用户名: 密码: 验证码:
易失控反应过程的调控及强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
典型含能化合物的合成往往涉及易失控反应过程,反应过程的温度变化较剧烈,温度场、速度场、浓度场之间的耦合效应大,若工艺条件控制不当,容易产生大量副产物,并可能导致反应失控、飞温爆炸。论文对含能化合物合成中广泛应用的釜式和管式反应过程进行了研究,开发了一种适合于易失控反应过程的搅拌桨,设计了新型釜式反应器和管式反应器,并对其进行了模拟和优化,较好地实现了易失控反应过程的安全调控。
     主要研究内容如下:
     1.在易失控半间歇反应过程中实际搅拌器的安装高度往往较低,流体对桨叶背部的冲击较大,且为了搅拌混合均匀,一般都设置较高的转速,耗能较大。通过研究在强放热条件下九种不同类型、尺寸的搅拌桨转速不同时对反应釜内传热过程的影响,选择了传热效果优良的搅拌桨,并在此基础上设计了适用于易失控反应过程的新型搅拌器(CBY-H)。新型搅拌器通过在桨叶片上开设的梯形孔槽减少了流体对搅拌桨叶面背部的冲击力,减小搅拌器的振动,加强轴向循环和流动,且可以让反应生成的气体顺利的传输与逸出。此外,所述的翼型搅拌器的搅拌功率小于一般的翼型桨,能耗低。
     2.由于搅拌器的复杂性和多样性,基于计算流体力学(CFD)的预测技术在搅拌器的设计中得到了广泛的应用。深入了解不同搅拌器搅拌釜内流场的分布、搅拌功率和传热系数的大小对含能化合物合成过程中使用的搅拌设备的优化设计具有重要的意义。本文采用数值模拟的方法对CBY-H桨无挡板搅拌釜内流场的速度分布和搅拌功率进行了详细的研究。通过将研究结果与标准的CBY桨流动性能进行比较,对CBY-H桨的流场特性和能耗进行了评定。同时,测定了CBY和CBY-H桨的传热系数,获得了釜内流体对流传热系数的关联式,为搅拌器的优化设计和工业放大提供一定的指导。
     3.许多含能化合物的合成过程涉及硫酸铵+硝酸铵+水等三元电解质体系。本文在T=(278.15~333.15)K下,较大浓度范围内测定了硫酸铵+水、硝酸铵+水和硫酸铵+硝酸铵+水体系的导热系数和密度数据,并获得相应体系的密度和导热系数的关联方程,用于易失控反应过程的优化设计。
     4.在含能化合物生产过程中,很多化学反应是在搅拌反应釜中进行的强放热反应,当反应热不能有效移出时,便会导致反应热的蓄积,温度进一步升高,使反应釜局部过热,出现“热点”、飞温失稳现象,进而引起反应失控,甚至是热爆炸,严重影响财产和生命安全。因此,本文针对某易失控釜式缩合过程展开了研究,确定了快速传递热量的反应釜的结构,设计了一种新型缩合反应釜,建立了某易失控釜式缩合过程的数学模型,模拟了含能中间体合成过程中缩合反应的失控、飞温情况,提出了相应的技术预防与应急措施,优化了缩合反应过程的工艺条件,获得了操作安全、收率较高的含能化合物的生产工艺。在中试装置上进行了稳定批实验,数值模拟结果与实际工艺优化的结果相符,可用于对含能中间体的工业生产进行指导和预测。
     5.由含能中间体制备某含能化合物的合成过程包括混合、硝解和热解等阶段,硝解反应机理复杂,副反应多,是该过程的控制步骤,硝解反应工艺的优化对含能化合物收率和选择性的提高具有重要的意义。本文针对某易失控管式硝解过程展开了研究,建立了含能中间体硝解过程管式反应器的流动-扩散-反应模型,利用脉冲进样模拟了螺旋管式反应器的流动特性,通过停留时间分布计算了实际硝解反应的轴流扩散系数、Peclect数以及Dα数,模拟了经管式反应合成含能目标产物的收率,在中试装置上进行了稳定批实验,数值模拟结果与实验结果吻合很好,可用于指导和预测含能化合物的工业生产。同时,基于上述研究设计了一种新型的适用于反应中生成气体的内置弹簧管式反应器,它具有比普通管式反应器更优良的传热性能,且能有效防止气液两相段塞流的形成,具有良好的反应效果。
Typical energetic compound synthesis often involves easily runaway reaction. In the process, the temperature rapidly change and coupling effects among the temperature, velocity, and concentration fields are significant. If the process conditions are not properly controlled, a large amount of byproducts are easily produced, which results in reaction runaway and temperature explosion. In the dissertation, tank and tubular reaction processes widely used in the energetic compound synthesis have been studied, a novel impeller applied to easily runaway reaction has been developed, a new pattern of stirred tank reactor and tubular reactor have been designed, simulated, and optimized, thus the security regulation of easily runaway reaction processes has been fully realized in the industrial production of energetic compounds.
     The main contents are generalized as follows:
     1. In the easily runaway semi-batch reaction processes, the actual impeller installation height is often low, the impact of fluid on the blade back is very remarkable, and a high stirred speed has been set so as to mixing evenly, which cause high energy consumption. Through the research on heat transfer performances in the stirred tank reactor with nine types of impellers under different dimensions and rotational speeds, the adequate impeller was determined, and thus a novel impeller (CBY-H) applied to easily runaway reaction was devised. The new impeller reduces the impact of fluid on the blade back surface and the vibration of agitators, allows smooth transmission and escape of gases generated in the reaction as well. In addition, the power consumption of the new impeller is much lower than general hydrofoil impeller.
     2. Due to the complexity and diversity of impeller, forecasting techniques based on computational fluid dynamics (CFD) have been widely used in the design of impellers. Comprehensive understandings of flow field distribution and the magnitude of stirring power and heat transfer coefficients are of great significance in optimization and design of mixing equipments used in the energetic compound synthesis. In the dissertation, the velocity field distribution in the unbaffled stirred tank reactor and stirring power of CBY-H paddle have been detailedly studied by CFD method. The flow field characteristics and energy consumption of CBY-H were evaluated through simulation results compared with the standard CBY impeller. The convective heat transfer coefficients of CBY and CBY-H impeller have been meanwhile determined and correlated, which could be applied to guide the industrialization and optimization design of impellers.
     3. Due to many energetic compound synthetic processes involving ammonium sulfate+ammonium nitrate+water ternary electrolyte systems, the thermal conductivity and density of ammonium sulfate+water, ammonium nitrate+water, and ammonium sulfate+ammonium nitrate+water have been measured covering a temperature from (278.15to333.15) K over a wide range of concentrations. The correlation equations of the thermal conductivity and density for corresponding systems determined could be used to optimize the easily runway processes.
