用户名: 密码: 验证码:
酚醛树脂基多孔炭材料的可控制备与电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以酚醛树脂为炭前驱体原料,分别采用化学活化法、溶胶-凝胶炭化法、软模板法和聚合物共聚炭化法制备双电层电容器(EDLC)电极用高比表面积和适宜孔径分布的多孔炭材料。重点考察了上述制备方法及其工艺条件对多孔炭材料孔隙结构与电化学性能的影响,探讨了各制备方法中炭材料孔隙的成孔机理,阐明了多孔炭材料的电化学性能与其比表面积和孔结构之间的关系,确立了调控高比表面积多孔炭孔结构的工艺方法及工艺条件,为多孔炭材料孔结构的调控提供了实验和理论依据,有助于进一步提高多孔炭材料作为EDLC电极材料时的电化学性能。
     以酚醛树脂为炭前驱体,KOH作活化剂,采用炭化-活化两步法制备了EDLC用多孔炭材料。系统考察了碱炭比、炭化温度和活化时间等工艺因素对多孔炭收率、孔结构和电化学性能的影响。探讨了多孔炭孔隙结构与电化学性能之间的关系,确立了适合不同电解液体系用多孔炭电极材料的制备工艺方法和条件。
     研究表明,碱炭比、炭化温度和活化时间对多孔炭的孔隙结构均有较大影响,通过调节炭化温度可在较低活化剂用量下调控多孔炭材料孔隙结构。在炭化温度为600℃、碱炭比为3、活化温度为900℃和活化时间为2h的工艺条件下,可制得比表面积为2918.6m~2/g,总孔容为1.41cm3/g,其中微孔比表面积为2628.3m~2/g,中孔率为19%的多孔炭材料(PF-600),该多孔炭在水系电解液中1mA/cm~2充放电时,比电容达到310F/g,电流密度增大50倍容量保持率达到90%;在其它工艺参数相同的条件下,炭化温度降低至550℃时制得的多孔炭材料(PF-550)的比表面积为2983.5m~2/g,总孔容为1.58cm3/g,其中微孔比表面积为2269.4m~2/g,中孔率增大到37%。在有机电解液中1mA/cm~2充放电时,比电容达到160F/g,电流密度增大50倍容量保持率达到82%,显示出良好的功率特性。对于有机电解液体系,多孔炭材料中存在适当比例的中孔不仅可以改善电极材料的功率特性,而且能提高微孔的利用率。
     以间苯二酚和甲醛为原料、六亚甲基四胺(HMTA)为催化交联剂,醇类为溶剂,经溶胶-凝胶、常压干燥和炭化处理成功制备出高比表面积且富含中孔的炭气凝胶。系统考察了溶剂类型、聚合反应温度和炭化升温速率等工艺因素对炭气凝胶孔隙结构和电化学性能的影响。确立了制备EDLC电极用炭气凝胶的工艺方法和工艺条件。
     研究结果表明,选用具有催化交联双重作用的HMTA作催化剂以及表面张力和挥发速度适宜的乙醇作溶剂可以实现RF湿凝胶的常压干燥,所得干凝胶能较好地保留溶胶-凝胶过程中形成的网络结构,进一步炭化后可制得富含中孔的多孔炭气凝胶。
     通过改变溶剂类型、缩聚反应温度和炭化升温速率等可有效调控多孔炭气凝胶的孔隙结构。随着缩聚反应温度的升高,炭气凝胶的中孔孔径不断增大,中孔含量增多;随着炭化升温速率的加快,炭气凝胶的比表面积呈先增大后减小的趋势,而中孔率则先减小后增大。在间苯二酚(R)/甲醛(F)摩尔比值为2.0,R/六亚甲基四胺(H)摩尔比值为50,乙醇(S)为溶剂且R/S为0.1g/ml,80℃下反应72h,常压干燥后以2℃/min的升温速率升温至900℃炭化,制得的多孔炭气凝胶的比表面积为739.0m~2/g,中孔率达到50%,平均孔径为2.76nm。该炭气凝胶电极在水系电解液中1mA/cm~2电流密度下的比电容达180F/g;电流密度增大50倍,容量保持率达到86%,表现出良好的高容量、高功率特性。
     以间苯二酚(R)和甲醛(F)为原料,分别采用六亚甲基四胺(HMTA)和盐酸(HCl)作催化剂,通过添加嵌段共聚物F127作致孔剂,利用协同自组装和炭化处理制备了具有规整孔隙结构的多孔炭材料。分析了F127加入量对所得多孔炭材料的形貌、孔隙结构和电化学性能的影响,探讨了多孔炭材料的孔结构形成机理,确立了制备具有规整孔隙结构多孔炭材料的工艺方法和工艺条件。
     研究表明催化剂类型对树脂复合体系的结构有较大影响,且进一步影响所得多孔炭材料的孔隙结构。采用弱碱性的HMTA作催化剂时,由于催化效率低,间苯二酚与甲醛的溶胶-凝胶过程时间较长,需溶剂缓慢挥发才能形成较为有序的嵌段共聚物与酚醛树脂的复合中间相结构,反应过程中容易发生单轴结构变形,导致最终得到的多孔炭材料孔隙结构的有序性难以保证。采用强酸性的HCl作催化剂时,由于酚醛树脂和嵌段共聚物F127被部分质子化,反应体系可以在库伦引力(I+X-S+机理)和氢键(I0S0机理)的共同作用下自组装形成纳米复合体系,纳米复合体系微相结构的有序性提高,同时保证较高的合成速率,进而获得具有有序孔道分布的多孔炭材料。
