用户名: 密码: 验证码:
小、微管内流动、对流传热过程及其相关基础物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于微化工技术在精细高附加值化工产品生产、高效传热传质设备、易燃易爆反应过程、危险化工产品生产、强放热反应过程以及燃料电池及其车载燃料系统的微型化等领域广阔的应用前景,有关流体在微管道中的流动和传热的研究也越来越受到人们的重视。常规尺度下的流动和传热理论在微尺度下是否仍然成立,哪些在常规尺度下可以忽略的因素在微尺度下会对流动和传热产生明显的影响等等问题都是在研究过程中需要分析和探讨的。本文采用去离子水、无水乙醇以及六种离子液体水溶液,考察了其在小、微尺度下的不锈钢圆管内的流动特性;采用九种常见的化工溶剂,考察了其在小、微尺度下的不锈钢圆管内的对流传热特性,同时研究了与其相关的共性基础理论和模型。
     主要研究内容如下:
     1.在Guggenheim方程的基础上,提出了对应态-基团贡献法估算离子液体表面张力的模型,对本文包含的105种离子液体,1224个数据点,估算精度较好,满足工程应用的需求;在液体黏度绝对速度理论和自由体积理论的基础上,提出了新的离子液体黏度的混合模型,对本文包含的156种离子液体,1073个数据点,估算精度明显优于之前提出的离子液体黏度模型;在Reidel方程的基础上,提出了新的计算离子液体导热系数的模型,针对本文包含的36种离子液体,296个数据点,估算精度小于实验不确定度(3%-5%)。本文提出三个模型都是基于基团贡献法的原理,形式简单,在估算过程中仅需要用到根据文献计算得到的临界温度Tc或沸点温度Tb数据即可。
     2.在T=(278.15-313.15)K分别测定了1-乙基-3-甲基溴化咪唑([Emim][Br])+H2O体系和1-丁基-3-甲基溴化咪唑([Bmim][Br])+H2O体系的表面张力和密度。在T=(283.15-313.15)K分别测定了1-乙基-3-甲基溴化咪唑+H2O体系和1-丁基-3-甲基溴化咪唑+H20体系的黏度。对这两种二元电解质溶液的表面张力、密度和黏度,分别采用修正的指数衰减方程、Masson方程和Thomas方程进行了关联,并根据实验结果得到了相关的表面过量性质、表观摩尔体积以及流体力学摩尔体积。
     3.采用去离子水、无水乙醇、三种质量摩尔浓度的1-乙基-3-甲基溴化咪唑水溶液和三种质量摩尔浓度1-丁基-3-甲基溴化咪唑水溶液作为实验流体,研究其在内径为0.353mm不锈钢圆管中,Re=25.1-542.6范围内的流动过程,重点考察了极性和电黏性效应在层流状态下对流动过程的影响。结果表明,实验尺度下,在考虑进出口压力损失以及水力学发展段压力损失基础上的得到实验结果与常规尺度理论吻合较好,与常规尺度的偏差都在实验不确定度范围内,极性和电黏性效应并未对流动产生明显影响。
     4.采用去离子水、无水乙醇、质量分数为5%的乙醇水溶液、质量分数为50%的乙醇水溶液、乙酸乙酯、环己烷、正己烷、环己酮和环戊酮作为实验流体,研究其在内径为0.353mm、0.597mm和1.045mm不锈钢圆管内层流状态(Re=52-527)下的对流传热过程。实验结果表明,传热特性与常规尺度下有明显差异。根据实验数据,本文在Gnielinski方程的基础上提出了一个经验模型,用于计算不锈钢微管下的努塞尔数。该经验模型将固液界面张力也考虑在内,根据气液表面张力与固液界面张力之间的近似线性关系,采用表面张力数据近似表示固液界面张力的大小。模型关联结果与实验结果吻合较好,满足工程应用的需要。
Due to the broad applied prospects of microchemical technology in many fields such as production of high added value product, design of high efficient equipment in heat and mass transfer, flammable and explosive reaction, production of hazardous or toxic chemicals, strong exothermic reaction, and miniaturization of fuel cell and its vehicle-mounted system etc, the investigations of fluid flow and heat transfer in microtubes have been receiving more and more recognition. Problems such as if the conventional theory are still valid in micro scale, what factors which are negligible in conventional scale will have effect on the fluid flow and heat transfer in micro scale, and so on should be analyzed and discussed. In this paper, the liquid flow characteristics of deionized water, ethanol, and six ionic liquids (ILs) aqueous solutions and the heat transfer characteristics of nine common chemical fluids were studied. Meanwhile, the related theory and modeling in these subjects were investigated.
     The main contents are generalized as follows:
     1. Based on the Guggenheim equation, a corresponding-states group-contribution method was developed to estimate the surface tension of ionic liquids. For a database of1224data points for105ILs, the calculated surface tensions agree well with the experimental data from literatures, it satisfied the need of engineering appliance; Based on the absolute rate and free volume theories, a new hybrid model was developed to estimate the viscosity of ionic liquids. For a database of1073data points for156ILs, this model can provide a higher estimation accuracy than other models proposed before; Based on the Reidel equation, a new model was developed to estimate the thermal conductivity of ionic liquids. For a database of296data points for36ILs, the estimation accuracy is less than the experimental uncertainty (3-5%). All the three models proposed here are based on the principle of group contribution method with a simple form. Only the critical temperature Tc or normal boiling temperature Tb which can be obtained from the literature are needed during the calculation.
     2. The surface tensions σ (278.15-313.15) K and densities ρ (278.15-313.15) K of aqueous solutions of1-ethyl-3-methyl-limidazolium bromide and1-butyl-3-methyl-limidazolium bromide and the dynamic viscosity η(283.15-313.15) K of aqueous solutions of1-ethyl-3-methyl-limidazolium bromide and1-butyl-3-methyl-limidazolium bromide have been measured at atmospheric pressure. The modified exponential decay equation, Masson-type equation, and Thomas-type equation were used to correlate the surface tension, density, and dynamic viscosity of aqueous solution of ionic liquids, respectively. From these experimental data, the related surface excess properties, apparent molar volumes and hydrodynamic molar volume were determined.
     3. The experiments were carried out to examine the flow characteristics of deionized water, ethanol, three kinds of [Emim][Br] aqueous solutions, and three kinds of [Bmim][Br] aqueous solutions in stainless steel microtubes with inner diameter of0.353mm. The Reynolds number varied from25.1to542.6. The effect of polarity and electric viscous on liquid flow was also investigated. It is observed that, in the scale of experiments, the results taking the inlet and exit losses and the developing region loss in account are in good agreement with conventional theory. The influence of polarity and electric viscous is at a level within the experimental uncertainty.
     4. A series of systematic experiments were carried out under laminar flows (Re=52-527) in stainless steel microtubes using deionized water,5wt%ethanol aqueous solution,50wt%ethanol aqueous solution, ethanol, ethyl acetate, cyclohexane, nhexane, cyclohexanone, and cyclopentanone as working fluids. The inner diameters of stainless steel microtubes are0.353,0.597, and1.045mm, respectively. The characteristics of heat transfer in these microtubes differ significantly from those in conventional tubes. According to the experimental results, an empirical equation based on the Gnielinski equation was proposed to correlate the heat transfer in our microtubes. The effect of solid-liquid interfacial tension was also incorporated. In light of engineering applications, the solid-liquid interfacial tension cannot be easily obtained, thus, the data of liquid surface tension were used to represent the magnitude of interaction of solid-liquid interface. The calculation results are in good agreement with our experimental results, it satisfied the need of engineering appliance.
引文
[1]Burns, J. R.; Ramshaw, C., Development of a microreactor for chemical production. Chemical Engineering Research and Design 1999,77, (3),206-211.
    [2]Haswell, S. J.; Middleton, R. J.; O'Sullivan, B.; Skelton, V.; Watts, P.; Styring, P., The application of micro reactors to synthetic chemistry. Chemical Communications 2001, (5),391-398.
    [3]Ehrfeld, W.; Golbig, K.; Hessel, V.; Lowe, H.; Richter, T., Characterization of mixing in micromixers by a test reaction:single mixing units and mixer arrays. Industrial and Engineering Chemistry Research 1999,38, (3),1075-1082.
    [4]West, J.; Becker, M.; Tombrink, S.; Manz, A., Micro total analysis systems:latest achievements. Analytical Chemistry 2008,80, (12),4403-4419.
    [5]陈光文;袁权,微化工技术研究进展.现代化工2007,27,(10),8-13.
    [6]叶明星; Mansur, E. H. A.;王运东;戴猷元,微混合技术研究进展.化工进展2007,26,(6),755-761.
    [7]徐建鸿.微分散体系尺度调控和传质性能研究[博士学位论文].北京,清华大学,2007.
    [8]Shao, H. W.; Lu, Y. C.; Wang, K.; Luo, G. S., Liquid-liquid flow and mass transfer characteristics in micro-sieve array device with dual-sized pores. Chemical Engineering Journal 2012,193-194, (0),96-101.
    [9]Tan, J.; Shao, H. W.; Xu, J. H.; Lu, Y. C.; Luo, G. S., Development of a membrane dispersion micro-absorber for CO2 capture. Journal of Membrane Science 2011,385-386, (0),123-131.
    [10]Yue, J.; Chen, G.; Yuan, Q.; Luo, L.; Gonthier, Y., Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel. Chemical Engineering Science 2007,62, (7),2096-2108.
    [11]Su, Y.; Chen, G.; Yuan, Q., Ideal micromixing performance in packed microchannels. Chemical Engineering Science 2011,66, (13),2912-2919.
    [12]Kumar, V.; Paraschivoiu, M.; Nigam, K. D. P., Single-phase fluid flow and mixing in microchannels. Chemical Engineering Science 2011,66, (7),1329-1373.
    [13]Shah, R. K.; London, A. L., Laminar flow forced convection in ducts:a source book for compact heat exchanger analytical data. New York:Academic Press,1978.
    [14]Kakac, S.; Shah, R. K.; Aung, W., Handbook of single-phase convective heat transfer. New York: Wiley-Interscience,1987.
    [15]Kandlikar, S. G.; Grande, W. J., Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Transfer Engineering 2003,24, (1),3-17.
    [16]Shou-Shing, H.; Chih-Yi, L.; Chin-Feng, H.; Huang-Hsiu, T., Liquid flow in a micro-channel. Journal of Micromechanics and Microengineering 2004,14, (4),436.
    [17]Lelea, D.; Nishio, S.; Takano, K., The experimental research on microtube heat transfer and fluid flow of distilled water. International Journal of Heat and Mass Transfer 2004,47, (12-13),2817-2830.