     4. In the energetic compound synthesis, the majority of chemical reactions carried out in stirred tank reactors is highly exothermic. When the reaction heat is not effectively removed, it will lead to reaction heat accumulation and temperature further increasing, thereby causing local overheating of the reactor and emerging of hot spots and runaway instability phenomena, which further leads to the reaction out of control and thermal explosion, and thus threatens the safety of properties and lives. In the dissertation, the easily runaway tank condensation process has been studied to determine the structure of the reactor for released heat rapid transmission, a novel type of condensation reactor has been designed, the mathematical model for the easily runaway condensation process has been established, the runaway and out-of-control cases of the condensation reaction in the synthetic process have been simulated, the appropriate prevention and emergency measures have been proposed, the process conditions of the condensation reaction process have been optimized, and thus the safe-operation and high-yield production technology of the energetic compound has been acquired as well. The stable batch experiments have been carried out in the pilot-scale equipments. It is found that simulation results are consistent with results of the actual process optimization, which therefore could be used for guiding and forecasting the industrial production of the energetic intermediate.
     5. The preparation process of the energetic compound from the energetic intermediate contains several stages, including mixing, nitrolysis and thermolysis. Because of complex reaction mechanism and excessive side reactions, the nitrolysis reaction is the control step of the process. In the dissertation, the easily runaway tubular nitrolysis process has been studied, the mathematical flow-diffusion-reaction model for the tubular reactor used in the easily runaway nitrolysis process has been established, the flow characteristics of the spiral tubular reactor has been simulated using pulse injection, axial diffusion coefficient, Peclect number and Da number of the actual nitrolysis reaction have been calculated by analysis of residence time distribution, the yield of manufacturing the target energetic product through tubular reaction has been simulated as well. The stable batch experiments have also been carried out in the pilot-scale equipments. It is found that the agreement between the simulation and experimental results is pretty good, which therefore could be used for guiding and forecasting the industrial production of the energetic compound. Meanwhile, a new type of tubular reactor with spring internally installed applied to the process of gases generated in the reaction has been developed. The newly designed tubular reactor has more excellent heat transfer performances than ordinary ones, and can effectively prevent the slug flow generated in the binary gas-liquid phases. In addition, it has an outstanding reaction performance.
引文
[1]Stoessel F. Thermal safety of chemical processes:risk assessment and process design [M]. Weinheim: Wiley-VCH,2008.
    [2]Ouyan P K, Chisti M Y, Moo-young M. Heat transfer in airlift bioreactors [J]. Chemical Enginering Research and Design,1989,67(4):451-457.
    [3]倪菊美.苯硝化反应器放大设计[J].石油化工设计,2002,19(1):20-25.
    [4]Westerterp K R, Molga E J. No more runaways in fine chemical reactors [J]. Industrial & Engineering Chemistry Research,2004,43(16):4585-4594.
    [5]Benuzzi A, Zaldivar J M, Eds. Safety of Chemical Reactors and Storage Tanks [M]. Dordrecht:Kluwer, 1991.
    [6]Westerterp K R, Molga E. Safety and runaway prevention in batch and semibatch reactors-a review [J]. Chemical Engineering Research and Design,2006,84(7):543-552.
    [7]Amundson N R, Bilous O. Chemical reactor stability and sensitivity [J]. AIChE Journal,1955,1(4): 513-521.
    [8]Aris R. Introduction to the Analysis of Chemical Reactors [M]. Englewood Cliffs:Prentice Hall,1965.
    [9]Eigenberger G, Schuler H. Reaktorstabilitat und sichere reaktionsfuhrung [J]. Chemie Ingenieur Technik, 1986,58(8):655-665.
    [10]Heiszwolf J J, Fortuin J M H. Runaway behaviour and parametric sensitivity of a batch reactor an experimental study [J]. Chemical Engineering Science,1996,51(11):3095-3100.
    [11]Luo K M, Lu K T, Hu K H. The critical condition and stability of exothermic chemical reaction in a non-isothermal reactor [J]. Journal of Loss Prevention in the Process Industries,1997,10(3):141-150.
    [12]Hugo P. Anfahr und betriebsverhalten von exothermen batch-prozessen [J]. Chemie Ingenieur Technik, 1980,52(9):712-723.
    [13]Adrover A, Greta F, Giona M, Valorani M. Explosion limits and runaway criteria:a stretching-based approach [J]. Chemical Engineering Science,2007,62(4):1171-1183.
    [14]Alos M A, Zaldivar J M, Strozzi F, Nomen R, Sempere J. Application of parametric sensitivity to batch process safety:theoretical and experimental studies [J]. Chemical Engineering & Technology,1996,19(3): 222-232.
    [15]Villermaux J. Mixing effects on complex chemical reactions in a stirred reactor [J]. Reviews in Chemical Engineering,1991,7(1):51-108.
    [16]Varma A, Morbidelli M, Wu H. Parametric sensitivity in chemical systems [M]. Landon:Cambridge University Press,1999.
    [17]Semenov N N. Zur theorie des verbrennungprozesses [J]. Zeitschrift fur Physik,1928,48(7-8):571-582.
    [18]Semenov N N. Some problems of chemical kinetics and reactivity [M]. Oxford:Pergamon Press,1959.
    [19]Baerns M, Hofinann H, Renken A. Chemische reaktionstechnik-lehrbuch der technischen chemie [M]. Stuttgart:Georg Thieme Verlag,1987.
    [20]Villermaux J. Genie de la reaction chimique:conception et fonctionnement des tracteurs [M]. Paris:Tec & Doc Lavoisier,1993.
    [21]Thomas P H, Bowes P C. Some aspects of the self-heating and ignition of solid cellulosic materials [J]. British Journal of Applied Physics,1961,12(5):222-229.
    [22]Adler J, Enig J W. The critical conditions in thermal explosion theory with reactant consumption [J]. Combustion and Flame,1964,8(2):97-103.
    [23]van Walsenaere R J, Froment G F. Parametric sensitivity and runaway in fixed bed catalytic reactors [J]. Chemical Engineering Science,1970,25(10):1503-1516.
    [24]Hugo P. Grundlagen der thermisch-sicheren auslegung von chemischen reaktoren, in dechema kurs sicherheit chemischer reaktoren [J]. Chemie Ingenieur Technik,58(8):655-665.
    [25]Morbidelli M, Varma A. Parametric sensitivity and runaway in tubular reactors [J]. AIChE Journal,1982, 28(5):705-713.
    [26]Morbidelli M, Varma A. On parametric sensitivity and runaway criteria of pseudohomogeneous tubular reactors [J]. Chemical Engineering Science,1984,40(11):2165-2168.
    [27]Morbidelli M, Varma A. A generalized criterion for parametric sensitivity:application to thermal explosion theory [J]. Chemical Engineering Science,1988,43(1):91-102.