     采用HCl作催化剂时,不同F127加入量制得的多孔炭材料比表面积达到645~701m~2/g,总孔容为0.41~0.55cm3/g,平均孔径在2.46~3.38nm之间。其中当R/F为2.0(摩尔比),F127/R为1.3(质量比),900℃下炭化制得的多孔炭比表面积为701.2m~2/g,中孔孔容为0.36m3/g,中孔率达到67.0%。该多孔炭电极在水系电解液中1mA/cm~2电流密度下的比电容为165F/g,电流密度增大50倍,容量保持率高达93%。经过5000次循环,容量保持率达94%以上,具有良好的大电流充放电性能和循环性能。
     以酚醛树脂(Phenolic resin, PF)为炭前驱体,分别以小分子二元酸(己二酸(HA)和辛二酸(SA))和环氧预聚物(QS)为致孔链段,首次以聚合物共聚炭化法制备出孔隙结构丰富的多孔炭材料,实现了以聚合物共聚炭化法制备多孔炭材料的设想。考察了致孔链段加入量对多孔炭孔隙结构和电化学性能的影响。探讨了聚合物共聚体系炭化制备多孔炭材料的孔结构形成机理。
     研究结果表明二元酸通过分子链两端的羧基与酚醛树脂中的羟甲基发生酯化反应,一定量的二元酸以链段或接枝的形式接入到酚醛树脂固化物中,其热解温度由150~230℃提高至400~450℃,即能够在PF已初具骨架强度时再热解。其中,HA加入量为25%时所得多孔炭的比表面积和总孔容分别达到550.9m~2/g和0.27cm3/g,在水系电解液中电流密度为1mA/cm~2的质量比电容为145F/g。
     以QS为致孔链段,利用QS中的端环氧基与酚醛树脂中的酚羟基发生反应生成醚键使QS接枝到酚醛树脂的链段上,该共聚体系进一步炭化后可制得孔隙丰富的多孔炭材料。随着QS用量的增加,多孔炭的比表面积先增大后减小,在QS加入量为15%时达到最大值609.0m~2/g,总孔容为0.28cm3/g,在水系电解液中1mA/cm~2的电流密度下的比电容量为177.5F/g,电流密度增大50倍,容量保持率为76%,具有较高的容量保持率。
     聚合物共聚炭化法中,共聚体系在固化反应完全后,体系中嵌段或接枝链段形成的微相区由于化学键连接和较强的分子间力的作用,相分离受到抑制,相结构粗化被延迟,即相区尺寸被控制在纳米尺度范围内。该复合结构在升温炭化时,由于致孔化合物所形成的微相区热解,在炭前驱体当中形成孔隙,且孔隙大小相较于共聚体系中的微相区域尺寸有所收缩,同时由于致孔化合物通过化学键与固化体系相连接,在炭化过程中,能在树脂炭化体系初具骨架强度时再热解,使得由其热解而产生的孔隙不因树脂固化体系网络结构的收缩塌陷而消失。最终获得孔隙丰富的多孔炭材料。所提出的共聚物炭化法工艺简单,孔隙结构可控且环境友好,有良好的应用前景。
Porous carbons with high specific surface area and reasonable pore sizedistribution used for electric double layer capacitor (EDLC) were prepared with resolphenolic resin as raw material by different methods, including chemical activation,sol-gel polymerization, soft-template and polymer blend technique. The influences ofpreparation method and conditions on structure and performance of porous carbonswere thoroughly investigated and the pore-forming mechanisms were discussed. Therelationship between the electrochemical performance of porous carbon and porestructures were clarified. Based on these, the technologic methods and conditions ofcontrolling the pore structures of porous carbon were established, which wouldprovide theoretical basis and experimental supports for further improving theperformance of porous carbon in EDLC.