    [18]Briinig, R.; Mensel, K.; Kunze, R.; Schmidt, H., New electronic device for driving surface acoustic wave actuators. Procedia Chemistry 2009,1, (1),1111-1114.
    [19]Hsieh, S.-S.; Lin, C.-Y.; Huang, C.-F.; Tsai, H.-H., Liquid flow in a micro-channel. Journal of Micromechanics and Microengineering 2004,14, (4),436.
    [20]Hao, P.-F.; He, F.; Zhu, K.-Q., Flow characteristics in a trapezoidal silicon microchannel. Journal of Micromechanics and Microengineering 2005,15,(6),1362.
    [21]Kohl, M. J.; Abdel-Khalik, S. I.; Jeter, S. M.; Sadowski, D. L., An experimental investigation of microchannel flow with internal pressure measurements. International Journal of Heat and Mass Transfer 2005,48, (8),1518-1533.
    [22]Steinke, M. E.; Kandlikar, S. G., Single-phase liquid friction factors in microchannels. International Journal of Thermal Sciences 2006,45, (11),1073-1083.
    [23]Steinke, M. E.; Kandlikar, S. G.; Magerlein, J. H.; Colgan, E. G.; Raisanen, A. D., Development of an Experimental Facility for Investigating Single-Phase Liquid Flow in Microchannels. Heat Transfer Engineering 2006,27, (4),41-52.
    [24]Celata, G. P.; Cumo, M.; McPhail, S. J.; Tesfagabir, L.; Zummo, G., Experimental study on compressible flow in microtubes. International Journal of Heat and Fluid Flow 2007,28, (1),28-36.
    [25]Rands, C.; Webb, B. W.; Maynes, D., Characterization of transition to turbulence in microchannels. International Journal of Heat and Mass Transfer 2006,49, (17-18),2924-2930.
    [26]Hrnjak, P.; Tu, X., Single phase pressure drop in microchannels. International Journal of Heat and Fluid Flow 2007,28, (1),2-14.
    [27]Jung, J.-Y.; Kwak, H.-Y., Fluid flow and heat transfer in microchannels with rectangular cross section. Heat and Mass Transfer 2008,44, (9),1041-1049.
    [28]Tuckerman, D. B. Heat transfer microstructures for integrated circuits [Ph.D. Thesis]. USA, Stanford University,1984.
    [29]Mohiuddin Mala, G.; Li, D., Flow characteristics of water in microtubes. International Journal of Heat and Fluid Flow 1999,20, (2),142-148.
    [30]Judy, J.; Maynes, D.; Webb, B. W., Characterization of frictional pressure drop for liquid flows through microchannels. International Journal of Heat and Mass Transfer 2002,45, (17),3477-3489.
    [31]Li, H.; Ewoldt, R.; Olsen, M. G., Turbulent and transitional velocity measurements in a rectangular microchannel using microscopic particle image velocimetry. Experimental Thermal and Fluid Science 2005, 29, (4),435-446.
    [32]Pfund, D.; Rector, D.; Shekarriz, A.; Popescu, A.; Welty, J., Pressure drop measurements in a microchannel. AIChE Journal 2000,46, (8),1496-1507.
    [33]Vijayalakshmi, K.; Anoop, K. B.; Patel, H. E.; Harikrishna, P. V.; Sundararajan, T.; Das, S. K., Effects of compressibility and transition to turbulence on flow through microchannels. International Journal of Heat and Mass Transfer 2009,52, (9-10),2196-2204.
    [34]Guo, Z.-Y.; Li, Z.-X., Size effect on microscale single-phase flow and heat transfer. International Journal of Heat and Mass Transfer 2003,46, (1),149-159.
    [35]Kittilsland, G.; Stemme, G.; Norden, B., A sub-micron particle filter in silicon. Sensors and Actuators A: Physical 1990,23, (1-3),904-907.
    [36]Cengel, y. A., Heat Transfer:A Practical Approach Boston:McGraw-Hill,2003.
    [37]Petukhov, B. S., Heat transfer and friction in turbulent pipe flow with variable physical properties. In Advances in Heat Transfer, James, P. H.; Thomas, F. I., Eds. Elsevier:1970; Vol.6, pp 503-564.
    [38]Dittus, F. W., Heat transfer in automobile radiators of the tubular type. Berkeley, Calif.:University of California press,1930.
    [39]Gnielinski, V., New equations for heat and mass transfer in turbulent pipe and channel flow. International Chemical Engineering 1976,16, (2),359-368.
    [40]Liu, Z. G.; Guan, N.; Masahiro, T., An Experimental Investigation of Single-Phase Heat Transfer in 0.045mm to 0.141mm Microtubes. Nanoscale and Microscale Thermophysical Engineering 2007.
    [41]Celata, G. P.; Cumo, M.; Guglielmi, M.; Zummo, G., Experimetal investigation of hydraulic and single-phase heat transfer on 0.130 mm capillary tube. Microscale Thermophysical Engineering 2002,6, (2), 85-97.
    [42]Celata, G. P.; Cumo, M.; Marconi, V.; McPhail, S. J.; Zummo, G., Microtube liquid single-phase heat transfer in laminar flow. International Journal of Heat and Mass Transfer 2006,49, (19-20),3538-3546.
    [43]Celata, G. P.; Cumo, M.; McPhail, S. J.; Zummo, G., Single-phase laminar and turbulent heat transfer in smooth and rough microtubes. Microfluidics and Nanofluidics 2007,3, (6),697-707.
    [44]Li, Z; He, Y. L.; Tang G. H.; Tao, W. Q., Experimental and numerical studies of liquid flow and heat transfer in microtubes. International Journal of Heat and Mass Transfer 2007.
    [45]Lin, T. Y.; Yang, C. Y., An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography. International Journal of Heat and Mass Transfer 2007,50, (23-24),4736-4742.
    [46]Liu, Z. G.; Guan, N.; Masahiro, T., An experimental investigation of single-phase heat transfer in 0.045mm to 0.141mm microtubes. Nanoscale and Microscale Thermophysical Engineering 2007,11, (3-4), 333-349.
    [47]Jiang, P.-X.; Fan, M.-H.; Si, G.-S.; Ren, Z.-P., Thermal-hydraulic performance of small scale micro-channel and porous-media heat-exchangers. International Journal of Heat and Mass Transfer 2001,44, (5),1039-1051.
    [48]Nguyen, N. T.; Bochnia, D.; Kiehnscherf, R.; Dotzel, W., Investigation of forced convection in microfluid systems. Sensors and Actuators A-physical 1996,55, (1),49-55.
    [49]Qu, W.; Mala, G. M.; Li, D., Heat transfer for water flow in trapezoidal silicon microchannels. International Journal of Heat and Mass Transfer 2000,43, (21),3925-3936.
    [50]Hetsroni, G.; Mosyak, A.; Pogrebnyak, E.; Yarin, L. P., Heat transfer in micro-channels:Comparison of experiments with theory and numerical results. International Journal of Heat and Mass Transfer 2005,48, (25-26),5580-5601.
    [51]Peng, X. F.; Peterson, G. P., Convective heat transfer and flow friction for water flow in microchannel structures. International Journal of Heat and Mass Transfer 1996,39, (12),2599-2608.
    [52]Wang, B. X.; Peng, X. F., Experimental investigation on liquid forced-convection heat transfer through microchannels. International Journal of Heat and Mass Transfer 1994,37, Supplement 1, (0),73-82.
    [53]Adams, T. M.; Abdel-Khalik, S. I.; Jeter, S. M.; Qureshi, Z. H., An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer 1998,41, (6-7),851-857.
    [54]Wu, H. Y.; Cheng, P., An experimental study of convective heat transfer in silicon microchannels with different surface conditions. International Journal of Heat and Mass Transfer 2003,46, (14),2547-2556.
    [55]Tso, C. P.; Mahulikar, S. P., Experimental verification of the role of Brinkman number in microchannels using local parameters. International Journal of Heat and Mass Transfer 2000,43, (10),1837-1849.
    [56]Tanaka, K.; Ishiguro, F.; Chujo, Y., POSS Ionic Liquid. Journal of the American Chemical Society 2010, 132,(50),17649-17651.
    [57]徐珍;吕早生,离子液体在有机合成中的应用新进展.化学与生物工程2009,26,(3),11-14.
    [58]Seddon, K. R., Ionic liquids:Designer solvents. In The International George Papatheodorou Symposium Patras, Greece,1999; pp 131-135.
    [59]Berthod, A.; Ruiz-Angel, M.; Carda-Broch, S., Ionic liquids in separation techniques. Journal of Chromatography A 2008,1184, (1-2),6-18.
    [60]Brennecke, J. F.; Maginn, E. J., Ionic liquids:Innovative fluids for chemical processing. AICHE Journal 2001,47, (11),2384-2389.
    [61]Zhao, H., Innovative applications of ionic liquids as "greem" engineering liquids. Chemical Engineering Communications 2006,193,(12),1660-1677.
    [62]Chen, H.; He, Y; Zhu, J.; Alias, H.; Ding, Y.; Nancarrow, P.; Hardacre, C.; Rooney, D.; Tan, C., Rheological and heat transfer behaviour of the ionic liquid, [C(4)mim][NTf2]. International Journal of Heat and Fluid Flow 2008,29, (1),149-155.
    [63]Benard, E.; Chen, J. J. J.; Doherty, A. P.; Spedding, P. L., Enhanced drag in pipe turbulent flow by an aqueous electrolyte:An electroviscous effect. Experimental Thermal and Fluid Science 2009,33, (2), 316-321.
    [64]Davidson, M. R.; Harvie, D. J. E., Electroviscous effects in low Reynolds number liquid flow through a slit-like microfluidic contraction. Chemical Engineering Science 2007,62, (16),4229-4240.
    [65]李卓;唐桂华;陶文铨,微通道中极性流体流动特性的研究.西安交通大学学报2007,41,(3),274-278.
    [66]Heintz, A.; Wandschneider, A.; Lehmann, J. K., Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. Journal of Chemical and Engineering Data 2008,53, (2), 596-599.
    [67]Gardas, R. L.; Dagade, D. H.; Coutinho, J. A. P.; Patil, K. J., Thermodynamic studies of ionic interactions in aqueous solutions of imidazolium-based ionic liquids [Emim][Br] and [Bmim][Cl]. Journal of Physical Chemistry B 2008,112, (11),3380-3389.
    [68]Liu, W. W.; Cheng, L. Y.; Zhang, Y. M.; Wang, H. P.; Yu, M. F., The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium:Database and evaluation. Journal of Molecular Liquids 2008,140, (1-3),68-72.