    [28]Morbidelli M, Varma A. A generalized criterion for parametric sensitivity:application to a pseudohomogeneous tubular reactor with consecutive or parallel reactions [J]. Chemical Engineering Science, 1989,44(8):1675-1696.
    [29]Wu H, Morbidelli M, Varma A. Pseudo-adiabatic operation and runaway in tubular reactors [J]. AIChE Journal,1998,44(5):1157-1169.
    [30]Wu H, Rota R, Morbidelli M, VarmaA. Parametric sensitivity in fixed-bed catalytic reactors with reverse-flow operations [J]. Chemical Engineering Science,1999,54(20):4579-4588.
    [31]Strozzi F, Zaldivar J M. A general method for assessing the thermal stability of batch chemical reactors by sensitivity calculation based on Lyapunov exponents [J]. Chemical Engineering Science,1994,49(16): 2681-2688.
    [32]Strozzi F, Alos M A, Zaldivar J M. A method for assessing thermal stability of batch reactors by sensitivity calculation based on Lyapunov exponents:experimental verification [J]. Chemical Engineering Science,1994,49(24):5549-5561.
    [33]Alos M A, Strozzi F, Zaldivar J M. A new method for assessing the thermal stability of semibatch processes based on Lyapunov exponents [J]. Chemical Engineering Science,1996,51(11):3089-3094.
    [34]Zaldivar J M, Cano J, Alos M A, Sempere J, Nomen R, Lister D, Maschio G, Obertopp T, Gilles E D, Bosch J, Strozzi F. A general criterion to define runaway limits in chemical reactors [J]. Journal of Loss Prevention in the Process Industries,2003,16(3):187-200.
    [35]Bosch J, Strozzi F, Zbilut J P, Zaldivar J M. On-line runaway detection in isoperibolic batch and semibatch reactors using the divergence criterion [J]. Computers and Chemical Engineering,2004,28(4): 527-544.
    [36]Bosch J, Kerr D C, Snee T J, Strozzi F, Zaldivar J M. Runaway detection in a pilot-plant facility [J]. Industrial & Engineering Chemistry Research,2004,43(22):7019-7024.
    [37]Molga E J, Lewak M, Westerterp K R. Runaway prevention in liquid-phase homogeneous semibatch reactors [J]. Chemical Engineering Science,2007,62(18-20):5074-5077.
    [38]Lu K T, Luo K M, Lin P C, Hwang K L. Critical runway conditions and stability criterion of RDX manufacture in continuous stirred tank reactor [J]. Journal of Loss Prevention in the Process Industries,2005, 18(1):1-11.
    [39]Luo K M, Hu K H. Calculation of the stability criterion in the reaction of energetic materials [J]. Journal of Loss Prevention in the Process Industries,1998,11(6):413-421.
    [40]Haldar R, Rao D P. Experimental studies on parametric sensitivity of a batch reactor [J]. Chemical Engineering & Technology,1992,15(1):34-38.
    [41]Haldar R, Rao D P. Experimental studies on semibatch reactor parametric sensitivity [J]. Chemical Engineering & Technology,1992,15(1):39-43.
    [42]Strozzi F, Zaldivar J M, Westerterp K R. Runaway prevention in chemical reactors using chaos theory techniques [M]. Brussels:European Commission,1997.
    [43]Alos M A, Nomen R, Sempere J M, Strozzi F, Zaldivar J M. Generalized criteria for boundary safe conditions in semi-batch processes:simulated analysis and experimental results [J]. Chemical Engineering and Processing,1998,37(5):405-421.
    [44]Strozzi F, Zaldivar J M. On-line early warning detection system of runaway initiation using chaos theory techniques [P]. United States patent, US 6195010,2001.
    [45]Strozzi F, Zaldivar J M, Kronberg A E, Westerterp K R. On-line runaway detection in batch reactors using chaos theory techniques [J]. AIChE Journal,1999,45(11):2429-2443.
    [46]侯栓弟,王英琛,张政,施力田,阎旭.轴流式搅拌器湍流运动特性[J].化工学报,2000,51(2):260-263.
    [47]张国娟,闵健,高正明,施力田.翼型桨搅拌槽内混合过程的数值模拟[J].高校化学工程学报,2005,19(2):169-174.
    [48]刘心洪,郭欣,高正明.CBY桨搅拌槽内湍流结构的研究[J].北京化工大学学报(自然科学版),2010,37(5):5-9.
    [49]Alcamo R, Micale G, Grisafi F, Brucato A, Ciofalo M. Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine [J]. Chemical Engineering Science,2005,60(8-9): 2303-2316.
    [50]Patwardhan A W, Joshi J B. Relation between flow pattern and blending in stirred tanks [J]. Industrial& Engineering Chemistry Research,1999,38(8):3131-3143.
    [51]廖传华,任晓乾,王重庆.反应过程与设备[M].北京:中国石化出版社,2008.
    [52]余国琮,胡修慈,吴文林.化工容器及设备[M].天津:天津大学出版社,1988.
    [53]丁绪淮,周理.液体搅拌[M].北京:化学工业出版社,1983.
    [54]渠川瑾.反应釜[M].北京:高等教育出版社,1992.
    [55]胡长鹰.轴流式生化搅拌器的研制进展[J].食品与机械,2001,17(5):33-34.
    [56]朱雪琴.通风发酵搅拌技术的研究[J].无锡轻工大学学报,1995.14(3):233-238.
    [57]赵学明,黄霄,马红武,樊菽新,于振生.搅拌生化反应器的循环时间分布和混合结构模型[J].化工学报,1999,50(3):326-336.
    [58]叶雯,方夏虹.轴流式翼型桨的流动分析[J].高校化工工程学报,1994,8(4):369-373.
    [59]傅为民,陈坚,阮文权,詹晓北,祁汝峰,伦世仪.在轴向流搅拌桨发酵罐中进行PHB和结冷胶的发酵实验研究[J].化学反应工程与工艺,1999,15(1):79-84.
    [60]张锁龙,沈惠乎,张国忠.JH型轴流搅拌桨流场分析及设计[J].化学工程,1999,27(5):26-29.王展,尹应武,新型搅拌桨在大型发酵罐中的应用[J].食品与发酵工业,2004,30(2):100-102.
    [61]王展,尹应武,新型搅拌桨在大型发酵罐中的应用[J].食品与发酵工业,2004,30(2):100-102.
    [62]Chilton T H, Drew T B, Jebens R H. Heat transfer coefficients in agitated vessels [J]. Industrial & Engineering Chemistry Research,1944,36(6):510-516.
    [63]Brown R W, Scott M A, Toyne C. An investigation of heat transfer in agitated jacketed cast iron vessels [J]. Chemical Engineering Research and Design,1947,25:181-190.
    [64]Strek F. Heat transfer in liquid mixers-study of a turbine agitator with six flat blades [J]. International Chemical Engineering,1953,3:533-555.