     High specific surface area porous carbon with distinct pore structure wasprepared with resol phenolic resin as raw material and KOH as activator by chemicalactivation. The influences of the active agent amount, carbonization temperature andactivation time on yield, pore structure and electrochemical performance of porouscarbon were investigated. The relationship between the pore structure and capacitancewas analyzed and the preparation conditions were established of porous carbonsuitable for different electrolytes.
     The results show that the active agent amount, carbonization temperature andactivation time have great effect on the pore structure of porous carbon. By controllingcarbonization temperature, the pore structure can be easily adjusted at relative lowcontent of active agent. The pore volume and mesoporosity of porous carbonsincreased with decrease of carbonization temperature, while the BET surface areaincreased firstly and decreased afterwards. The surface area total, pore volume,micropore surface area and mesoporosity of PF-600reach2918.6m~2/g,1.41cm3/g,2628.3m~2/g and19%, respectively. As carbonization temperature decreasing to550℃,the values of PF-550are2983.5m~2/g,1.58cm3/g and2269.4m~2/g and themesoporosity was enhanced to37%. PF-600exhibited the best electrochemicalperformances in30%KOH electrolyte that the specific capacitance value reached310F/g at1mA/cm~2and retained as90%even when the current density was enlarged50times. While the specific capacitance value of PF-550reached the highest value of160F/g in1M Et4NBF4/AN electrolyte and retained82%at50mA/cm~2. It is widelybelieved that to obtain high capacitance and rate performance at the same time especially in organic electrolyte, porous carbon with a high specific surface area and alarge amount of mesopores is effective.
     Carbon aerogel with high specific surface area and developed mesopore structurewas successfully prepared via a sol-gel process from the polycondensation ofresorcinol and formaldehyde catalyzed by HMTA in alcohol-solvent, followed bydrying at ambient pressure and pyrolysis at900℃under inert atmosphere. The effectsof solvent types, polymerization temperature and carbonization heating rates on thepore structure and capacitance performance were studied systematically. And thetechnologic conditions of preparing carbon aroegels were established.
     The results show that by employing hexamethylenetetramine (HMTA) as both acatalyst and curing agent and ethanol as solvent, ambient drying of carbon aerogelscan be realized. The network formed in sol-gel polymerization can be ideally keptafter ambient dry and porous carbon with developed mesopores was accordinglyobtained.
     The pore structure of carbon aerogel could be controlled by changing solventtype, polymerization temperature and carbonization heating rates. The amount andsize of mesopores in carbon aerogel increase with polymerization temperature.Meanwhile, the specific surface area increase first and then decrease with fastercarbonization heating rates, but mesoporesity changed adversely. The best technologicconditions of sol-gel method are the R/F, R/H mole ratio, R/S value, thepolymerization temperature and carbonization heating rates being2.0,50and0.1g/ml,80℃and2℃/min, respectively. The highest specific surface area, mesoporosity andaverage pore diameter of carbon aerogel are739.0m~2/g,51%and2.76nm,respectively, which exhibit the highest capacitance of180F/g at1mA/cm~2and thebest high current charge/discharge performance, retaining86%even at50mA/cm~2.
     With resorcinol(R), formaldehyde (F) as raw materials, hexamethylenetetramine(HMTA) and hydrochloric acid (HCl) as catalyst, porous carbon material with tailoredpore structure, high specific surface area of701.2m~2/g and developed mesoporosity of67.0%was obtained by self-assembly method of block copolymer F127as the porogenand followed by carbonization. The influence of the content of F127at differentcatalysts on the surface appearance, pore structure and electrochemical performance ofporous carbon were researched. Meanwhile, the pore forming mechanism wasdiscussed.
