泡长大过程的数学模型及简化.合成材料老化与应用.1999,1:1~4
    [138] A Arefmanesh, SG Advani, EE Michaelides. A numerical study of bubble growth during low pressurestructural foam molding Process. Polymer Engineering and Science.1990,30(20):1330~1337
    [139] RD Patel. Bubble growth in viscous Newtonian liquid. Chemical Engineering Science.1980,35:2352~2356
    [140] MA Shaft, RW Flumerfelt. Initial bubble growth in polymer foam processes.Chemical EngineeringScience.1997,52(4):627~633
    [141] EJ Barlow, WE Langlois. Diffusion of gas from a liquid into an expanding bubble. IBM Journal ofResearch and Development.1962,6:329~337
    [142] MA Shaft, K Joshi, RW Flumerfelt. Bubble size distributions in freely expanded polymer foams.Chemical Engineering Science.1997,52(4):635~644
    [143]何洪清.表面活性剂在酚醛泡沫塑料中的应用.表面活性剂工业.1999,4:24~25
    [144]孙中心,王雷,李东风.酚醛泡沫制备和性能研究.塑料工业.2007,35(8):46~49
    [145]张金萍,杜孟浩,王敬文.竹粉苯酚液化物制备酚醛泡沫塑料技术研究.安徽农业科学.2010,38(28):15710~15713
    [146]王军晓,刘新民,潘炯玺,等.夹芯板材用硬质酚醛泡沫性能的研究.塑料科技.2005,166(2):24~26
    [147]李万利,李航昱,林强,等.酚醛泡沫塑料研究.塑料科技.2003,31(4):50~52
    [148]王立艳,盖广清.酚醛泡沫保温材料的制备及性能研究.吉林建筑工程学院学报.2012,29(1):47~48
    [149] P Schipper, J Black, T Dymeck. Foamed rigid vinyl for building products.Journal of Vinyl andAdditive Technology.1996,2:304~309
    [150] LM Matuana, CB Park, J Balatinecz. The effect of low level of plasticizer on the rheological andmechanical properties of polyvinyl chloride/new sprint-fiber composites. Journal of Vinyl andAdditive Technology.1997,3:265~273
    [151] RP Juntunen, V Kumar, JE Weller, et al. Impact strength of high density microcellular PVC foams.Journal of Vinyl and Additive Technology.2000,6:93~99.
    [152] AA Stec, TR Hull. Assessment of the fire toxicity of building insulation materials. Energy andBuildings.2011,43:498~506
    [153] SW Lei, QG Guo, DQ Zhang, et al. Preparation and properties of the phenolic foams with controllablenanometer pore structure. Journal of Applied Polymer Science.2010,117:3545~3450
    [154] HB Shen, AJ Lavoie, SR Nutt. Enhanced peel resistance of fiber reinforced phenolic foams.Composites, Part A: Applied Science and Manufacturing.2003,34:941~948
    [155] HB Shen, S Nutt. Mechanical characterization of short fiber reinforced phenolic foam.Composites,Part A: Applied Science and Manufacturing.2003,34:899~906
    [156] HY Yang, X Wang, HX Yuan, et al. Fire performance and mechanical properties of phenolic foamsmodified by phosphorus-containing polyethers. Journal Polymer Research.2012,19:9831~9840
    [157] ML Auad, LH Zhao, HB Shen, et al. Flammability properties and mechanical performance of epoxymodified phenolic foams. Journal of Applied Polymer Science.2007,104:1399~1407
    [158] K Wu, ZZ Wang, Y Hu. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene.Polymers for Advanced Technologies.2008,19:1118~1125
    [159] LC Wang, JQ Jiang, PK Jiang, et al. Synthesis, characteristic of a novel flame retardant containingphosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber. JournalPolymer Research.2010,17:891~902
    [160] K Wu, L Song, ZZ Wang, et al. Preparation and characterization of double shell microencapsulatedammonium polyphosphate and its flame retardance in polypropylene. Journal Polymer Research.2009,16:283~294
    [161] ND Mathan, M Arunjunairaj, T Rajkumar, et al. Thermal degradation of pentaerythritol phosphatealcohol TG and TG-MS studies. Journal of Thermal Analysis and Calorimetry.2011,110:1133~1141
    [162] G Camino, N Grassie, IC McNeill. Influence of the fire retardant,ammonium polyphosphate on thethermal degradation of poly (methyl methacrylate). Journal of Polymer Science: Polymer ChemistryEdition.1978,16:95~106
    [163] B Li, CY Sun, C Zhang. An investigation of flammability of intumescent flame retardant polyethylenecontaining starch by using cone calorimeter. Chemical Journal of Chinese Universities-Chinese.1999,20:146~149