    [69]Zafarani-Moattar, M. T.; Sarmad, S., Effect of tri-potassium phosphate on volumetric, acoustic, and transport behaviour of aqueous solutions of 1-ethyl-3-methylimidazolium bromide at T=(298.15 to 318.15) K. Journal of Chemical Thermodynamics 2010,42, (10),1213-1221.
    [70]Patil, K. J.; Gardas, R. L.; Dagade, D. H.; Terdale, S. S.; Coutinho, J. A. P., Acoustic and volumetric properties of aqueous solutions of imidazolium based ionic liquids at 298.15 K. Journal of Chemical Thermodynamics 2008,40, (4),695-701.
    [71]Bhargava, B. L.; Klein, M. L., Aqueous solutions of imidazolium ionic liquids:molecular dynamics studies. Soft Matter 2009,5, (18),3475-3480.
    [72]Slattery, J. M.; Daguenet, C.; Dyson, P. J.; Schubert, T. J. S.; Krossing, I., How to Predict the Physical Properties of Ionic Liquids:A Volume-Based Approach. Angewandte Chemie International Edition 2007,119, (28),5480-5484.
    [73]Rebelo, L. P. N.; Lopes, J. N. C.; Esperanca, J. M. S. S.; Guedes, H. J. R.; Lachwa, J.; Najdanovic-Visak, V.; Visak, Z. P., Accounting for the Unique, Doubly Dual Nature of Ionic Liquids from a Molecular Thermodynamic and Modeling Standpoint. Accounts of Chemical Research 2007,40, (11),1114-1121.
    [74]Gardas, R. L.; Coutinho, J. A. P., Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilibria 2008,263, (1),26-32.
    [75]Jacquemin, J.; Ge, R.; Nancarrow, P.; Rooney, D. W.; Costa Gomes, M. F.; Padua, A. A. H.; Hardacre, C., Prediction of Ionic Liquid Properties. I. Volumetric Properties as a Function of Temperature at 0.1 MPa. Journal of Chemical and Engineering Data 2008,53, (3),716-726.
    [76]Ye, C.; Shreeve, J. n. M., Rapid and Accurate Estimation of Densities of Room-Temperature Ionic Liquids and Salts. Journal of Physical Chemistry A 2007,111, (8),1456-1461.
    [77]Lazzus, J. A., A group contribution method to predict p-T-P of ionic liquids. Chemical Engineering Communications 2010,197, (7),974-1015.
    [78]Lazzus, J. A., p(T, p) model for ionic liquids based on quantitative structure-property relationship calculations. Journal of Physical Organic Chemistry 2009,22, (12),1193-1197.
    [79]Lazzus, J. A., p-T-P prediction for ionic liquids using neural networks. Journal of the Taiwan Institute of Chemical Engineers 2009,40, (2),213-232.
    [80]Deetlefs, M.; Seddon, K. R.; Shara, M., Predicting physical properties of ionic liquids. Physical Chemistry Chemical Physics 2006,8, (5),642-649.
    [81]Gardas, R. L.; Rooney, D. W.; Hardacre, C., Development of a QSPR correlation for the parachor of 1,3-dialkyl imidazolium based ionic liquids. Fluid Phase Equilibria 2009,283, (1-2),31-37.
    [82]Paduszynski, K.; Domanska, U., A New Group Contribution Method For Prediction of Density of Pure Ionic Liquids over a Wide Range of Temperature and Pressure. Industrial and Engineering Chemistry Research 2011,51, (1),591-604.
    [83]Abbott, A. P., Application of hole theory to the viscosity of ionic and molecular liquids. Chemphyschem 2004,5, (8),1242-1246.
    [84]Gardas, R. L.; Coutinho, J. A. P., A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria 2008,266, (1-2),195-201.
    [85]Gardas, R. L.; Coutinho, J. A. P., Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AICHE Journal 2009,55, (5),1274-1290.
    [86]Matsuda, H.; Yamamoto, H.; Kurihara, K.; Tochigi, K., Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities. Fluid Phase Equilibria 2007,261, (1-2),434-443.
    [87]Mirkhani, S. A.; Gharagheizi, F., Predictive Quantitative Structure-Property Relationship Model for the Estimation of Ionic Liquid Viscosity. Industrial and Engineering Chemistry Research 2012,51, (5), 2470-2477.
    [88]Tochigi, K.; Yamamoto, H., Estimation of Ionic Conductivity and Viscosity of Ionic Liquids Using a QSPR Model. Journal of Physical Chemistry C 2007,111, (43),15989-15994.
    [89]Mousazadeh, M.; Faramarzi, E., Corresponding states theory for the prediction of surface tension of ionic liquids. Ionics 2011,17, (3),217-222.
    [90]Gardas, R. L.; Coutinho, J. A. P., Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilibria 2008,265, (1-2),57-65
    [91]Liu, H.; Maginn, E.; Visser, A. E.; Bridges, N. J.; Fox, E. B., Thermal and Transport Properties of Six Ionic Liquids:An Experimental and Molecular Dynamics Study. Industrial and Engineering Chemistry Research 2012,51, (21),7242-7254.
    [92]Gardas, R. L.; Ge, R.; Goodrich, P.; Hardacre, C.; Hussain, A.; Rooney, D. W., Thermophysical Properties of Amino Acid-Based Ionic Liquids. Journal of Chemical and Engineering Data 2010,55, (4), 1505-1515.
    [93]Froba, A. P.; Rausch, M. H.; Krzeminski, K.; Assenbaum, D.; Wasserscheid, P.; Leipertz, A., Thermal Conductivity of Ionic Liquids:Measurement and Prediction. International Journal of Thermophysics 2010,31, (11-12),2059-2077
    [94]Tomida, D.; Kenmochi, S.; Tsukada, T.; Yokoyama, C., Measurements of thermal conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate at high pressure. Heat Transfer—Asian Research 2007,36, (6), 361-372.
    [95]Tomida, D.; Kenmochi, S.; Tsukada, T.; Qiao, K.; Yokoyama, C., Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at Pressures up to 20 MPa. International Journal of Thermophysics 2007,28, (4),1147-1160.
    [96]Van Valkenburg, M. E.; Vaughn, R. L.; Williams, M.; Wilkes, J. S., Thermochemistry of ionic liquid heat-transfer fluids. Thermochimica Acta 2005,425, (1-2),181-188.
    [97]Ge, R.; Hardacre, C.; Nancarrow, P.; Rooney, D. W., Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. Journal of Chemical and Engineering Data 2007,52, (5),1819-1823.
    [981 Zeinolabedini hezave, A.; Raeissi, S.; Lashkarbolooki, M., Estimation of Thermal Conductivity of Ionic Liquids Using Perceptron Neural Network. Industrial and Engineering Chemistry Research 2012.
    [1]Chauvin, Y., Olefin Metathesis:The Early Days (Nobel Lecture). Angewandte Chemie International Edition 2006,45, (23),3740-3747.
    [2]Rogers, R. D.; Seddon, K. R., Ionic Liquids IIIB:Fundamentals, Progress, Challenges, and Opportunities. Washington, DC:American Chemical Society,2005.
    [3]Tempel, D. J.; Henderson, P. B.; Brzozowski, J. R.; Pearlstein, R. M.; Cheng, H., High Gas Storage Capacities for Ionic Liquids through Chemical Complexation. Journal of the American Chemical Society 2007, 130, (2),400-401.
    [4]Fabos, V.; Lantos, D.; Bodor, A.; Balint, A.-M.; Mika, L. T.; Sielcken, O. E.; Cuiper, A.; Horvath, I. T., ε-Caprolactamium Hydrogen Sulfate:An Ionic Liquid Used for Decades in the Large-Scale Production of e-Caprolactam. ChemSusChem 2008,1, (3),189-192.
    [5]Seddon, K. R., Ionic liquids:Designer solvents. In The International George Papatheodorou Symposium Patras, Greece,1999; pp 131-135.
    [6]Coutinho, J. A. P.; Carvalho, P. J.; Oliveira, N. M. C., Predictive methods for the estimation of thermophysical properties of ionic liquids. RSC Advances 2012.
    [7]Langmuir, I., The distribution and orientation of molecules. In Colloid Symposium Monograph III., Holmes, H. N., Ed. The Chemical Catalog Company, Inc.:New York,1925; Vol.3, pp 48-75.
    [8]Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F., High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B 2004,108, (52), 20355-20365.
    [9]Anthony, J. L.; Maginn, E. J.; Brennecke, J. F., Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid l-n-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of Physical Chemistry B 2002, 106, (29),7315-7320.
    [10]Wu, W.; Han, B.; Gao, H.; Liu, Z.; Jiang, T.; Huang, J., Desulfurization of Flue Gas:SO2 Absorption by an Ionic Liquid. Angewandte Chemie International Edition 2004,43, (18),2415-2417.
    [11]Moo-Young, M.; Shoda, M., Gas Absorption Rates at the Free Surface of a Flowing Water Stream. Effects of a Surfactant and of Surface Baffles. Industrial and Engineering Chemistry Process Design and Development 1973,12, (4),410-414.
    [12]Fu, C.; Aldous, L.; Dickinson, E. J. F.; Manan, N. S. A.; Compton, R. G., Volatilisation of ferrocene from ionic liquids:kinetics and mechanism. Chemical Communications 2011,47, (25),7083-7085.
    [13]Berthod, A.; Ruiz-Angel, M.; Carda-Broch, S., Ionic liquids in separation techniques. Journal of Chromatography A 2008,1184, (1-2),6-18.
    [14]Tariq, M.; Freire, M. G.; Saramago, B.; Coutinho, J. A. P.; Lopes, J. N. C.; Rebelo, L. P. N., Surface tension of ionic liquids and ionic liquid solutions. Chemical Society Reviews 2012,41, (2),829-868.
    [15]Mousazadeh, M.; Faramarzi, E., Corresponding states theory for the prediction of surface tension of ionic liquids. Ionics 2011,17, (3),217-222.
    [16]Ghatee, M. H.; Zare, M.; Zolghadr, A. R.; Moosavi, F., Temperature dependence of viscosity and relation with the surface tension of ionic liquids. Fluid Phase Equilibria 2010,291, (2),188-194.
    [17]Deetlefs, M.; Seddon, K. R.; Shara, M., Predicting physical properties of ionic liquids. Physical Chemistry Chemical Physics 2006,8, (5),642-649.
    [18]Knotts, T. A.; Wilding, W. V.; Oscarson, J. L.; Rowley, R. L., Use of the DIPPR Database for Development of QSPR Correlations:Surface Tension. Journal of Chemical and Engineering Data 2001,46, (5),1007-1012.