     The results show that different catalyst system have great influence on structure ofphenolic resin based composite and further affect pore structure of porous carbon obtained when using block copolymer as thermal decomposable polymer. When weakbasic catalyst HMTA was used, the sol-gel process of resorcinol and formaldehydeproceeded tardily and a single-shaft distortion easily occurred. The ordered porestructure of porous carbon can be hardly guaranteed and the synthesis efficiency wasalso low. The phenolic resin and block copolymer (F127) were partly protonized whenstrong acid (HCl) was used. The reacting system can assemble into a nanometercompound system under both Kulun attraction (I+X-S+mechanism) and the hydrogenbond (the I0S0mechanism). The regularity of composite can be enhanced and thesynthesis speed increased simultaneously. Accordingly, porous carbon with regularpore distribution was obtained.
     The specific surface area, total pore volume, and average pore size of porouscarbon materials with different F127ratio at HCl catalyst are between640~700m~2/g,0.41~0.55cm3/g and2.46~3.38nm, respectively. When F127/R is1.3, the specificsurface area and mesopore volume of porous carbon is701m~2/g and0.36m3/g,respectively. The mesoporosity achieved67.0%. The capacity maintenance reached ashigh as93%as the current density increases50times and kept94%after cycling5000times.
     Porous carbons with specific surface area of609m~2/g and mesopore sizecentralized in3~4nm were prepared firstly by chemical blending of phenolic resin(PF) with adipic diacid (hexanedioic acid (HA) and suberic acid (SA)) andepoxy-terminated prepolymer (QS). The influences of the content of pore formationagent to PF on pore structure and capacity performance were investigated. Themechanism of pore formation in chemical blending was also discussed. The methodprovides an ideal experimental carrier for studying pore formation and the correlationwith electrochemical performance.
     Chemical reaction of PF with diacid is manifested by a shift of carbonylstretching peak of diacid to a higher frequency in FT-IR spectra and a higherdecomposition temperature from150~230℃to400~450℃of diacid in TG curves.Namely, the thermal decomposition didn’t occur until a relative steady skeleton ofphenolic resin has been established. This may be the main reason of the pore-formingability of diacid molecules. The specific surface area and mesopore volume of porouscarbon is550.9m~2/g and0.27m3/g, respectively, as the content of HA is25%. Thespecific capacity of the carbon is145F/g.
     Porous carbons were prepared by chemical blending of phenolic resin (PF) andepoxy-terminated prepolymer (QS). During the curing reaction, epoxy groups of QS reacts with the phenolic hydroxyl of PF to form ether linkage. The specific surfacearea, total pore volume and micropore volume increase with the ratio of QS to PF atfirst and then decrease, reach the maximum at the value of w(QS)/w(PF)=15%, whichare609.0m~2/g,0.28cm3/g and0.22cm3/g, respectively. When the porous carbon usedfor the electrodes of electrochemical double layer capacitor (EDLC), a satisfiedspecific capacitances of177.5F/g in30wt%KOH aqueous electrolytes is acquiredand the capacitance maintenance achieve76%as the current density enlarged50times.
     After curing reaction, the microphase separation formed by block or graft chainsin copolymers was restricted and the enlarging of microphase structure was delayedbecause of chemical bonding and molecular interaction between block or graft chainsand carbon precursor. The region of microphase structure was confined in nanometerscale. The pore will come into being after pyrolysis of the block or graft chains andsmaller than the size of the microphase structure existed before. Meanwhile, thethermal decomposition of graft chains didn’t occur until a relative steady skeleton ofphenolic resin has been established, so the pores didn’t disappear with the shrinkageof copolymers. This method has a very good application prospect in preparation ofporous carbon for electric double layer capacitor because of its simple process, porestructure controllable and environmental friendliness.