    [164] B Li, MJ Xu. Effect of a novel charringefoaming agent on flame retardancy and thermal degradation ofintumescent flame retardant. Polymer degradation and stability.2006,91:1380~1386
    [165] DW Allen, C Edwyn. Structure-property relationships in intumescent fire retardant derivatives of4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo[2,2,2] octane-1-oxide anderton. Polymer degradationand stability.1994,45:399~408
    [166] XP Hu, YL Li, YZ Wang. Synergistic effect of the charring agent on the thermal and flame retardantproperties of polyethylene. Macromolecular Materials and Engineering.2004,289:208~212
    [167] X Almeras, F Dabrowski, ML Bras, et al. Using polyamide6as charring agent in intumescentpolypropylene formulations. II. Thermal degradation.Polymer degradation and stability.2002,77:315~323
    [168] Y Liu, JS Yi, XF Cai. The investigation of intumescent flameretarded polypropylene usingpoly(hexamethylene terephthalamide) as carbonization agent. Journal of Thermal Analysis andCalorimetry.2012,107:1191~1197
    [169] Q Zhang, YH Cheng. Synergistic effects of ammonium polyphosphate/melamine intumescent systemwith macromolecular char former in flame-retarding polyoxymethylene. Journal of Thermal Analysisand Calorimetry.2011,18:293~303
    [170] CM Jiao, XL Chen. Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDHcomposites. Journal of Thermal Analysis and Calorimetry.2009,98:813~818
    [171] HQ Yin, DD Yuan, XF Cai. Red phosphorus acts as second acid source to form a novelintumescent-contractive flame-retardant system on ABS. Journal of Thermal Analysis andCalorimetry.2012, doi:10.1007/s1097301225367
    [172] XL Wang, LH Wu, J Li. Synergistic flame retarded poly (methyl methacrylate) by nano-ZrO2andtriphenylphosphate. Journal of Thermal Analysis and Calorimetry.2011,103:741~746
    [173] JS Yi, Y Liu, XF Cai. The synergistic effect of adjuvant on the Intumescent flame-retardant ABS witha novel charring agent. Journal of Thermal Analysis and Calorimetry.2012, doi:10.1007/s1097301228028
    [174] SPS Ribeiro, LRM Estev o, RSV Nascimento. Brazilian clays as synergistic agents in an ethylenicpolymer matrix containing an intumescent formulation. Journal of Thermal Analysis and Calorimetry.2007,87:661~665
    [175] JS Yi, HQ Yin, XF Cai. Effects of common synergistic agents on intumescent flame retardantpolypropylene with a novel charring agent. Journal of Thermal Analysis and Calorimetry.2013,111:725~734
    [176] PN-76/C-89020, Plastics. Determination of Ignitability by the Method of Limiting Oxygen Index(LOI).
    [177] J Kim, JH Lee, S Kim. Estimating the fire behavior of wood flooring using a cone calorimeter. Journalof Thermal Analysis and Calorimetry.2012,110:677~683
    [178] SM Lomakin, IL Dubnikova, AN Shchegolikhin, et al. Thermal degradation and combustion behaviorof the polyethylene/clay nanocomposite prepared by melt intercalation. Journal of Thermal Analysisand Calorimetry.2008,94:719~726
    [179] G Janowska, JA Kucharska, P Rybiński. Thermal stability, flammability and fire hazard ofbutadiene-acrylonitrile rubber nanocomposites. Journal of Thermal Analysis and Calorimetry.2011,103:1039~1046
    [180] L Ye, BJ Qu. Flammability characteristics and flame retardant mechanism of phosphate-intercalatedhydrotalcite in halogen-free flame retardant EVA blends. Polymer degradation and stability.2008,93:918~924
    [181] YQ Fang, QW Wang, XY Bai, et al. Thermal and burning properties of wood flour(polyvinylchloride)composite. Journal of Thermal Analysis and Calorimetry.2012,109:1577~1585
    [182] ISO5660Reaction-to-fire tests~heat release,smoke production and mass loss rate.