    [19]Gardas, R. L.; Coutinho, J. A. P., Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilibria 2008,265, (1-2),57-65.
    [20]Gardas, R. L.; Coutinho, J. A. P., Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilibria 2008,263, (1),26-32.
    [21]Aparicio, S.; Atilhan, M.; Karadas, F., Thermophysical Properties of Pure Ionic Liquids:Review of Present Situation. Industrial and Engineering Chemistry Research 2010,49, (20),9580-9595.
    [22]Van der Waals, J. D., Zeitschrift fur Physikalische Chemie 1894,13,716.
    [23]Guggenheim, E. A., The Principle of Corresponding States. Journal of Chemical Physics 1945,13, (7), 253-261.
    [24]Hakim, D. I.; Steinberg, D.; Stiel, L. I., Generalized Relationship for the Surface Tension of Polar Fluids. Industrial and Engineering Chemistry Fundamentals 1971,10, (1),174-175.
    [25]Sastri, S. R. S.; Rao, K. K., A Simple Method to Predict Surface-Tension of Organic Liquids. Chemical Engineering Journal and the Biochemical Engineering Journal 1995,59, (2),181-186.
    [26]Guggenheim, E. A., Corresponding states and surface tension. Proceedings of the Physical Society 1965, 85, (4),811.
    [27]Valderrama, J. O.; Rojas, R. E., Critical Properties of Ionic Liquids. Revisited. Industrial and Engineering Chemistry Research 2009,48, (14),6890-6900.
    [28]Alvarez, V. H.; Valderrama, J. O., A modified Lydersen-Joback-Reid method to estimate the critical properties of biomolecules. Alimentaria 2004,354,55-66.
    [29]Gardas, R. L.; Freire, M. G.; Carvalho, P. J.; Marrucho, I. M.; Fonseca, I. M. A.; Ferreira, A. G. M.; Coutinho, J. A. P., PpT Measurements of Imidazolium-Based Ionic Liquids. Journal of Chemical and Engineering Data 2007,52, (5),1881-1888.
    [30]Carvalho, P. J.; Alvarez, V. H.; Machado, J. J. B.; Pauly, J.; Daridon, J. L.; Marrucho, I. M.; Aznar, M.; Coutinho, J. A. P., High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. Journal of Supercritical Fluids 2009,48, (2),99-107.
    [31]Alvarez, V. H.; Larico, R.; Ianos, Y.; Aznar, M., Parameter estimation for VLE calculation by global minimization:The genetic algorithm. Brazilian Journal of Chemical Engineering 2008,25, (2),409-418.
    [32]Ge, R.; Hardacre, C.; Jacquemin, J.; Nancarrow, P.; Rooney, D. W., Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction. Journal of Chemical and Engineering Data 2008,53, (9),2148-2153.
    [33]Ma, P. S.; Xu, M.; Xu, W.; Zhang, J. H., New group-contribution correlations for estimation of critical properties. Journal of Chemical Industry and Engineering 1990, (02),235-241.
    [34]Li, P.; Ma, P. S.; Yi, S. Z.; Zhao, Z. G.; Cong, L. Z., A New Corresponding-States Group-Contribution Method (Csgc) for Estimating Vapor-Pressures of Pure Compounds. Fluid Phase Equilibria 1994,101, 101-119.
    [35]Joback, K. G.; Reid, R. C., Estimation of pure component properties from group contributuions. Chemical Engineering Communications 1987,57, (1-6),233-243.
    [36]Martino, W.; de la Mora, J. F.; Yoshida, Y.; Saito, G.; Wilkes, J., Surface tension measurements of highly conducting ionic liquids. Green Chemistry 2006,8, (4),390-397.
    [37]Santos, C. S.; Baldelli, S., Alkyl Chain Interaction at the Surface of Room Temperature Ionic Liquids: Systematic Variation of Alkyl Chain Length (R=C1-C4, C8) in both Cation and Anion of [RMIM][R-OSO3] by Sum Frequency Generation and Surface Tension. Journal of Physical Chemistry B 2009,113, (4),923-933.
    [38]Wandschneider, A.; Lehmann, J. K.; Heintz, A., Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. Journal of Chemical and Engineering Data 2008,53, (2), 596-599.
    [39]Pereiro, A. B.; Santamarta, F.; Tojo, E.; Rodriguez, A.; Tojo, J., Temperature Dependence of Physical Properties of Ionic Liquid 1,3-Dimethylimidazolium Methyl Sulfate. Journal of Chemical and Engineering Data 2006,51,(3),952-954.
    [40]Pereiro, A. B.; Verdia, P.; Tojo, E.; Rodriguez, A., Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. Journal of Chemical and Engineering Data 2007,52, (2),377-380.
    [41]Fernandez, A.; Garcia, J.; Torrecilla, J. S.; Oliet, M.; Rodriguez, F., Volumetric, transport and surface properties of [bmim][MeSO(4)] and [emim][EtSO(4)] ionic liquids as a function of temperature. Journal of Chemical and Engineering Data 2008,53, (7),1518-1522.
    [42]Sanchez, L. G.; Espel, J. R.; Onink, F.; Meindersma, G. W.; Haan, A. B. d., Density, Viscosity, and Surface Tension of Synthesis Grade Imidazolium, Pyridinium, and Pyrrolidinium Based Room Temperature Ionic Liquids. Journal of Chemical and Engineering Data 2009,54, (10),2803-2812.
    [43]Gomez, E.; Gonzalez, B.; Calvar, N.; Tojo, E.; Dominguez, A., Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. Journal of Chemical and Engineering Data 2006,51, (6),2096-2102.
    [44]Carvalho, P. J.; Freire, M. G.; Marrucho, I. M.; Queimada, A. J.; Coutinho, J. A. P., Surface tensions for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. Journal of Chemical and Engineering Data 2008,53, (6),1346-1350.
    [45]Klomfar, J.; Souckova, M.; Patek, J., Surface tension measurements with validated accuracy for four 1-alkyl-3-methylimidazolium based ionic liquids. Journal of Chemical Thermodynamics 2010,42, (3), 323-329.
    [46]Tariq, M.; Serro, A. P.; Mata, J. L.; Saramago, B.; Esperanca, J. M. S. S.; Canongia Lopes, J. N.; Rebelo, L. P. N., High-temperature surface tension and density measurements of 1-alkyl-3-methylimidazolium bistriflamide ionic liquids. Fluid Phase Equilibria 2010,294, (1-2),131-138.
    [47]Freire, M. G.; Carvalho, P. J.; Fernandes, A. M.; Marrucho, I. M.; Queimada, A. J.; Coutinho,J. A. P., Surface tensions of imidazolium based ionic liquids:Anion, cation, temperature and water effect. Journal of Colloid and Interface Science 2007,314, (2),621-630.
    [48]Muhammad, A.; Mutalib, M.I. A.; Wilfred, C. D.; Murugesan, T.; Shafeeq, A., Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions. Journal of Chemical Thermodynamics 2008,40, (9), 1433-1438.
    [49]Ahosseini, A.; Sensenich, B.; Weatherley, L. R.; Scurto, A. M., Phase Equilibrium, Volumetric, and Interfacial Properties of the Ionic Liquid, 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide and 1-Octene. Journal of Chemical and Engineering Data 2010,55, (4),1611-1617.
    [50]Dzyuba, S. V.; Bartsch, R. A., Influence of Structural Variations in 1-Alkyl(aralkyl)-3-Methylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl)imides on Physical Properties of the Ionic Liquids. Chemphyschem 2002,3, (2),161-166.
    [51]Ghatee, M. H.; Zolghadr, A. R., Surface tension measurements of imidazolium-based ionic liquids at liquid-vapor equilibrium. Fluid Phase Equilibria 2008,263, (2),168-175.
    [52]Kilaru, P.; Baker, G. A.; Scovazzo, P., Density and surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids:Data and correlations. Journal of Chemical and Engineering Data 2007,52, (6),2306-2314.
    [53]Souckova, M.; Klomfar, J.; Patek, J., Surface tension of 1-alkyl-3-methylimidazolium based ionic liquids with trifluoromethanesulfonate and tetrafluoroborate anion. Fluid Phase Equilibria 2011,303, (2),184-190.
    [54]Kolbeck, C.; Lehmann, J.; Lovelock, K. R. J.; Cremer, T.; Paape, N.; Wasserscheid, P.; Fro ba, A. P.; Maier, F.; Steinru□ck, H. P., Density and Surface Tension of Ionic Liquids. Journal of Physical Chemistry B 2010,114,(51),17025-17036.
    [55]Rilo, E.; Pico, J.; Garcia-Garabal, S.; Varela, L. M.; Cabeza, O., Density and surface tension in binary mixtures of CnMIM-BF(4) ionic liquids with water and ethanol. Fluid Phase Equilibria 2009,285, (1-2), 83-89.
    [56]Shamsipur, M.; Beigi, A. A. M.; Teymouri, M.; Pourmortazavi, S. M.; Irandoust, M., Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-l-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Journal of Molecular Liquids 2010,157, (1),43-50.
    [57]Yang, J. Z.; Tong, J.; Li, J. B.; Li, J. G.; Tong, J., Surface tension of pure and water-containing ionic liquid C5MIBF4 (1-methyl-3-pentylimidazolium tetrafluoroborate). Journal of Colloid and Interface Science 2007,313, (1),374-377.
    [58]Restolho, J.; Serro, A. P.; Mata, J. L.; Saramago, B., Viscosity and Surface Tension of 1-Ethanol-3-methylimidazolium Tetrafluoroborate and 1-Methyl-3-octylimidazolium Tetrafluoroborate over a Wide Temperature Range. Journal of Chemical and Engineering Data 2009,54, (3),950-955.
    [59]Carrera, G. a. V. S. M.; Afonso, C. A. M.; Branco, L. C., Interfacial Properties, Densities, and Contact Angles of Task Specific Ionic Liquids. Journal of Chemical and Engineering Data 2009,55, (2),609-615.
    [60]Rebelo, L. P. N.; Canongia Lopes, J. N.; Esperanca, J. M. S. S.; Filipe, E., On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids. Journal of Physical Chemistry B 2005,109, (13), 6040-6043.
    [61]Law, G.; Watson, P. R., Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 2001,17, (20),6138-6141.
    [62]Klomfar, J.; Souckova, M.; Patek, J., Surface Tension Measurements for Four 1-Alkyl-3-methylimidazolium-Based Ionic Liquids with Hexafluorophosphate Anion. Journal of Chemical and Engineering Data 2009,54, (4),1389-1394.
    [63]Pereiro, A. B.; Legido, J. L.; Rodriguez, A., Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. Journal of Chemical Thermodynamics 2007,39, (8),1168-1175.