引文
[1] Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energystorage technologies for electric power applications. Renewable and SustainableEnergy Reviews,2009,13(6-7):1513–1522
    [2] US Department of Energy. Basic Research Needs for Electrical Energy Storage,(2007)
    [3]王然,苗小丽.大功率超级电容器的发展与应用.电池工业,2008,13(3):191-194
    [4] Kalpana D, Omkumar K S, Suresh K S, et al. A novel high power symmetricZnO/carbon aerogel compositev electrode for electrochemical supercapacitor.Electrochimica Acta,2006,52(3):1309-1315
    [5] Guo Y P, Qi J R, Jiang Y Q, et al. Performance of eletrical double layer capacitorswith porous carbons derived from ricehusk. Material chemistry and physics,2003,80(3):704-709
    [6] Vix-Guterl C, Saadallah S, Jurewicz K, et al. Supercapacitor electrodes from newordered porous carbon materials obtained by a templating procedure. MaterialsScience and Engineering: B,2004,108(1-2):148-155
    [7] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials,2008,7:845-854
    [8] Chen F, Li R G. Preparation and characterization of ramsdellite Li2Ti3O7as ananode material for asymmetric supercapacitors. Electrochimica Acta,2005,51(1):61-65
    [9] Brousse T, Taberna P L, Crosnier O. Long-term cycling behavior of asymmetricactivated carbon/MnO2aqueous electrochemical supercapacitor. Journal of PowerSources,2007,173(1):633–641
    [10] Conway B E. Electrochemistry Encyclopedia.
    [11] Becker H I. Low voltage electrolytic capacitor. US Patent2800616,1957-07-23
    [12] Rightmire R A. Electrical energy storage apparatus. US Patent3288641,1966-11-29
    [13] K tz R, Carlen M. Principles and applications of electrochemical capacitors.Electrochimica Acta,2000,45(15-16):2483–2498
    [14] Inagaki M, Konnoa H, Tanaike O. Carbon materials for electrochemicalcapacitors. Journal of Power Sources,2010,195(24):7880–7903
    [15] Balathanigaimani M S, Shima W G, Lee M J. Highly porous electrodes fromnovel corn grains-based activated carbons for electrical double layer capacitors.Electrochemistry Communications,2008,10(6):868–871
    [16] Olivares-Marína M, Fernándezb J A, Lázaro M J. Cherry stones as precursor ofactivated carbons for supercapacitors. Materials Chemistry and Physics,2009,114(1):323–327
    [17] Chen H, Wang F, Tong S S, et al. Porous carbon with tailored pore size forelectric double layer capacitors application. Applied Surface Science,2012,258(16):6097–6102
    [18] Probstle H, Wiener M, Fricke J. Carbon aerogels for electrochemical double layercapacitors. Journal of Porous Materials,2003,10(4):213–222
    [19] Pekala R W. Organic aerogels from the polycondensation of resorcinol withformaldehyde. Journal of Materials Science1989,24(9):3221–3227
    [20] Gavalda S, Gubbins K E, Hanzawa Y, et al. Nitrogen adsorption in carbonaerogels: a molecular simulation study. Langmuir,2002,18(6):2141–2151
    [21] Tamon H, Ishizaka H. Porous characterization of carbon aerogels. Carbon,1998,36(9):1397–1399
    [22]郭艳芝,沈军,王珏.常压干燥法制备炭气凝胶.新型炭材料,2001,16(3):55–57
    [23]郭艳芝,沈军,陈绍国.惯性约束聚变靶材料碳气凝胶的制备方法.原子能科学技术,2002,36(4/5):324–326
    [24] Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electrochemicalapplications. Journal of Non-Crystalline Solids,1998,225:74–80
    [25] Lee Y J, Jung J C, Yi J, et al. Preparation of carbon aerogel in ambient conditionsfor electrical double-layer capacitor. Current Applied Physics,2010,10(2):682-686
    [26] Lee Y J, Jung J C, Park S, et al. Effect of preparation method on electrochemicalproperty of Mn-doped carbon aerogel for supercapacitor. Current Applied Physics,2011,11(1):1–5
    [27] Lee Y J, Park H W, Hong U G, et al. Mn-doped activated carbon aerogel aselectrode material for pseudo-capacitive supercapacitor: Effect of activationagent. Current Applied Physics,2012,12(4):1074–1080