    [65]Oldshue J Y, Gretton A T. Helical coil heat transfer in mixing vessels [J]. Chemical Engineering Progress, 1954,50(12):615-621.
    [66]Cummings G A, West A S. Heat transfer data for kettles with jackets and coils [J]. Industrial & Engineering Chemistry Research,1950,42(11):2303-2313.
    [67]Pratt N H. The heat transfer in a reaction tank cooled by means of a coil [J]. Transactions of the Institution of Chemical Engineers,1947,25:163-174.
    [68]傅德熏,马延文.计算流体力学[M].北京:高等教育出版社,2002
    [69]Yakhot V, Orszag S A. RNG analysis of turbulence. Ⅰ:Basic theory [J]. Journal of Scientific Computing, 1986,1:3-51.
    [70]Bujalski W, Jaworski Z, Nienow A W. CFD study of homogenization with dual rushton turbines-compatarison with experimental results. Part Ⅱ:The multiple reference frame [J]. Chemical Engineering Research and Design,2002,80(1):97-104.
    [71]陆耀军,周力行,沈熊.液-液旋流分离管中强旋湍流的RNG k-ε数值模拟[J].水动力学研究与进展,1999,14(3):325-333.
    [72]Harvey P S, Greaves M. Turbulent flow in an agitated vessel. Part I:A predictive model. Part:Numerical solution and model predictions [J]. Transactions of the Institution of Chemical Engineers,1982,60:195-210.
    [73]Pericleous K A. Mathematical simulation of hydrocyclones [J]. Applied Mathematical Modelling,1987, 11 (4):242-255.
    [74]Xu Y, McGrath G. CFD predictions of stirred tank flows [J]. Transactions of the Institution of Chemical Engineers,1996,74:471-475.
    [75]Brucato A, Ciofalo M, Grisafi F, Micale F. Complete numerical simulation of flow fields in baffled stirred vessels:The inner-outer approach [J]. Proceedings of 8th European Conference on Mixing,1994, 155-162.
    [76]Luo J V, Gosman A D, Issa R 1, Middleton J C, Fitzgerald M K. Full flow field computation of mixing in baffled stirred reactors [J]. Transactions of the Institution of Chemical Engineers,1993,71A:342-344.
    [77]Luo J V, Issa R I, Gosman A D. Prediction of impeller induced flows in mixing vessels using multiple frames of reference [J]. IchemE Symp Ser,1994,136C:549-566.
    [78]Yianneskis M, Popiolek Z, Whitelaw J H. An experimental study of the steady and unsteady flow characteristics of stirred reactors [J]. Journal of Fluid Mechanics,1987,175(2):537-555.
    [79]Dong L, Johansen S T, Engh T A. Flow induced by an impeller in an unbaffled tank. II:Numerical modeling [J]. Chemical Engineering Science,1994,49(20):3511-3518.
    [80]Harvey A D, Rogers S E. Steady and unsteady computation of impeller-stirred reactors [J]. AIChE Journal,1996,42(10):2701-2712.
    [81]Harvey A D, Wood S P, Leng D E. Experimental and computational study of multiple impeller flows [J]. Chemical Engineering Science,1997,52(9):1479-1491.
    [82]Weetman R J. Automated sliding mesh CFD computations for fluidfoil impellers [J]. Proceedings of 9th European Conference on Mixing,1997,195-202.
    [83]Naude I, Xuereb C, Bertrand J. Direct prediction of the flows induced by a propeller in an agitated vessel using an unstructured mesh [J]. The Canadian Journal of Chemical Engineering,1998,76(3):631-640.
    [84]Syrjanen J K, Manninen M T. Detailed CFD prediction of flow around a 45° pitched blade turbine [J]. Proceedings of 10th European Conference on Mixing,2000,265-272.
    [85]Lane G L, Schwarz M P, Evans G M. Comparison of CFD methods for modeling of stirred tanks [J]. Proceedings of 10th European Conference on Mixing,2000,273-280.
    [86]Oshinowo L, Jaworski Z, Dyster K N, Marshall E, Nienow A W. Predicting the tangential velocity field in stirred tanks using the multiple reference frame (MRF) model with validation by LDA measurements [J]. Proceedings of 10th European Conference on Mixing,2000,281-288.
    [87]Ranade V V, Bourne J B, Joshi J B. Fluid mechanics and blending in agitated tanks [J]. Chemical Engineering Science,1991,46(8):1883-1893.
    [88]Kelly W, Gigas B. Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime [J]. Chemical Engineering Science,2003,58(10):2141-2152.
    [89]Brucato A, Ciofalo M, Godfrey J, Grisafi F, et al. On the simulation of solid particle distribution in multiple impeller agitated tanks via computational fluid dynamics [J]. AIDIC Conference Series,1997(2): 287-294.
    [90]Micale G, Montante G, Grisafi F, Brucato A, Godfrey J. CFD simulation of particle distribution in stirred vessels [J]. Chemical Engineering Research and Design,2000,78(3):435-444.
    [91]Jaworski Z, Bujalski W, Otomo N, Nienow A W. CFD study of homogenization with dual rushton turbines-compatarison with experimental results. Part I:Initial studies [J]. Chemical Engineering Research and Design,2000,78(3):327-333.
    [92]Altway A, Setyawan H, Margono, Winardi S. Effect of particle size on simulation of three-dimensional solid dispersion in stirred tank [J]. Chemical Engineering Research and Design,2001,79(8):1011-1016.
    [93]Ljungqvist M, Rasmuson A. Numerical simulation of the two-phase flow in an axially stirred vessel [J]. Chemical Engineering Research and Design,2001,79(5):533-546.
    [94]Pericleous K A, Patel M K. The source-sink approach in the modeling of stirred reactors [J]. PhysioChemical Hydrodynamics,1987,9:279-297.
    [95]Rutherford K, Lee K C, Mahmoudi S M S, Yianneskis M. Hydrodynamic characteristics of dual Rushton impeller stirred vessels [J]. AIChE Journal,1996,42(2):332-346.
    [96]侯拴弟,王英琛,施力田.螺旋桨搅拌槽内湍流运动测量与数据处理[J].高校化学工程学报,1996,10(2):196-201.
    [97]侯拴弟,张政,王英琛,施力田.涡轮桨搅拌槽流动场数值模拟[J].化工学报,2001,52(3):241-246.
    [98]侯拴弟,张政,王英琛,施力田.轴流桨搅拌槽流动场数值模拟[J].化工学报,2000,51(1):69-76.
    [99]钟丽.搅拌槽内固液悬浮的数值模拟[D].硕士学位论文,北京化工大学,2003.
    [100]周国忠.搅拌槽内流动与混合过程的实验研究及数值模拟[D].博士学位论文,北京化工大学,2002.
    [101]吴立志,吴国雄.叶轮式搅拌反应器的计算机模拟与实验对比[J].石油化工设备技术,2000,21(2):34-35.