    [64]Guan, W.; Tong, J.; Chen, S. P.; Liu, Q. S.; Gao, S. L., Density and Surface Tension of Amino Acid Ionic Liquid 1-Alkyl-3-methylimidazolium Glutamate. Journal of Chemical and Engineering Data 2010,55, (9), 4075-4079.
    [65]Liu, Q. S.; Tong, J.; Tan, Z. C.; Welz-Biermann, U.; Yang, J. Z., Density and Surface Tension of Ionic Liquid [C2mim][PF3(CF2CF3)3] and Prediction of Properties [Cnmim][PF3(CF2CF3)3] (n=1,3,4,5,6). Journal of Chemical and Engineering Data 2010,55, (7),2586-2589.
    [66]Yao, C.; Pitner, W. R.; Anderson, J. L., Ionic Liquids Containing the Tris(pentafluoroethyl)trifluorophosphate Anion:a New Class of Highly Selective and Ultra Hydrophobic Solvents for the Extraction of Polycyclic Aromatic Hydrocarbons Using Single Drop Microextraction. Analytical Chemistry 2009,81, (12),5054-5063.
    [67]Fang, D. W.; Guan, W.; Tong, J.; Wang, Z. W.; Yang, J. Z., Study on Physicochemical Properties of Ionic Liquids Based on Alanine [Cnmim][Ala] (n=2,3,4,5,6). Journal of Physical Chemistry B 2008,112, (25), 7499-7505.
    [68]Tong, J.; Liu, Q. S.; Kong, Y. X.; Fang, D. W.; Welz-Biermann, U.; Yang, J. Z., Physicochemical Properties of an Ionic Liquid [C2mim][B(CN)4]. Journal of Chemical and Engineering Data 2010,55, (9), 3693-3696.
    [69]Zhou, Z. B.; Matsumoto, H.; Tatsumi, K., Structure and Properties of New Ionic Liquids Based on Alkyl-and Alkenyltrifluoroborates. Chemphyschem 2005,6, (7),1324-1332.
    [70]Carvalho, P. J.; Neves, C. M. S. S.; Coutinho, J. o. A. P., Surface Tensions of Bis(trifluoromethylsulfonyl)imide Anion-Based Ionic Liquids. Journal of Chemical and Engineering Data 2010,55, (9),3807-3812.
    [71]Liu, Q. S.; Yang, M.; Yan, P. F.; Liu, X. M.; Tan, Z. C.; Welz-Biermann, U., Density and Surface Tension of Ionic Liquids [Cnpy][NTf2] (n= 2,4,5). Journal of Chemical and Engineering Data 2010,55, (11), 4928-4930.
    [72]Bandres, I.; Royo, F.1. M.; Gascon, I.; Castro, M.; Lafuente, C., Anion Influence on Thermophysical Properties of Ionic Liquids:1-Butylpyridinium Tetrafluoroborate and 1-Butylpyridinium Triflate. Journal of Physical Chemistry B 2010,114, (10),3601-3607.
    [73]Viswanath, D. S., Viscosity of Liquids:Theory, Estimation, Experiment, and Data. Dordrecht:Springer, 2007.
    [74]Abbott, A. P., Application of hole theory to the viscosity of ionic and molecular liquids. Chemphyschem 2004,5, (8),1242-1246.
    [75]Tochigi, K.; Yamamoto, H., Estimation of Ionic Conductivity and Viscosity of Ionic Liquids Using a QSPR Model. Journal of Physical Chemistry C 2007,111, (43),15989-15994.
    [76]Matsuda, H.; Yamamoto, H.; Kurihara, K.; Tochigi, K., Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities and viscosities. Fluid Phase Equilibria 2007,261, (1-2),434-443.
    [77]Mirkhani, S. A.; Gharagheizi, F., Predictive Quantitative Structure-Property Relationship Model for the Estimation of Ionic Liquid Viscosity. Industrial and Engineering Chemistry Research 2012,51, (5), 2470-2477.
    [78]Gardas, R. L.; Coutinho, J. A. P., A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria 2008,266, (1-2),195-201.
    [79]Gardas, R. L.; Coutinho, J. A. P., Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AICHE Journal 2009,55, (5),1274-1290.
    [80]Glasstone, S.; Laidler, K. J.; Eyring, H., The theory of rate processes:the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. New York:McGraw-Hill Book Company, Inc,1941.
    [81]Weymann, H. D., On the hole theory of viscosity, compressibility, and expansivity of Jiquids. Kolloid-Zeitschrift und Zeitschrift fur Polymere 1962,181, (2),131-137.
    [82]Doolittle, A. K., Studies in Newtonian Flow. Ⅱ. The Dependence of the Viscosity of Liquids on Free-Space. Journal of Applied Physics 1951,22, (12),1471-1475.
    [83]Cohen, M. H.; Turnbull, D., Molecular Transport in Liquids and Glasses. Journal of Chemical Physics 1959,31,(5),1164-1169.
    [84]Macedo, P. B.; Litovitz, T. A., On the Relative Roles of Free Volume and Activation Energy in the Viscosity of Liquids. Journal of Chemical Physics 1965,42, (1),245-256.
    [85]Dienes, G. J., Activation Energy for Viscous Flow and Short-Range Order. Journal of Applied Physics 1953,24, (6),779-782.
    [86]Gubbins, K. E.; Tham, M. J., Free volume theory for viscosity of simple nonpolar liquids. Part I. Pure components. AIChE Journal 1969,15, (2),264-269.
    [87]Zaman, A. A.; Fricke, A. L., Newtonian Viscosity of High-Solids Kraft Black Liquors:Effects of Temperature and Solids Concentrations. Industrial and Engineering Chemistry Research 1994,33, (2), 428-435.
    [88]Zaman, A. A.; Fricke, A. L., Correlations for viscosity of kraft black liquors at low solids concentrations. AIChE Journal 1994,40, (1),187-192.
    [89]Goletz, E.; Tassios, D., An Antoine Type Equation for Liquid Viscosity Dependency to Temperature. Industrial and Engineering Chemistry Process Design and Development 1977,16, (1),75-79.
    [90]Vogel, H., The temperature dependence law of the viscosity of fluids. Physikalische Zeitschrift 1921,22, 645-646.
    [91]Seddon, K. R.; Stark, A.; Torres, M. J., Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry 2000,72, (12),2275-2287.
    [92]Harris, K. R.; Woolf, L. A.; Kanakubo, M., Temperature and Pressure Dependence of the Viscosity of the Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of Chemical and Engineering Data 2005,50,(5),1777-1782.
    [93]Tomida, D.; Kumagai, A.; Qiao, K.; Yokoyama, C., Viscosity of [bmim][PF6] and [bmim][BF4] at High Pressure. International Journal of Thermophysics 2006,27, (1),39-47.
    [94]Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M., How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. Journal of Physical Chemistry B 2006,110, (39),19593-19600.
    [95]Jacquemin, J.; Husson, P.; Padua, A. A. H.; Majer, V., Density and viscosity of several pure and water-saturated ionic liquids. Green Chemistry 2006,8, (2).
    [96]Harris, K. R.; Kanakubo, M.; Woolf, L. A., Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Hexyl-3-methylimidazolium Hexafluorophosphate and 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical and Engineering Data 2007,52, (3),1080-1085.
    [97]Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry 2001,3, (4),156-164.
    [98]Harris, K. R.; Kanakubo, M.; Woolf, L. A., Temperature and Pressure Dependence of the Viscosity of the Ionic Liquids 1-Methyl-3-octylimidazolium Hexafluorophosphate and 1-Methyl-3-octylimidazolium Tetrafluoroborate. Journal of Chemical and Engineering Data 2006,51, (3),1161-1167.
    [99]Tomida, D.; Kumagai, A.; Kenmochi, S.; Qiao, K.; Yokoyama, C., Viscosity of 1-Hexyl-3-methylimidazolium Hexafluorophosphate and 1-Octyl-3-methylimidazolium Hexafluorophosphate at High Pressure. Journal of Chemical and Engineering Data 2007,52, (2),577-579.
    [100]Branco, L. C.; Rosa, J. N.; Moura Ramos, J. J.; Afonso, C. A. M., Preparation and Characterization of New Room Temperature Ionic Liquids. Chemistry-A European Journal 2002,8, (16),3671-3677.
    [101]Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H. J., Fractional Walden Rule for Ionic Liquids:Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot. Journal of Chemical and Engineering Data 2009,55, (5),1784-1788.
    [102]Shirota, H.; Mandai, T.; Fukazawa, H.; Kato, T., Comparison between Dicationic and Monocationic Ionic Liquids:Liquid Density, Thermal Properties, Surface Tension, and Shear Viscosity. Journal of Chemical and Engineering Data 2011,56, (5),2453-2459.
    [103]Bou Malham, I.; Turmine, M., Viscosities and refractive indices of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298K. Journal of Chemical Thermodynamics 2008,40, (4),718-723.
    [104]Harris, K. R.; Kanakubo, M.; Woolf, L. A., Temperature and Pressure Dependence of the Viscosity of the Ionic Liquid 1-Butyl-3-methylimidazolium Tetrafluoroborate:Viscosity and Density Relationships in Ionic Liquids. Journal of Chemical and Engineering Data 2007,52, (6),2425-2430.
    [105]Sanmamed, Y. A.; Gonzalez-Salgado, D.; Troncoso, J.; Cerdeirina, C. A.; Romani, L., Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilibria 2007,252, (1-2),96-102.
    [106]Okoturo, O. O.; VanderNoot, T. J., Temperature dependence of viscosity for room temperature ionic liquids. Journal of Electroanalytical Chemistry 2004,568, (0),167-181.
    [107]Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.; Brennecke, J. F., Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. Journal of Chemical Thermodynamics 2005,37, (6),559-568.
    [108]Widegren, J. A.; Magee, J. W., Density, Viscosity, Speed of Sound, and Electrolytic Conductivity for the Ionic Liquid 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and Its Mixtures with Water. Journal of Chemical and Engineering Data 2007,52, (6),2331-2338.
    [109]Kandil, M. E.; Marsh, K. N.; Goodwin, A. R. H., Measurement of the Viscosity, Density, and Electrical Conductivity of 1-Hexyl-3-methylimidazolium Bis(trifluorosulfonyl)imide at Temperatures between (288 and 433) K and Pressures below 50 MPa. Journal of Chemical and Engineering Data 2007,52, (6),2382-2387.