    [28] Moreno-Castilla C, Dawidziuk M B, Carrasco-Marín F, et al. Surfacecharacteristics and electrochemical capacitances of carbon aerogels obtainedfrom resorcinol and pyrocatechol using boric and oxalic acids as polymerizationcatalysts. Carbon,2011,49(12):3808–3819
    [29] Amaral-Labat G, Szczurek A, Fierro V, et al. Pore structure and electrochemicalperformances of tannin-based carbon cryogels. Biomass and Bioenergy,2012,39:274–282
    [30] Zeng X H, Wu D C, Fu R W. Preparation and electrochemical properties ofpitch-based activated carbon aerogels. Electrochimica Acta,2008,53(18):5711–5715
    [31] Baumann T F, Worsley M A, Han T Y, et al. High surface area carbon aerogelmonoliths with hierarchical porosity. Journal of Non-Crystalline Solids,2008,354(29):3513–3515
    [32] Fang B Z, Binder L. Enhanced surface hydrophobisation for improvedperformance of carbon aerogel electrochemical capacitor. Electrochimica Acta.2007,52(24):6916–6921
    [33] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes frommultiwalled carbon nanotubes. Applied Physics Letters,2000,77(15):2421–2423
    [34] Bordjiba T, Mohamedi M, Sao L. Synthesis and electrochemical capacitance ofbinderless nanocomposite electrodes formed by dispersion of carbon nanotubesand carbon aerogels. Journal of Power Sources,2007,172(2):991–998
    [35] Pan H, Poh C K, Feng Y P, et al. Supercapacitor electrodes from tubes-in-tubecarbon nanostructures. Chemistry of Materials,2007,19(25):6120–6125
    [36] Sai Y M, Liu W J, Pan T C. Surface activation on multi-wall carbon nanotube forelectrochemical capacitor applications. Applied Surface Science,2012,258(7):3027–3032
    [37] Yamada Y, Tanaka T, Machida K. Electrochemical behavior of metallic andsemiconducting single-wall carbon nanotubes for electric double-layer capacitor.Carbon,2012,50(3):1422–1424
    [38] Al-zubaidi A, Inoue T, Matsushita T. Cyclic voltammogram profile of single-walled carbon nanotube electric double-layer capacitor electrode revealsdumbbell shape. The Journal of Physical Chemistry C,2012,116(14):7681–7686
    [39] Gogotsi Y. Controlling graphene properties through chemistry. The Journal ofPhysical Chemistry Letters,2011,2(19):2509–2510
    [40] Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Letters,2008,8(10):3498–3502
    [41] Wang Y, Shi Z Q, Huang Y, et al. Super-capacitor devices based on graphenematerials. The Journal of Physical Chemistry C,2009,113(30),13103–13107
    [42] Liu C G, Yu Z N. Graphene-based supercapacitor with an ultrahigh energy density.Nano Letters,2010,10(12):4863–4868
    [43] Hsieh C T, Hsu S M, Lin J Y. Electrochemical capacitors based on graphene oxidesheets using different aqueous electrolytes. The Journal of Physical Chemistry C,2011,115(25):12367–12374
    [44] Lin Z Y, Liu Y, Yao Y G. Superior capacitance of functionalized graphene. TheJournal of Physical Chemistry C,2011,115(14):7120–7125
    [45] Molina-Sabio M, Gonzalez M T, Rodriguez-Reinoso F, et al. Effect of steam andcarbon dioxide activation in the micropore size distribution of activated carbon.Carbon,1996,34(4):505–509
    [46] Vargas J E, Gutierrez L G, Moreno-Piraján J C. Preparation of activated carbonsfrom seeds of mucuna mutisiana by physical activation with steam. Journal ofAnalytical and Applied Pyrolysis,2010,89(2):307–312
    [47] Wang K P, Teng H. The performance of electric double layer capacitors usingparticulate porous carbons derived from PAN fiber and phenol-formaldehyderesin. Carbon,2006,44(15):3218–3225
    [48] Juárez-Galán M, Silvestre-Albero A, Silvestre-Albero J. Synthesis of activatedcarbon with highly developed ‘‘mesoporosity”. Microporous and MesoporousMaterials,2009,117(1-2):519–521
    [49] Wang Y S, Wang C Y, Guo C Y. Influence of carbon structure on performance ofelectrode material for electric double-layer capacitor. Journal of Physics andChemistry of Solids,2008,69(1):16–22