    [102]闵健,高正明,马青山,施力田,郑国军.轴流桨搅拌槽内的微观混合特性[J].北京化工大学学报,2002,29(5):12-15.
    [103]马青山,王英琛,王嘉骏.多层搅拌桨流动场的测量与数值模拟[J].化工学报,2003,54(12):1661-1666.
    [104]程刚,孙会,潘家祯.用CFD计算双向组合桨的流场[J].化工设备与防腐蚀,2003,6(3):14-16.
    [105]于鲁强,戴志潜,冯连芳,王凯,范西俊.刮壁搅拌桨的最优设计[J].化学工程,1997,25(4):35-38.
    [106]庞向飞,梁红野,陈彦泽.直叶涡轮搅拌槽中流场的数值模拟[J].石油化工设备,2003,32(5):1-4.
    [107]杨敏官,刘栋,高波,杨波,安华明.离心泵叶轮内部液固两相湍流的数值模拟[J].水泵技术,2006,6:14-16.
    [108]刘刚,雷明光,杨小丽.对称进口水力旋流器多相流场及分离性能的数值模拟[J].化工装备技术,2005,26(6):22-25.
    [109]李琳,邱秀云,龚守远.浑水水力分离清水装置内水沙两相弱旋流场数值模拟[J].中国农村水利水电,2008,1:11-19.
    [110]赵斌娟,袁寿其,刘厚林.基于Mixture多相流模型计算双流道泵全流道内固液两相湍流[J].农业工程学报,2008,24(1):7-12.
    [111]王春林,马庆勇,李婷婷,彭娜.搅拌桨液池固-液两相流搅拌的数值模拟[J].排灌机械,2007,25(6):38-41.
    [112]王乐勤,杜红霞,吴大转等.多层桨式搅拌罐内混合过程的数值模拟[J].工程热物理学报,2007,28(3):418-420.
    [113]张国娟,闵健,高正明.翼形桨搅拌槽内混合过程的数值模拟[J].高校化学工程学报,2005,19(2):169-174.
    [114]苗一,潘家祯,张国娟,闵健,高正明等.双层涡轮桨搅拌槽内混合过程的数值模拟[J].华东理工大学学报(自然科学版),2006,32(3):352-356.
    [115]苗一,潘家祯,牛国瑞,闵健,高正明等.多层桨搅拌槽内的宏观混合特性[J].华东理工大学学报(自然科学版),2006,32(3):357-360.
    [116]刘敏珊,张丽娜,董其伍.涡轮桨搅拌槽内混合特性模拟研究[J].工程热物理学报,2009,30(10):1700-1702.
    [117]刘代俊,梁斌,应建康.管式反应器在化肥工业中的应用与研究进展[J].硫磷设计与粉体工程,2002,1:19-21.
    [118]顾光东.如何降低PR单管反应器生产DAP的氨损[J].磷肥与复肥,2003,18(3):28-30.
    [119]冯玉海,许晓军.硫酸、氨管式反应器在尿基复合肥装置中的应用[J].磷肥与复肥,2003,18(4):53-55.
    [120]王金铭.双管式反应器在DAP和NPK生产中的应用[J].硫磷设计,1998,1:39-41.
    [121]Lvancher S S, Goncharenk M V, Kondratiev Y N, Saveliev A M, Sofiev A E. Mathematical modeling and experimental study of high-pressure ethylene polymerization reactors [J]. Chemical Engineering Journal, 2007,134(1-3):175-179.
    [122]Asteasuain M, Brandolin A. Modeling and optimization of a high-pressure ethylene polymerization reactor using g-PROMS [J]. Computers & Chemical Engineering,2008,32(3):396-408.
    [123]金学兰,袁璞,胡品慧,董守平.丙烯聚合反应动态模拟[J].化工自动化及仪表,2005,32(3):7-10.
    [124]Logist F, Smets L Y, Vanimpe J F. Derivation of generic optimal reference temperature profiles for steady-state exothermic jacketed tubular reactors [J]. Journal of Process Control,2008,18(1):92-104.
    [125]Merta H, Pelka R. Investigation of the temperature changes of the divided recirculation stream on the dynamics of the tubular reactor cascade [J]. Chaos, Solitons & Fractals,2009,40(4):1680-1687.
    [126]Leonidas E K, Nikos G P. Fluid dynamic characteristics of a structured bed spiral mini-reactor [J]. Chemical Engineering Science,2007,62(21):5979-5988.
    [127]Podila K, Taweel A M, Koksal M, Troshko A, Gupta Y P. CFD simulation of gas-liquid contacting in tubular reactors [J]. Chemical Engineering Science,2007,62(24):7151-7162..
    [128]Merta H, Pelka R. Numerical analysis of behavior of tubular reactors with different residence time and variable division of the recirculation stream [J]. Chaos, Solitons & Fractals,2007,33(4):1204-1212.
    [129]彭男.管道化连续法合成橡胶硫化促进剂M[J].沈阳化工学院学报,1996,10(2):148-154.
    [130]赵佩月,陈晓春,武新颖,孙巍,刘时伟,袁印实,柳鹄.连续法合成二氧化硫脲的管式工艺研究[J].北京化工大学学报,2005,32(6):90-93.
    [131]刘妍,杨园匹,陈新志.管道化工艺合成2,4-二甲基苯酚[J].精细与专用化学品,2006,14(24):20-22.
    [132]Breig. Process for the continuous indirect diazotization of aromatic amines [P]. United States Patent, US 4233213,1980.
    [133]张濂,许志美,袁向前.化学反应工程原理[M].上海:华东理工大学出版社,2007.
    [134]Vliet E V, Derksen J, van den Akker H E A. Numerical study on the turbulent reacting flow in the vicinity of the injector of an LDPE tubular reactor [J]. Chemical Engineering Science,2007,62(9):2435-2444.
    [1]Alcamo R, Micale G, Grisafi F, Brucato A, Ciofalo M. Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine [J]. Chemical Engineering Science,2005,60(8-9): 2303-2316.
    [2]Patwardhan A W, Joshi J B. Relation between flow pattern and blending in stirred tanks [J]. Industrial& Engineering Chemistry Research,1999,38(8):3131-3143.
    [3]Ranade, V V, Bourne J R, Joshi J B. Fluid mechanics and blending in agitated tanks [J]. Chemical Engineering Science,1991,46(8):1883-1893.
    [4]王志锋,黄维斌,施力田.不同桨型的搅拌槽中非稳态温度场分布的研究[J].高校化学工程学报,2002,16(6):609-613.
    [5]Ouyan P K, Chisti M Y, Moo-young M. Heat transfer in airlift bioreactors [J]. Chemical Enginering Research and Design,1989,67(4):451-457.
    [6]倪菊美.苯硝化反应器放大设计[J].石油化工设计,2002,19(1):20-22.