    [183]李斌,王建祺.聚合物材料燃烧性和阻燃性的评价-锥形量热仪(CONE)法.高分子材料科学与工程.1998,14(5):15~19
    [184]邓小波,王继刚,刘白玲.锥形量热仪在饰面型防火涂料防火性能研究中的应用.涂料工业.2011,41(12):50~53
    [185] X Almeras, ML Bras, P Hornsby, et al. Effect of fillers on the fire retardancy of intumescentpolypropylene compounds. Polymer degradation and stability.2003,82:325~331
    [186] LB Manfredi, ES Rodríguez, MP Wladyka, et al. Thermal degradation and fire resistance ofunsaturated polyester, modified acrylic resins and their composites with natural fibres. Polymerdegradation and stability.2006,91:255~261
    [187] XS Zhu, QQ Pan, HS Xu, et al. Effects of coal and ammonium polyphosphate on thermal degradationand flame retardancy of polyethylene terephthalate. Journal of Polymer Research.2010,17:621~629
    [188] JT Yeh, SH Hsieh, YC Cheng, et al. Combustion and smoke emission properties of poly(ethyleneterephthalate)filled with phosphorous and metallic oxides. Polymer Degradation and Stability.1998,61:399~407
    [189] J Zhang, GWH Silcock, TJ Shields. Study of the Combustion and Ire Retardancy of Polyacrylonitrileand Its Copolymers by Using Cone Calorimetry. Journal of Fire Sciences.1995,13:141~161
    [190]蒋挺大.木质素.北京:化学工业出版社.2001:3
    [191]刘飞跃,曹德榕.制浆废液木质素的利用研究进展.纤维素科学与技术.2008,16(1):65~70
    [192] VK Rangari, TA Hassan, YX Zhou, et al. Cloisite clay-infused phenolic foam nanocomposites. Journalof Applied Polymer Science.2007,103:308~314
    [193] D Maldas, BV Kokta. Performance of hybrid reinforcement in PVC composites:Use of surface-modified mica and wood pulp as reinforcement. Testing and Evaluation.1993,21:68~72
    [194] AR Sanadi, DF Caulfield, RL Rowell. Reinforcing polypropylene with natural fibers. PlasticEngineering.1994,4:27~28
    [195] AK Mohanty, M Misra, LT Drzal. Sustainable bio-composites from renewable resources: Opportunitiesand challenges in the green materials world. Journal of Polymers and Environment.2002,10(1):19~26
    [196] G Jayamol, MS Sreekala, T Sabu. A renew on interface modification and characterization of naturalfiber reinforced plastic composites. Polymer Engineering and Science.2001,41(9):1471~1485
    [197] HL Chin, RS Porter. Composite of polyethylene and kenaf.A natural cellulose fiber. Journal of AppliedPolymer Science,1994,54:1781~1783
    [198]张锋,李斌,郭丽华.杨木纤维表面改性及其HDPE复合材料性能研究.化学与黏合.2008,30(4):37~41
    [199]刘羽,邵国强,许炯.竹纤维与其它天然纤维素纤维的红外光谱分析与比较.竹子研究汇刊.2010,29(3):42~46
    [200]蒋建新,杨中开,朱莉伟,等.竹纤维结构及其性能研究.北京林业大学学报.2008,30(1):128~131
    [201]王越平,高绪珊,邢声远,等v几种天然纤维素纤维的结构研究.棉纺织技术.2006,34(2):72~76
    [202]唐人成,杨旭红,王华杰,等.纺织用天然竹纤维的结构和热性能.林产化学与工业.2004,24(1):43~47
    [203]冯媛,易发成.木纤维对Sr2+和Cs+的吸附性能及机理研究.水处理技术.2011,37(4):23~28
    [204] D Bikiaris, P Matzinos, A Larena, et al.Use of silane agents and poly (propylene-g-maleicanhydride)copolymer as adhesion promoters in glass fiber/polypropylene composites. Journal of Applied PolymerScience.2001,81(3):701~709
    [205] LL Wang, GT Han, YM Zhang. Comparative study of composition,structure and properties ofapocynum venetum fibers under different pretreatments. Carbohydrate Polymers.2007,69:391~397
    [206]李小龙,张凤琴,何农跃,伍洋.不同预处理方法对稻草纤维性能的影响.包装工程.2010,31(1):7~9
    [207]鲁博,张林文,曾竟成,等编著.天然纤维复合材料.北京:化学工业出版社.2005,59
    [208]莫志深,张宏放,等编著.晶态聚合物结构和X射线衍射.北京:科学出版社.2003,8
    [209]钱伯章,朱建芳.建筑节能保温材料技术进展.建筑节能.2009,37(2):56~60
    [210]巩永忠,苑峰,孙艳.国内建筑外墙外保温材料现状与发展前景.新型建筑材料.2006,12:42~43
    [211] SB Wang, HW Wu.Environmental-benign utilization of fly ash as low-cost adsorbents. Journal ofHazardous Materials.2006,136:482~501
    [212]郭艳玲.粉煤灰的性质及综合利用分析.煤.2008,1:43~54
    [213]杨红彩,郑水林.粉煤灰的性质及综合利用现状与展望.中国非金属矿工业导刊.2003,4:38~42
    [214]张承志,王爱勤,孙伟.陶粒粉煤灰空心砌块的研制.新型建筑材料.1998,8:32~34.
    [215]叶俊伟,赵叶龙,刘满刚,等.粉煤灰基轻质泡沫材料的制备与性能研究.新型建筑材料.2012,1:40~43
    [216]冀静平,祝万鹏,孙欣.膨润土的改性及对染料废水的处理研究.中国给水排水.1998,14(4):7~9
    [217]李志维,袁继祖,王志强.柱撑酸化膨润土对染料废水的处理实验研究.西南给排水.2006,28(3):27~29.
    [218]曹明礼.蒙脱石层间化合物的制备及其应用前景.材料导报.2001,15(4):30~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700