    [110]Koller, T.; Rausch, M. H.; Schulz, P. S.; Berger, M.; Wasserscheid, P.; Economou, I. G.; Leipertz, A.; Froba, A. P., Viscosity, Interfacial Tension, Self-Diffusion Coefficient, Density, and Refractive Index of the Ionic Liquid 1-Ethyl-3-methylimidazolium Tetracyanoborate as a Function of Temperature at Atmospheric Pressure. Journal of Chemical and Engineering Data 2012.
    [111]Ismail Hossain, M.; Babaa, M.-R.; El-Harbawi, M.; Man, Z.; Hefter, G.; Yin, C.-Y., Synthesis, Characterization, Physical Properties, and Cytotoxicities of 1-(6-Hydroxyhexyl)-3-alkylimidazolium Chloride Ionic Liquids. Journal of Chemical and Engineering Data 2011,56, (11),4188-4193.
    [112]Yu, Z. C.; Gao, H. Y.; Wang, H. J.; Chen, L. W., Densities, Viscosities, and Refractive Properties of the Binary Mixtures of the Amino Acid Ionic Liquid [bmim][Ala] with Methanol or Benzylalcohol at T=(298.15 to 313.15) K. Journal of Chemical and Engineering Data 2011,56, (6),2877-2883.
    [113]Rodriguez, H.; Brennecke, J. F., Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of Water+Ionic Liquid. Journal of Chemical and Engineering Data 2006,51, (6),2145-2155.
    [114]Gonzalez, E. J.; Gonzalez, B.; Calvar, N.; Dominguez, A., Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethyl Sulfate with Several Alcohols at T=(298.15,313.15, and 328.15) K and Atmospheric Pressure. Journal of Chemical and Engineering Data 2007,52, (5),1641-1648.
    [115]Wasserscheid, P.; Hal, R. v.; Bosmann, A.,1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate-an even 'greener' ionic liquid. Green Chemistry 2002,4, (4).
    [116]Hardacre, C.; Holbrey, J. D.; Katdare, S. P.; Seddon, K. R., Alternating copolymerisation of styrene and carbon monoxide in ionic liquids. Green Chemistry 2002,4, (2).
    [117]Heintz, A.; Klasen, D.; Lehmann, J. K., Excess molar volumes and viscosities of binary mixtures of methanol and the ionic liquid 4-methyl-N-butylpyridinium tetrafluoroborate at 25,40, and 50 degrees C. Journal of Solution Chemistry 2002,31, (6),467-476.
    [118]Calvar, N.; Gomez, E.; Gonzalez, B. a.; Dominguez, A. n., Experimental Determination, Correlation, and Prediction of Physical Properties of the Ternary Mixtures Ethanol and 1-Propanol+Water+ 1-Ethyl-3-methylpyridinium Ethylsulfate at 298.15 K. Journal of Chemical and Engineering Data 2009,54, (8),2229-2234.
    [119]Gonzalez, B. a.; Calvar, N.; Gomez, E.; Dominguez, I.; Dominguez, A. n., Synthesis and Physical Properties of 1-Ethylpyridinium Ethylsulfate and its Binary Mixtures with Ethanol and 1-Propanol at Several Temperatures. Journal of Chemical and Engineering Data 2009,54, (4),1353-1358.
    [120]Domanska, U.; Laskowska, M., Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of{1-Butyl-3-methylimidazolium Thiocyanate+1-Alcohols}. Journal of Chemical and Engineering Data 2009,54, (7),2113-2119.
    [121]Carvalho, P. J.; Regueira, T.; Santos, L. M. N. B. F.; Fernandez, J.; Coutinho, J. o. A. P., Effect of Water on the Viscosities and Densities of 1-Butyl-3-methylimidazolium Dicyanamide and 1-Butyl-3-methylimidazolium Tricyanomethane at Atmospheric Pressure. Journal of Chemical and Engineering Data 2009,55, (2),645-652.
    [122]Tsunashima, K.; Sugiya, M., Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochemistry Communications 2007,9, (9),2353-2358.
    [123]Seki, S.; Hayamizu, K.; Tsuzuki, S.; Fujii, K.; Umebayashi, Y.; Mitsugi, T.; Kobayashi, T.; Ohno, Y.; Kobayashi, Y.; Mita, Y.; Miyashiro, H.; Ishiguro, S.-i., Relationships between center atom species (N, P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids. Physical Chemistry Chemical Physics 2009,11,(18),3509-3514.
    [124]Ziyada, A. K.; Wilfred, C. D.; Murugesan, T., Densities, viscosities and refractive indices of 1-alky1-3-propanenitrile imidazolium chloride ionic liquids. Physics and Chemistry of Liquids 2011,1-9.
    [125]Pereiro, A. B.; Veiga, H. I. M.; Esperanca, J. M. S. S.; Rodriguez, A., Effect of temperature on the physical properties of two ionic liquids. Journal of Chemical Thermodynamics 2009,41, (12),1419-1423.
    [126]Morgan, D.; Ferguson, L.; Scovazzo, P., Diffusivities of Gases in Room-Temperature Ionic Liquids:Data and Correlations Obtained Using a Lag-Time Technique. Industrial and Engineering Chemistry Research 2005,44, (13),4815-4823.
    [127]Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi, M.; Sadeghian, F., Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. Journal of Chemical Thermodynamics 2009,41, (3),323-329.
    [128]Ge, M.-L.; Ren, X.-G.; Song, Y.-J.; Wang, L.-S., Densities and Viscosities of 1-Propyl-2,3-dimethylimidazolium Tetrafluoroborate+H2O at T=(298.15 to 343.15) K. Journal of Chemical and Engineering Data 2009,54, (4),1400-1402.
    [129]Kim, K.-S.; Demberelnyamba, D.; Shin, B.-K.; Yeon, S.-H.; Choi, S.; Cha, J.-H.; Lee, H.; Lee, C.-S.; Shim, J.-J., Surface tension and viscosity of 1-butyl-3-methylimidazolium iodide and 1-butyl-3-methylimidazolium tetrafluoroborate, and solubility of lithium bromide+l-butyl-3-methylimidazolium bromide in water. Korean Journal of Chemical Engineering 2006,23, (1),113-116.
    [130]Tshibangu, P. N.; Ndwandwe, S. N.; Dikio, E. D., Density, Viscosity and Conductivity Study of 1-Butyl-3-Methylimidazolium Bromide. International Journal of Electrochemical Science 2011,6, (6), 2201-2213.
    [131]Salminen, J.; Papaiconomou, N.; Kumar, R. A.; Lee, J.-M.; Kerr, J.; Newman, J.; Prausnitz, J. M., Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria 2007,261, (1-2),421-426.
    [132]Bhatt, A. I.; Best, A. S.; Huang, J.; Hollenkamp, A. F., Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL Containing Lithium Bis(fluorosulfonyl)imide in Ionic Liquid Based Lithium Batteries. Journal of The Electrochemical Society 2010,157, (1),A66-A74.
    [133]Deng, M.-J.; Chen, P.-Y.; Leong, T.-I.; Sun, I. W.; Chang, J.-K.; Tsai, W.-T., Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochemistry Communications 2008,10, (2),213-216.
    [134]Kulkarni, P. S.; Branco, L. C.; Crespo, J. G.; Nunes, M. C.; Raymundo, A.; Afonso, C. A. M., Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry-A European Journal 2007,13, (30),8478-8488.
    [135]Breitbach, Z.; Armstrong, D., Characterization of phosphonium ionic liquids through a linear solvation energy relationship and their use as GLC stationary phases. Analytical and Bioanalytical Chemistry 2008,390, (6),1605-1617.
    [136]Wang, Z. X.; Fu, L.; Zhang, J. M.; Xu, H.; Shang, Y.; Zhang, L.; Ma, Q. Q.; Wang, Z. X., Property Measurement of [aP4443][Gly]-H2O Binary System and Its Absorption to Carbon Dioxide. Chinese Journal of Process Engineering 2011,11, (5),818-822.
    [137]Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorganic Chemistry 1996,35, (5),1168-1178.
    [138]Zhou, Z.-B.; Matsumoto, H.; Tatsumi, K., Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(Alkyl Ether)-3-methylimidazolium Perfluoroalkyltrifluoroborate. Chemistry-A European Journal 2004,10, (24),6581-6591.
    [139]Zhou, Z.-B.; Matsumoto, H.; Tatsumi, K., Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates:Synthesis, Characterization, and Properties. Chemistry-A European Journal 2006,12, (8),2196-2212.
    [140]Evans, R. G.; Klymenko, O. V.; Hardacre, C.; Seddon, K. R.; Compton, R. G., Oxidation of N,N,N',N'-tetraalkyl-para-phenylenediamines in a series of room temperature ionic liquids incorporating the bis(trifluoromethylsulfonyl)imide anion. Journal of Electroanalytical Chemistry 2003,556, (0),179-188.
    [141]Matsumoto, H.; Sakaebe, H.; Tatsumi, K.; Kikuta, M.; Ishiko, E.; Kono, M., Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]. Journal of Power Sources 2006, 160,(2),1308-1313.
    [142]Yoshida, Y.; Muroi, K.; Otsuka, A.; Saito, G.; Takahashi, M.; Yoko, T., 1-Ethyl-3-methylimidazolium Based Ionic Liquids Containing Cyano Groups:Synthesis, Characterization, and Crystal Structure. Inorganic Chemistry 2004,43, (4),1458-1462.
    [143]Matsumoto, H.; Kageyama, H.; Miyazaki, Y., Room Temperature Molten Salts Based on Tetraalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide. Chemistry Letters 2001,30, (2), 182-183.
    [144]Zhao, D.; Fei, Z.; Scopelliti, R.; Dyson, P. J., Synthesis and Characterization of Ionic Liquids Incorporating the Nitrile Functionality. Inorganic Chemistry 2004,43, (6),2197-2205.
    [145]Costa, A. J. L.; Esperanc a, J. M. S. S.; Marrucho, I. M.; Rebelo, L. s. P. N., Densities and Viscosities of 1-Ethyl-3-methylimidazolium n-Alkyl Sulfates. Journal of Chemical and Engineering Data 2011,56, (8), 3433-3441.
    [146]Fendt, S.; Padmanabhan, S.; Blanch, H. W.; Prausnitz, J. M., Viscosities of Acetate or Chloride-Based Ionic Liquids and Some of Their Mixtures with Water or Other Common Solvents. Journal of Chemical and Engineering Data 2010,56, (1),31-34.
    [147]Meindersma, G. W.; Simons, B. T. J.; de Haan, A. B., Physical properties of 3-methyl-N-butylpyridinium tetracyanoborate and 1-butyl-1-methylpyrrolidinium tetracyanoborate and ternary LLE data of [3-mebupy]B(CN)4 with an aromatic and an aliphatic hydrocarbon at T=303.2K and 328.2K and p=0.1MPa. Journal of Chemical Thermodynamics 2011,43, (11),1628-1640.