    [50] Mart′nez M L, Torres M M, Guzm′an C A. Preparation and characteristics ofactivated carbon from olive stones and walnut shells. Industrial Crops andProducts,2006,23(1):23–28
    [51] Oya A, Yoshisa S, Alcaniz-Monge J, et al. Preparation and properties ofantibacterial activated carbon fiber containing mesopores. Carbon,1995,33(8):1085–1090
    [52]张引枝,樊彦贞等.添加剂种类对活性炭纤维的中孔结构的影响.炭素技术,1997,(4):11–14
    [53] Liu Z C, Ling L C, Qiao W M. Preparation of pitch-based spherical activatedcarbon with developed mesopore by the aid of ferrocene. Carbon,1999,37(4):663–667
    [54] Tamai H, Kakii T, Hirota Y, et al. Synthesis of extremely large mesoporousactivated carbon and its unique adsorption for giant molecules. Chemistry ofMaterials,1996,8(2):454–462
    [55] Wu X H, Hong X T, Nan J M, et al. Electrochemical double-layer capacitorperformance of novel carbons derived from SAPO zeolite templates.Microporous and Mesoporous Materials,2012,160(15):25–31
    [56] Li H, Luo J Y, Zhou X F, et al. An ordered mesoporous carbon with short porelength and its electrochemical performances in supercapacitor applications.Journal of The Electrochemical Society,2007,154(8): A731–A736
    [57] Sevilla M, álvarez S, Centeno T A, et al. Performance of templated mesoporouscarbons in supercapacitors. Electrochimica Acta,2007,52(9):3207–3215
    [58] Zhou L, Li H Q, Yu C Z. Easy synthesis and supercapacities of highly orderedmesoporous polyacenes/carbons. Carbon,2006,44(8):1601–1604
    [59] Jang J, Bae J. Fabrication of mesoporous polymer using soft template method.Chemical Communications,2005,(9):1200–1202
    [60] Yoon S, Oh M S, Lee C W, et al. Pore structure tuning of meso-porous carbonprepared by direct templating method for application to high rate supercapacitorelectrodes. Journal of Electroanalytical Chemistry,2011,650(2):187–195
    [61] Rzayev J, Hillmyer M A. Nanochannel array plastics with tailored surfacechemistry. Journal of the American Chemical Society,2005,127(38):13373–13379
    [62] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highlyordered porous carbon film by self-assembly of block copolymers. AngewandteChemie International Edition,2004,43(43):5785–5789
    [63] Meng Y, Gu D, Zhang F Q. A family of highly ordered mesoporous polymer resinand carbon structures from organic organic self-assembly. Chemistry of Materials,2006,18(18),4447–4464
    [64] Wan Y, Shi Y F, Zhao D Y, et al. Supramolecular aggregates as templates: orderedmesoporous polymers and carbons. Chemistry of Materials,2008,20:932–945
    [65] Li H Q, Liu R L, Zhao D Y, et al. Electrochemical properties of an orderedmesoporous carbon prepared by direct tri-constituent co-assembly. Carbon,2007,45(13):2628–2635
    [66] Yan Y, Wei J, Zhang F Q. The pore structure evolution and stability ofmesoporous carbon FDU-15under CO2, O2or water vapor atmospheres.Microporous and Mesoporous Materials,2008,113(1-3):305–314
    [67] Xu B, Peng L, Wang G Q, et al. Easy synthesis of mesoporous carbon usingnano-CaCO3as template. Carbon,2010,48(8):2377–2380
    [68] Zhang W F, Huang Z H, Cao G P, et al. A novel mesoporous carbon with straighttunnel-like pore structure for high rate electrochemical capacitors. Journal ofPower Sources,2012,204:230–235
    [69] Hulicova D, Oya A. The polymer blend technique as a method for designing finecarbon materials. Carbon,2003,41(7):1443–1450
    [70] Ozaki J, Endo N, Ohizumi W, et al. Novel preparation method for the productionof mesoporous carbon fiber from a polymer blend. Carbon,1997,35(7):1031–1033
    [71] Ozaki J, Ohizumi W, Endo N, et al. Preparation of platinum loaded carbon fiberby using a polymer blend. Carbon,1997,35(10–11):1676-1677
    [72] Patel N, Okabe K, Oya A. Designing carbon materials with unique shapes usingpolymer blending and coating techniques. Carbon,2002,40(3):315–320