    [7]王志锋,黄维斌,施力田.垂直列管加热的搅拌槽中温度场的测量与数值模拟[J].化工学报,2002,53(11):1175-1180.
    [8]陈志平,章序文,林兴华.搅拌与混合设备设计选用手册[M].北京:化学工业出版社,2004.
    [9]冯连芳.搅拌设备设计的发展与建议[J].化工设备与管道,2010,47(5):1-4.
    [10]雷照.搅拌釜传热过程研究[D].硕士学位论文,浙江大学,2008.
    [11]王凯,冯连芳.混合设备设计[M].北京:机械工业出版社,2000.
    [12]张平亮.搅拌器的选择与设计[J].化工设备设计,1996,33(1):15-21.
    [13]华依青.搅拌器在化工单元设备中的选用[J].化工设计,2004,14(6):10-13.
    [14]黄雄斌,王英琛,林猛流,吴德钧,施力田.轴流式搅拌器[P].中国专利,CN 2149242Y,1993.
    [1]王凯,虞军.搅拌设备[M].北京:化学工业出版社,2003:38-52
    [2]Kasata G R, Ranade V V. CFD simulation of liquid-phase mixing in solid-liquid stirred reactor [J]. Chemical Engineering Science,2008,63:3877-3885.
    [3]郭武辉,潘家祯.计算流体力学用于搅拌器流场研究及结构设计[J].化学工程,2009,37(9):20-23.
    [4]郑瑜,刘雪东,刘文明.闭式涡轮搅拌器搅拌釜内流场的数值模拟[J].化工机械,2010,37(2):197-200.
    [5]田华,栾德玉.直叶涡轮及斜四叶桨搅拌槽层流流场的数值分析[J].石油化工,2011,42(4):50-56.
    [6]王嘉骏,李良超,顾雪萍,冯连芳.搅拌反应器内气液两相流的CFD研究进展[J].化工设备与管道,2012,49(1):1-4.
    [7]李良超,王嘉骏,顾雪萍,冯连芳,李伯耿.气液搅拌槽内气泡尺寸与局部气含率的CFD模拟[J].浙江大学学报(工学版),2010,44(12):2396-2415.
    [8]李良超,王嘉骏,顾雪萍,冯连芳,李伯耿.双层桨搅拌槽内局部气液分散特性研究[J].浙江大学学报(工学版),2009,43(3):463-467.
    [9]刘心洪,郭欣,高正民.CBY桨搅拌槽内湍流结构的研究[J].北京化工大学学报(自然科学版),2010,37(5):5-9.
    [10]侯拴弟,张政,王英琛,施力田.轴流桨搅拌槽三维流场数值模拟[J].化工学报,2000,51(1):70-76.
    [11]马青山,聂毅强,包雨云,王英琛,施力田.搅拌槽内三维流场的数值模拟[J].化工学报,2003,54(5):612-618.
    [12]张国娟,闵健,高正明,施力田.翼型桨搅拌槽内混合过程的数值模拟[J].高校化学工程学报,2005,19(2):169-174.
    [13]Min J, Gao Z M, Shi L T. CFD simulation of mixing in a stirred tank with multiple hydrofoil impellers [J]. Chinese Journal of Chemical Engineering,2005,13(5):583-588.
    [14]Min J, Gao Z M. Large eddy simulations of mixing time in a stirred tank [J]. Chinese Journal of Chemical Engineering,2006,14(1):1-7.
    [15]苗一,潘家祯,牛国瑞,闵健,高正明.多层桨搅拌槽内的宏观混合特性[J].华东理工大学学报(自然科学版),2006,32(3):357-360.
    [16]张凤涛,刘芳,黄雄斌.高固含搅拌槽内临界离底悬浮转速的数值模拟[J].过程工程学报,2007,7(3):439-444.
    [17]王振松,李良超,黄雄斌.固-液搅拌槽内槽底流场的CFD模拟[J].北京化工大学学报(自然科学版),2005,32(4):5-9.
    [18]张优,尹喜祥,黄雄斌.固-液搅拌槽的分散性能[J].过程工程学报,2011,11(2):181-186.
    [19]于飞,包雨云,黄雄斌.搅拌槽内具滑移特性非牛顿流体的搅拌功率及混合特性研究[J].高校化学工程学报,2009,23(5):878-884.
    [20]钟丽.搅拌槽内固-液悬浮的数值模拟[D].硕士学位论文,北京化工大学,2003.
    [21]车圆圆,何潮洪,周俊超,吴可君.一种翼型轴流式搅拌器[P].中国专利,CN202036961U,2011.
    [22]张仲敏,黄雄斌.酯化反应釜内流动特性的数值模拟[J].北京化工大学学报,2005,32(5):29-35.
    [23]崔蕴芳.错位叶片搅拌槽内的混沌混合模拟和实验研究[D].硕士学位论文,山东大学,2008.
    [24]李晟.基于FLUENT软件的轴流风机设计初步研究[D].硕士学位论文,西北工业大学,2004.
    [25]Yakhot V, Orszag S A. RNG analysis of turbulence. I Basic theory [J]. Journal of Scientific Computing, 1986,1:3-51.
    [26]李建隆,车香荣,陈光辉,王伟文,王立新,谷新春.新型a旋流器流场模拟与实验研究[J].高校化学工程学报,2008,22(3):371-377.
    [27]Delafosse A, Line A, Morchain J. LES and URANS simulations of hydrodynamics in mixing tank: Comparison to PIV experiments [J]. Chemical Engineering Research and Design,2008,150:1-9.
    [28]唐辉,何枫.离心泵内流场的数值模拟[J].水泵技术,2002,145(3):3-8.
    [29]Bourne J R, Buerli M, Regnass, W. Heat transfer and power measurement in stirred tanks using heat flow calorimetry [J]. Chemical Engineering Science,1981,36:347-354.
    [30]Wilson E E. A basis for rational design of heat transfer apparatus [J]. Transactions of the Institution of Chemical Engineers,1915,37:47-53.
    [31]Stoessel F. Safety of polymerization processes, in handbook of polymer reaction engineering, Vol.2 [M]. Weinheim:Wiely-VCH,2005.
    [32]Schlichting H. Boundary Layer Theory [M]. New York:McGraw-Hill,1968.
    [33]Chilton T H, Drew T B, Jebens R H. Heat transfer coefficients in agitated vessels [J]. Industrial& Engineering Chemistry Research,1944,36(6):510-516.
    [34]Uhl V W, Gray J B. Mixing:Theory and Practice, Vol.1 [M]. New York:Academic Press,1966.
    [1]Horvath A L. Handbook of aqueous electrolyte solutions. Physical properties, estimation and correlation methods [M]. New York:John Wiley & Sons,1985.