    [148]Brennecke, J. F.; Maginn, E. J., Ionic liquids:Innovative fluids for chemical processing. AICHE Journal 2001,47, (11),2384-2389.
    [149]Zeinolabedini hezave, A.; Raeissi, S.; Lashkarbolooki, M., Estimation of Thermal Conductivity of Ionic Liquids Using Perceptron Neural Network. Industrial and Engineering Chemistry Research 2012.
    [150]Tomida, D.; Kenmochi, S.; Tsukada, T.; Qiao, K.; Yokoyama, C., Thermal Conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at Pressures up to 20 MPa. International Journal of Thermophysics 2007,28, (4),1147-1160.
    [151]Mohanty, S. R., A Relationship between Heat Conductivity and Viscosity of Liquids. Nature 1951,168, (4262),42-42.
    [152]Froba, A. P.; Rausch, M. H.; Krzeminski, K.; Assenbaum, D.; Wasserscheid, P.; Leipertz, A., Thermal Conductivity of Ionic Liquids:Measurement and Prediction. International Journal of Thermophysics 2010,31, (11-12),2059-2077.
    [153]Nieto de Castro, C. A.; Lourenco, M. J. V.; Ribeiro, A. P. C.; Langa, E.; Vieira, S. I. C.; Goodrich, P.; Hardacre, C., Thermal Properties of Ionic Liquids and loNanofluids of Imidazolium and Pyrrolidinium Liquids. Journal of Chemical and Engineering Data 2010,55, (2),653-661.
    [154]Ge, R.; Hardacre, C.; Nancarrow, P.; Rooney, D. W., Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. Journal of Chemical and Engineering Data 2007,52, (5),1819-1823.
    [155]Riedel, L., Neue Warmeleitfahigkeitsmessungen an organischen Flussigkeiten. Chemie Ingenieur Technik 1951,23, (13),321-324.
    [156]Nagvekar, M.; Daubert, T. E., A group contribution method for liquid thermal conductivity. Industrial and Engineering Chemistry Research 1987,26, (7),1362-1365.
    [157]Valderrama, J. O.; Forero, L. A.; Rojas, R. E., Critical Properties and Normal Boiling Temperature of Ionic Liquids. Update and a New Consistency Test. Industrial and Engineering Chemistry Research 2012,51, (22),7838-7844.
    [158]Wu, K..-J.; Zhao, C.-X.; He, C.-H., A simple corresponding-states group-contribution method for estimating surface tension of ionic liquids. Fluid Phase Equilibria 2012,328, (0),42-48.
    [159]Van Valkenburg, M. E.; Vaughn, R. L.; Williams, M.; Wilkes, J. S., Thermochemistry of ionic liquid heat-transfer fluids. Thermochimica Acta 2005,425, (1-2),181-188.
    [160]Tomida, D.; Kenmochi, S.; Tsukada, T.; Yokoyama, C., Measurements of thermal conductivity of l-butyl-3-methylimidazolium tetrafluoroborate at high pressure. Heat Transfer—Asian Research 2007,36, (6), 361-372.
    [161]Gardas, R. L.; Ge, R.; Goodrich, P.; Hardacre, C.; Hussain, A.; Rooney, D. W., Thermophysical Properties of Amino Acid-Based Ionic Liquids. Journal of Chemical and Engineering Data 2010,55, (4), 1505-1515.
    [162]Liu, H.; Maginn, E.; Visser, A. E.; Bridges, N. J.; Fox, E. B., Thermal and Transport Properties of Six Ionic Liquids:An Experimental and Molecular Dynamics Study. Industrial and Engineering Chemistry Research 2012,51, (21),7242-7254.
    [163]Qiao, Y.; Ma, Y.; Huo, Y.; Ma, P.; Xia, S., A group contribution method to estimate the densities of ionic liquids. The Journal of Chemical Thermodynamics 2010,42, (7),852-855.
    [164]Gharagheizi, F.; Ilani-Kashkouli, P.; Mohammadi, A. H., Computation of normal melting temperature of ionic liquids using a group contribution method. Fluid Phase Equilibria 2012,329, (0),1-7.
    [165]Yamamoto, H., Structure Properties Relationship of Ionic Liquid. Journal of Computer Aided Chemistry 2006,7,18-30.
    [166]Preiss, U.; Bulut, S.; Krossing, I., In Silico Prediction of the Melting Points of Ionic Liquids from Thermodynamic Considerations:A Case Study on 67 Salts with a Melting Point Range of 337℃. Journal of Physical Chemistry B 2010,114, (34),11133-11140.
    [1]Brennecke, J. F.; Maginn, E. J., Ionic liquids:Innovative fluids for chemical processing. AIChE Journal 2001,47, (11),2384-2389.
    [2]Petkovic, M.; Seddon, K. R.; Rebelo, L. P. N.; Silva Pereira, C., Ionic liquids:a pathway to environmental acceptability. Chemical Society Reviews 2011,40, (3),1383-1403.
    [3]Zhao, H., Innovative applications of ionic liquid as "green" engineering liquids. Chemical Engineering Communications 2006,193,(12),1660-1677.
    [4]Moens, L.; Blake, D. M.; Rudnicki, D. L.; Hale, M. J., Advanced Thermal Storage Fluids for Solar Parabolic Trough Systems. Journal of Solar Energy Engineering 2003,125, (1),112-116.
    [5]Reddy, R. G.; Wu, B.; Rogers, R. D., Ionic liquids as thermal energy storage media for solar thermal electric power systems. In 2001 Solar Energy Forum:The Power to Choose, Washington, D.C.,2001.
    [6]Liu, W.; Cheng, L.; Zhang, Y.; Wang, H.; Yu, M., The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium:Database and evaluation. Journal of Molecular Liquids 2008,140, (1-3),68-72.
    [7]IAPWS, IAPWS release on surface tension of ordinary water substance.1994.
    [8]Vazquez, G.; Alvarez, E.; Navaza, J. M., Surface Tension of Alcohol Water+Water from 20 to 50.degree.C. Journal of Chemical and Engineering Data 1995,40, (3),611-614.
    [9]Zafarani-Moattar, M. T.; Sarmad, S., Effect of tri-potassium phosphate on volumetric, acoustic, and transport behaviour of aqueous solutions of 1-ethyl-3-methylimidazolium bromide at T=(298.15 to 318.15)K. Journal of Chemical Thermodynamics 2010,42, (10),1213-1221.
    [10]Zafarani-Moattar, M. T.; Shekaari, H., Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T=(298.15 to 318.15)K. Journal of Chemical Thermodynamics 2005,37, (10),1029-1035.
    [11]Gardas, R. L.; Dagade, D. H.; Coutinho, J. A. P.; Patil, K. J., Thermodynamic Studies of Ionic Interactions in Aqueous Solutions of Imidazolium-Based Ionic Liquids [Emim][Br] and [Bmim][Cl]. Journal of Physical Chemistry B 2008,112, (11),3380-3389.
    [12]Hu, Y. F.; Chu, H. D.; Li, J. G.; Liu, Z. C.; Peng, X. M.; Ling, S.; Zhang, J. Z., Extension of the Simple Equations for Prediction of the Properties of Mixed Electrolyte Solutions to the Mixed Ionic Liquid Solutions. Industrial and Engineering Chemistry Research 2011,50, (7),4161-4165.
    [13]Yokozeki,.A.; Shiflett, M. B., Water Solubility in Ionic Liquids and Application to Absorption Cycles. Industrial and Engineering Chemistry Research 2010,49, (19),9496-9503.
    [14]Furlong, D. N.; Hartland, S., Wall effect in the determination of surface tension using a wilhelmy plate. Journal of Colloid and Interface Science 1979,71, (2),301-315.
    [15]王建英;赵风云;刘玉敏;胡永琪,1-烷基-3-甲基咪唑系列室温离子液体表面张力的研究.化学学报2007,(15),1443-1448.
    [16]Zhang, H.; Zhou, X.; Dong, J.; Zhang, G.; Wang, C., A novel family of green ionic liquids with surface activities. Science in China Series B:Chemistry 2007,50, (2),238-242.
    [17]Klomfar, J.; Souckova, M.; Patek, J., Surface tension measurements with validated accuracy for four 1-alky 1-3-methylimidazolium based ionic liquids. Journal of Chemical Thermodynamics 2010,42, (3), 323-329.
    [18]房升.液液离子交换萃取法从Raschig合成液中分离硫酸羟胺:应用与相关基础研究[博士学位论文].杭州浙江,淅江大学,2009,123.
    [19]Souc□kova, M.; Klomfar, J.; Patek, J., Measurement and Correlation of the Surface Tension-Temperature Relation for Methanol. Journal of Chemical and Engineering Data 2008,53, (9), 2233-2236.
    [20]Wandschneider, A.; Lehmann, J. K.; Heintz, A., Surface Tension and Density of Pure Ionic Liquids and Some Binary Mixtures with 1-Propanol and 1-Butanol. Journal of Chemical and Engineering Data 2008,53, (2),596-599.
    [21]周钢;兰叶青;施燕博;刘袁凯,第二类物质溶液表面张力与浓度关系的数学模型.计算机与应用化学2007,24,(8),4.
    [22]Miskolczy, Z.; Seb6k-Nagy, K.; Biczok, L.; Gokturk, S., Aggregation and micelle formation of ionic liquids in aqueous solution. Chemical Physics Letters 2004,400, (4-6),296-300.
    [23]Bowers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gutierrez, M. C.; Heenan, R. K., Aggregation Behavior of Aqueous Solutions of Ionic Liquids. Langmuir 2004,20, (6),2191-2198.
    [24]Nizamov, S.; Barakaeva, M.; Kurtaliev, E.; Tatarets, A.; Patsenker, L., Influence of molecular structure of squaraine dyes on their aggregation in aqueous solutions. Journal of Applied Spectroscopy 2009,76, (4), 464-469.
    [25]邓友全,离子液体-性质、制备与应用.北京:中国石油出版社,2006.
    [26]Fang, S.; Zhang, J.-G.; Liu, J.-Q.; Liu, M.; Luo, S.; He, C.-H., Physicochemical Properties of Aqueous Hydroxylamine Sulfate and Aqueous (Hydroxylamine Sulfate+Ammonium Sulfate) Solutions at Different Temperatures. Journal of Chemical and Engineering Data 2009,54, (7),2028-2032.
    [27]Redlich, O.; Meyer, D. M., The Molal Volumes of Electrolytes. Chemical Reviews 1964,64, (3), 221-227.
    [28]Millero, F. J., Molal volumes of electrolytes. Chemical Reviews 1971,71, (2),147-176.
    [29]Pinheiro, L.; Calado, A.; Reis, J.; Viana, C., Shape Effects in the Partial Molar Volume of Tetraethylphosphonium and Ammonium Iodides in Six Nonaqueous Solvents. Journal of Solution Chemistry 2003,32, (1),41-52.
    [30]Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R., Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilibria 2004,219, (1),93-98.
    [31]Wang, J.; Tian, Y.; Zhao, Y.; Zhuo, K., A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane,2-butanone and N, N-dimethylformamide. Green Chemistry 2003,5, (5).
    [32]Xu, H.; Zhao, D.; Xu, P.; Liu, F.; Gao, G., Conductivity and Viscosity of 1-Allyl-3-methyl-imidazolium Chloride+Water and+Ethanol from 293.15 K to 333.15 K. Journal of Chemical and Engineering Data 2004, 50,(1),133-135.
    [33]Heintz, A.; Klasen, D.; Lehmann, J. K., Excess Molar Volumes and Viscosities of Binary Mixtures of Methanol and the Ionic Liquid 4-Methyl-N-butylpyridinium Tetrafluoroborate at 25,40, and 50℃. Journal of Solution Chemistry 2002,31, (6),467-476.
    [34]Falkenhagen, H.; Dole, M., Die Innere Reibung von Elektrolytischen und ihre Deutung nach der Debeschen Theorie. Physikalische Zeitschrift 1929,30,611-622.
    [35]Onsager, L.; Fuoss, R. M., Irreversible Processes in Electrolytes. Diffusion, Conductance and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes. Journal of Physical Chemistry 1931,36, (11),2689-2778.
    [36]Jones, G.; Dole, M., The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. Journal of the American Chemical Society 1929,51, (10),2950-2964.
    [37]Jenkins, H. D. B.; Marcus, Y., Viscosity B-Coefficients of Ions in Solution. Chemical Reviews 1995,95, (8),2695-2724.
    [38]Abdulagatov, I. M.; Zeinalova, A. B.; Azizov, N. D., Experimental viscosity B-coefficients of aqueous LiCl solutions. Journal of Molecular Liquids 2006,126, (1-3),75-88.
    [39]Einstein, A., Eine neue Bestimmung der Molekuldimensionen. Annals of Physics 1906,9,289-306.
    [40]Thomas, D. G., Transport characteristics of suspension:Ⅷ. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid Science 1965,20, (3),267-277.
    [41]Breslau, B. R.; Miller, I. F., On the viscosity of concentrated aqueous electrolyte solution. Journal of Physical Chemistry 1970,74, (5),1056-1061.
    [1]何潮洪;冯宵,化工原理.北京:科学出版社,2007.
    [2]Peng, X. F.; Peterson, G. P., Convective heat transfer and flow friction for water flow in microchannel structures. International Journal of Heat and Mass Transfer 1996,39, (12),2599-2608.
    [3]Li, Z.; He, Y. L.; Tang, G. H.; Tao, W. Q., Experimental and numerical studies of liquid flow and heat transfer in microtubes. International Journal of Heat and Mass Transfer 2007,50, (17-18),3447-3460.
    [4]Akbari, M.; Sinton, D.; Bahrami, M., Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section. Journal of Fluids Engineering 2009,131, (4),041202-8.
    [5]Judy, J.; Maynes, D.; Webb, B. W., Characterization of frictional pressure drop for liquid flows through microchannels. International Journal of Heat and Mass Transfer 2002,45, (17),3477-3489.
    [6]Benard, E.; Chen, J. J. J.; Doherty, A. P.; Spedding, P. L., Enhanced drag in pipe turbulent flow by an aqueous electrolyte:An electroviscous effect. Experimental Thermal and Fluid Science 2009,33, (2), 316-321.
    [7]Davidson, M. R.; Harvie, D. J. E., Electroviscous effects in low Reynolds number liquid flow through a slit-like microfluidic contraction. Chemical Engineering Science 2007,62, (16),4229-4240.
    [8]李卓;唐桂华;陶文铨,微通道中极性流体流动特性的研究.西安交通大学学2007,41,(3),274-278.
    [9]Uerdingen, M.; Treber, C.; Balser, M.; Schmitt, G.; Werner, C., Corrosion behaviour of ionic liquids. Green Chemistry 2005,7, (5),321-325.
    [10]Ashassi-Sorkhabi, H.; Es'haghi, M., Corrosion inhibition of mild steel in acidic media by [BMIm]Br Ionic liquid. Materials Chemistry and Physics 2009,114, (1),267-271.
    [1]Morini, G. L., Single-phase convective heat transfer in microchannels:a review of experimental results. International Journal of Thermal Sciences 2004,43, (7),631-651.
    [2]Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport phenomena(2nd edition). New York:John Wiley and Sons, Inc.,2002.
    [3]Adams, T. M.; Abdel-Khalik, S. I.; Jeter, S. M.; Qureshi, Z. H., An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer 1998,41, (6-7),851-857.
    [4]Lin, T. Y.; Yang, C. Y., An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography. International Journal of Heat and Mass Transfer 2007,50, (23-24),4736-4742.
    [5]Lelea, D.; Nishio, S.; Takano, K., The experimental research on microtube heat transfer and fluid flow of distilled water. International Journal of Heat and Mass Transfer 2004,47, (12-13),2817-2830.
    [6]Celata, G. P.; Cumo, M.; Marconi, V.; McPhail, S. J.; Zummo, G., Microtube liquid single-phase heat transfer in laminar flow. International Journal of Heat and Mass Transfer 2006,49, (19-20),3538-3546.
    [7]Celata, G. P.; Cumo, M.; McPhail, S. J.; Zummo, G., Single-phase laminar and turbulent heat transfer in smooth and rough microtubes. Microfluidics and Nanofluidics 2007,3, (6),697-707.
    [8]Gao, P. Z.; Le Person, S.; Favre-Marinet, M., Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels. International Journal of Thermal Sciences 2002,41, (11), 1017-1027.
    [9]Guo, Z. Y.; Li, Z. X., Size effect on microscale single-phase flow and heat transfer. International Journal of Heat and Mass Transfer 2003,46, (1),149-159.
    [10]Peng, X. F.; Peterson, G. P., Convective heat transfer and flow friction for water flow in microchannel structures. International Journal of Heat and Mass Transfer 1996,39, (12),2599-2608.
    [11]Li, Z.; He, Y. L.; Tang, G. H.; Tao, W. Q., Experimental and numerical studies of liquid flow and heat transfer in microtubes. International Journal of Heat and Mass Transfer 2007,50, (17-18),3447-3460.
    [12]Li, J. W.; Zhong, B. J., Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor. Applied Thermal Engineering 2008,28, (7),707-716.
    [13]Karwa, R.; Solanki, S. C.; Saini, J. S., Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-roughened rectangular ducts. International Journal of Heat and Mass Transfer 1999,42,(9),1597-1615.
    [14]du Plessis, M. A.; Weathers, W. W.; Koenig, W. D., Energetic Benefits of Communal Roosting by Acorn Woodpeckers during the Nonbreeding Season. The Condor 1994,96, (3),631-637.
    [15]Liu, Z. G.; Liang, S. Q.; Takei, M., Experimental study on forced convective heat transfer characteristics in quartz microtube. International Journal of Thermal Sciences 2007,46, (2),139-148.
    [16]Moffat, R. J., Using Uncertainty Analysis in the Planning of an Experiment. Journal of Fluids Engineering-transactions of The Asme 1985,107, (2),173-178.
    [17]Nonino, C.; Del Giudice, S.; Savino, S., Temperature dependent viscosity effects on laminar forced convection in the entrance region of straight ducts. International Journal of Heat and Mass Transfer 2006,49, (23-24),4469-4481.
    [18]Nonino, C.; Del Giudice, S.; Savino, S., Temperature-Dependent Viscosity and Viscous Dissipation Effects in Simultaneously Developing Flows in Microchannels With Convective Boundary Conditions. Journal of Heat Transfer 2007,129, (9),1187-1194.
    [19]Sehyun, S.; Cho, Y. I.; Gringrich, W. K.; Shyy, W., Numerical study of laminar heat transfer with temperature dependent fluid viscosity in a 2:1 rectangular duct. International Journal of Heat and Mass Transfer 1993,36, (18),4365-4373.
    [20]Maranzana, G.; Perry, I.; Maillet, D., Mini-and micro-channels:influence of axial conduction in the walls. International Journal of Heat and Mass Transfer 2004,47, (17-18),3993-4004.
    [21]Morini, G. L., Viscous dissipation as scaling effect for liquid flows in microchannels. ICMM 2005, Proceedings of the 3rd International Conference on Microchannels and Minichannels, Pt A 2005,93-102.
    [22]Morini, G. L.; Lorenzini, M.; Salvigni, S.; Celata, G. P., Experimental Analysis of Microconvective Heat Transfer in the Laminar and Transitional Regions. Experimental Heat Transfer 2010,23, (1),73-93.
    [23]Liu, Z. G.; Guan, N.; Masahiro, T., An experimental investigation of single-phase heat transfer in 0.045mm to 0.141mm microtubes. Nanoscale and Microscale Thermophysical Engineering 2007,11, (3-4), 333-349.
    [24]Hetsroni, G.; Gurevich, M.; Mosyak, A.; Rozenblit, R., Drag reduction and heat transfer of surfactants flowing in a capillary tube. International Journal of Heat and Mass Transfer 2004,47, (17-18),3797-3809.
    [25]Nguyen, N. T.; Bochnia, D.; Kiehnscherf, R.; Dotzel, W., Investigation of forced convection in microfluid systems. Sensors and Actuators A-physical 1996,55, (1),49-55.
    [26]Gokel, G. W., Dean's handbook of organic chemistry(2nd edition). New York:McGraw-Hill,2003.
    [27]Gnielinski, V., Ein Neues Berechnungsverfahren fur die Warmeubertragung im Ubergangsbereich Zwischen Laminaren und Turbulenter Rohstromung. Forschung im Ingenieurwesen-Eng. Res.1995,61, 240-248.
    [28]Cho, D., Micromechanical sensors, actuators and systems. Atlanta, Georgia:Amer Society of Mechanical, 1991.
    [29]Wenzel, R. N., Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 1936,28, (8),988-994.
    [30]Good, R. J.; Girifalco, L. A., A theory for estimation of surface and interfacial energies. Ⅲ. estimation of surface energies of solids from contact angle data. Journal of Physical Chemistry 1960,64, (5),561-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700