    [2]Wang P M, Anderko A. Modeling thermal conductivity of concentrated and mixed-solvent electrolyte systems [J]. Industrial & Engineering Chemistry Research,2008,47:5698-5709.
    [3]Abdulagatov I M, Akhmedova-Azizova L A, Azizov N D. Thermal conductivity of binary aqueous NaBr and KBr and ternary H2O + NaBr + KBr solutions at temperatures from (294 to 577) K and pressures up to 40 MPa [J]. Journal of Chemical & Engineering Data,2004,49(6):1727-1737.
    [4]Abdulagatov I M, Akhmedova-Azizova L A. Thermal conductivity of aqueous K2CO3 solutions at high temperatures [J]. Journal of Solution Chemistry,2009,38:1015-1028.
    [5]Akhmedova-Azizova L A, Babaeva S S. Thermal conductivity of aqueous Na2CO3 at High Temperatures and High Pressures [J]. Journal of Chemical & Engineering Data,2008,53:462-465.
    [6]Long Y, Chen J, Liu Y G, Nie F D, Sun J S. A direct method to calculate thermal conductivity and its application in solid HMX [J]. Journal of Physics:Condensed Matter,2010,22:185404.
    [7]郭春意.电解质水溶液之性质[D].硕士学位论文,台湾静宜大学,2007.
    [8]张锁江.电解质溶液的热力学性质与传递性质[D].博士学位论文,浙江大学,1994.
    [9]张海朗.非电解质溶液及混合电解质水溶液的粘度与体积的测量和研究[D].博士学位论文,浙江大学,1996.
    [10]Savenkov A S, Ryshchenko I M, Aseev G G. Equations and determination of physicochemical properties of ammonium sulfate-nitrate solutions [J]. Russion Journal of Applied Chemistry,2007,80:213-220.
    [11]Liu X B, Liu M, Yu X Y. Improved preparation of 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1] nonane (DPT) from urea [J]. Journal of the Iranian Chemical Research,2010,3:133-139.
    [12]Radhakrishnan S, Talawar M B, Venugopalan S, Narasimhan V L. Synthesis, characterization and thermolysis studies on 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT):A key precursor in the synthesis of most powerful benchmark energetic materials (RDX/HMX) of today [J]. Journal of Hazardous Materials,2008,152:1317-1324.
    [13]Radhakrishnan S, Kumar K S, Soman T, Narasimhan V L. Comparative study on the role of DPT on the formation of HMX in Semi-Batch and Continuous Process [J]. Journal of Energetic Materials,2008,26: 102-114.
    [14]Strecker R A, Randolph N J. Preparation of 1,5-methylene-3,7-dinitro-1,3,5,7-tetraazacyclo-octane [P]. United States Patent, US4338442,1981.
    [15]McKay A F, Wright G F, Chute W J, Downing D C, Myers G S. The nitrolysis of hexamethylenetetramine:I. The significance of 1,5-methylene-3,7-dinitro-1,3,5,7-tetraazacyclo-octane (DPT) [J]. The Canadian Journal of Reseaech,1949,27b:218-237.
    [16]白景瑞.硫酸法制备二硝基五亚甲基四胺的研究[J].火炸药学报,2001,3:39-40.
    [17]Il'yasov S G, Lobanova A A, Popov N I, Sataev R R. Chemistry of urea nitro derivatives:IV. Reaction of N,N-dinitrourea with formaldehyde [J]. Russian Journal of Organic Chemistry,2002,38(12):1739-1743.
    [18]Davis T L, Blanchard K C. The dearrangement of nitrourea and its application in synthesis [J]. Journal of the American Chemical Society,1929,51(6):1790-1801.
    [19]Weakley M L, Moffett S M, Craig L E. Production of nitrourea [P]. United States Patent, US3098872, 1963.
    [20]Wilfried S, Hartmut M, Christina M. Specific heat and thermal conductivity of the ammonium sulfate-water system[J], Chemische Technik,1982,34(1):31-32 (in German).
    [21]Chernen'kaya E I, Vernigora G A, Bratash E G, Pavlyuchenko E N. Thermal properties of solutions of ammonium and sodium nitrates and their mixtures in ammonium carbonate solutions at different temperatures [J]. Russia:State Public Scientific Technological Library (SPSTL),1982,1148 khp-D82, p 11 (in Russian).
    [22]Peter K, Horst S. The behavior of the thermal conductivity of some phosphate and nitrate solutions [J]. Chemische Technik,1977,29:552-554 (in German).
    [23]Sohnel O, Novotny P. Densities of aqueous solutions of inorganic substances [M]. Amsterdam:Elsevier, 1985.
    [24]Wu J T, Zheng H F, Qian X H, Li X J, Assael M J. Thermal conductivity of liquid 1,2-dimethoxyethane from 243 to 353 K at pressures up to 30 MPa [J]. International Journal of Thermophysics.2009,30:385-396.
    [25]Li X J, Wu J T, Dang Q. Thermal conductivity of liquid diethyl ether, diisopropyl ether, and di-n-butyl ether from (233 to 373) K at pressures up to 30 Mpa [J]. Journal of Chemical & Engineering Data,2010,55: 1241-1246.
    [26]Wakeham W A, Brown H M. Thermal conductivity of aqueous mixtures of 2-n-butoxyethanol at pressures up to 150 MPa [J]. Journal of Chemical & Engineering Data,2010,55:4499-4506.
    [27]刘明,何潮洪,黄志尧,孟振振,周俊超,车圆圆,金伟光.丁酮肟-丁酮,丁酮肟-正已烷体系导热系数的测定[J].高校化学工程学报,2011,25(4):547-553.
    [28]Wu J T, Li X J, Zheng H F, Assael M J. Thermal conductivity of liquid dimethyl ether from (233 to 373) K at pressures up to 30 MPa [J]. Journal of Chemical & Engineering Data,2009,54:1720-1723.
    [29]Patek J, Hruby J, Klomfar J, Souckova M, Harvey A H. Reference correlations for thermophysical properties of liquid water at 0.1 Mpa [J]. Journal of Physical and Chemical Reference Data,2009,38:21-29.
    [30]Ramires M L V, Nieto de Casto C A, Perkins R A, Nagasaka Y, Assael M J, Wakeham W A. Reference data for the thermal conductivity of saturated liquid toluene over a wide range of temperatures. Journal of Physical and Chemical Reference Data,2000,29:133-139.
    [31]Yu Y X, Bao T Z, Gao G H, Li Y G. Densities and apparent molar volumes for aqueous solutions of HN03-UO2(NO3)2 at 298.15 K [J]. Journal of Radioanalytical and Nuclear Chemistry,1999,241:373-377.
    [32]Yao B, Han S J. Excess molar volumes for the ternary mixture DMF + methanol + water at the temperature 298.15 K [J]. Journal of Chemical & Engineering Data,1999,44:491-496.
    [33]Cveto K, Darja R T. Volumetric properties of aqueous solutions of cyclohexylsulfamic acid [J]. Journal of Solution Chemistry,2006,35:395-406.
    [34]Zhang H L, Han S J. Viscosity and density of water+sodium chloride+potassium chloride solutions at 298.15 K [J]. Journal of Chemical & Engineering Data,1996,41:516-520.
    [35]Andrew Z, Robert P, Jacob G, Anthony F. Partial molar volumes of cobalt (Ⅲ) complexes homologous series of aminopentaammine cobalt(III) complexes [J]. Journal of Solution Chemistry,2007,36:1525-1546.
    [36]Aseyev G G. Electrolytes:properties of solutions. Methods for calculation of multicomponent systems and experimental data on thermal conductivity and surface tension [J]. New York:Begell-House Inc.,1998.
    [37]Young T F, Smith M B. Thermodynamic properties of mixtures of electrolytes in Aqueous Solutions [J]. Journal of Physical Chemistry,1954,58:716-724.
    [38]Sipos P, Stanley A, Bevis S, Hefter G, May P M. Viscosities and densities of concentrated aqueous NaOH /NaAl(OH)4 mixtures at 25 ℃ [J]. Journal of Chemical & Engineering Data,2001,46:657-661.
    [39]房升.液液离子交换萃取法从Raschig合成液中分离硫酸羟铵:应用与相关基础研究[D].博士学位论文,浙江大学,2009.
    [40]Tans A M P. A new type of nomogram. Aqueous ammonium sulfate solutions [J]. Industrial & Engineering Chemistry Research.,1958,50:971-972.
    [41]Konigsberger E, Konigsberger L C, Szilagyi I, May P M. Measurement and prediction of physicochemical properties of liquors relevant to the sulfate process for Titania production.1. Densities in the TiOSO4 + FeSO4 + H2SO4 + H2O system [J]. Journal of Chemical & Engineering Data,2009,54:520-525.
    [42]Magalhaes M C F, Konigsberger E, May P M, Hefter G. Heat capacities of concentrated aqueous alkaline aluminate solutions at 25 ℃ [J]. Journal of Chemical & Engineering Data,2002,47:960-963.
    [43]Konigsberger E, Bevis S, Hefter G, May P M. Comprehensive model of synthetic Bayer liquors. Part 2. Densities of alkaline aluminate solutions to 90 ℃ [J]. Journal of Chemical & Engineering Data,2005,50: 1270-1276.
    [1]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,1999.
    [2]林宗虎,汪军,李瑞阳,崔国民.强化传热技术[M].北京:化学工业出版社,2007.
    [3]池田羲雄.实用热管技术[M].北京:化学工业出版社,1988.
    [4]Ma T Z, Jiang Z Y. Heat pipe research and development in China [J]. Proceedings of 5th International Heat Pipe Conference, Tsukuba, Japan,1984,10-15.
    [5]雷照.搅拌釜传热过程研究[D].硕士学位论文,浙江大学,2008.
    [6]Li C C. Thermal conductivity of liquid mixtures [J]. AIChE Journal,1976,22(5):927-930.
    [7]Sastri, S R S, Rao K K. Quik estimating for thermal conductivity [J]. Chemical Enginnering,1993,100: 106-107.
    [8]Poling B E, Prausnitz J M, O'connell J P. The Properties of Gases and Liquids (Fifth Edition) [M]. Columbus:McGraw-Hill,2004.
    [9]Joback K G, Reid R C. Estimation of pure-component properties from group-contributions [J]. Chemical Engineering Communications,1987,57:233-243.
    [10]Wilson G M, Jasperson L V. Critical constants Tc, Pc. Estimation based on zero, first and second order methods [J]. AIChE Spring Meeting, New Orleans, LA,1996.
    [11]Ambrose D, Walton J. Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols [J]. Pure and Applied Chemistry,1989,61(8):1395-1403.
    [12]Peng D Y, Robinson D B. A new two-constant equation of state [J]. Industry & Engineering Chemistry Fundamentals,1976,15(1):59-64.
    [13]Lehrer I H. Jacket-side Nusselt number [J]. Industrial & Engineering Chemistry Process Design and Development,1970,9(4):553-558.
    [14]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [15]何潮洪,冯霄.化工原理(第二版)[M].北京:科学出版社,2007.
    [16]车圆圆,何潮洪,周俊超,吴可君.一种翼型轴流式搅拌器[P].中国专利,CN202036961U,2011.
    [17]Fogler H S. Elements of chemical reaction engineering (Third Edition) [M]. London:Prentice Hall,2004
    [1]Froment G F, Bischoff K B. Chemical reactor analysis and design [M]. New York:John Wiley & Sons Inc, 1979.
    [2]Roberts G W. Chemical reactions and chemical reactors [M]. New York:John Wiley & Sons Inc,2008.
    [3]覃光明,葛忠学.含能化合物合成反应与过程[M].北京:化学工业出版社,2011.
    [4]Poling B E, Prausnitz J M, O'connell J P. The Properties of Gases and Liquids (Fifth Edition) [M]. Columbus:McGraw-Hill,2004.
    [5]Wilke C R, Chang P. Correlation of diffusion coefficients in dilute solutions [J]. AIChE Journal,1955,1(2): 264-270.
    [6]Weisman J. Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines [J]. International Journal of Multiphase Flow,1979,5(6):437-462.
    [7]Levenspiel O. Chemical Reaction Engineering [M]. New York:John Wiley & Sons Inc,1972.
    [8]Zhao C X, Xu Y L, He C H. Axial dispersion coefficient in high-speed counter-current chromatography [J]. Journal of Chromatography A,2009,1216(24):4841-4846.
    [9]李希.化工问题的建模与数学分析方法[M].北京:化学工业出版社,2006.
    [10]Danckwerts P V. Continuous flow systems:Distribution of residence times [J]. Chemical Engineering Science,1953,2(1):1-13.
    [11]Aris R, Amundson N R. Statistical analysis of a reaction:Linear theory [J]. Chemical Engineering Science,1959,9(4):250-262.
    [12]Levenspiel O, Bischoff K B. Patterns of Flow in Chemical Process Vessels [J]. Chemical Engineering Science,1964,4:95-198.
    [13]Coker A K. Modeling of chemical kinetics and reactor design [M]. Houston:Gulf Publishing Company, 2001.
    [14]Bamford C H, Tipper C F H, Compton R G. Kinetics and Chemical Technology [M]. Amsterdam: Elsevier Science Publishing Company,1985.
    [15]FoglerH S. Elements of chemical reaction engineering (Third Edition) [M]. London:Prentice Hall,2004.
    [16]段培清.换热器在线防、除垢技术研究[D].硕士学位论文,浙江大学,2008.
    [17]毛薛刚.蒸发器在线防垢除垢研究[D].硕士学问论文,浙江大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700