    [73] Masanori Y, Miho K, Kazuko I, et al. Nanostructured carbonaceous material withcontinuous pores obtained from reaction-induced phase separation of misciblepolymer blends. Carbon,2004,42(8):1641–1649
    [74] Suarez-Garcia F, Vilaplana-Ortego E, Kunowsky M, et al. Activation of polymerblend carbon nanofibres by alkaline hydroxides and their hydrogen storageperformances. International Journal of Hydrogen Energy,2009,34(22):9141-9150
    [75]张琳,刘洪波,李步广. PF与PVB共混炭化炭化制备双电层电容器用多孔炭材料的研究.炭素,2005,1:10–15
    [76]包丽颖,吴峰,徐斌.聚合物共混法制备超级电容器用多孔炭材料.北京理工大学学报,2007,27(9):828–831
    [77]邹李鸣,黄正宏,康飞宇.载银酚醛树脂基球形活性炭的研究.新型炭材料,2003,18(3):214–218
    [78]侯朝辉,李新海,何则强.炭凝胶的制备及其电化学电容性能.中南大学学报,2004,35(4):581–586
    [79]苏芳,孟庆函,宋怀河.添加致孔剂制备树脂基活性炭及电容性能研究.功能材料,2007,38(1):97–100
    [80] Pekala R W, Alviso C T. Carbon aerogels and xerogels. Materials ResearchSociety Symposium Proceedings,1992,270:3–14
    [81] Pekala R W. Structure of organic aerogels.1. morphology and scaling. Macro-molecules,1993,26(20):5487–5493
    [82] Mathieu B, Blacher S, Pirard R, Pirard JP, Sahouli B, Brouers F. Freeze-driedresorcinol–formaldehyde gels. Journal of Non-Crystalline Solids,1996,212(2-3):250–261
    [83] Kocklenberg R, Mathieu B, Blacher S, et al. Texture control of freeze-driedresorcinol–formaldehyde gels. Journal of Non-Crystalline Solids,1998,225:8–13
    [84] J. Li, X.Y. Wang, Q.H. Huang, et al. Studies on preparation and performances ofcarbon aerogel electrodes for the application of supercapacitor. Journal of PowerSources,2006,158(1):784–788
    [85] Wu D, Fu R, Zhang Sh, et al. Preparation of low-density carbon aerogels byambient pressure drying. Carbon,2004,42(10):2033–2039
    [86] Zhang S Q, Wang J, Shen J, et al. The investigation of the adsorption character ofcarbon aerogels. Nanostructured Materials,1999,11(3):375–381
    [87] Gogotsi Y, Dimovski S, Libera J A. Conical crystals of graphite. Carbon,2002,40(12):2263-2267
    [88] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-basedcarbon fibers. Carbon,1996,34(11):1427–1445
    [89] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-basedcarbon fibers: II. Carbon,1997,35(6):809–818
    [90] Ryu Z Y, Zheng J T, Wang M Z. Porous structure of PAN-based activated carbonfibers. Carbon,1998,36(4):427–432
    [91] Shioya M, Nakatani M, Kitano H, et al. Structure of carbon films derived frompolycarbodiimide. Carbon1996,34(10):1229–1238
    [92] Yamashita J, Shioya M, Kondo S, et al. Relation between carbonization behaviorof polycarbodiimide films and stabilization conditions. Carbon1999,37(1):71–78
    [93] Schmiers H, Friebel J, Streubel P, et al. Change of chemical bonding of nitrogenof polymeric N-heterocyclic compounds during pyrolysis. Carbon,1999,37(12):1965–1978
    [94] Xu B, Wu F, Chen S. A simple method for preparing porous carbon by PVDCpyrolysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,316(1-3):85–88
    [95] Kima B J, Leeb Y S, Parkc S J. Novel porous carbons synthesized from polymericprecursors for hydrogen storage, International journal of hydrogen energy.2008,33(9):2254–2259
    [96] Park S J, Jung W Y. Preparation of activated carbons derived from KOH-impregnated resin. Carbon,2002,40(11):2021–2022
    [97] Castro-Muniz A, Mart′nez-Alonso A, Tasco′n J. Microporosity and mesoporosityof PPTA-derived carbons. Effect of PPTA thermal pretreatment. Microporous andMesoporous Materials,2008,114(1-3):185–192
    [98] Partouche E, Margel S. Carbonization of PAN grafted uniform crosslinkedpolystyrene microspheres. Carbon,2008,46(5):796–805
    [99] Sun G H, Wang J, Li K X, et al. Polystyrene-based carbon spheres as electrodefor electrochemical capacitors. Electrochimica Acta,2012,59(1):424–428
    [100] Nakagawa H, Watanabe K, Harada Y, et al. Control of micropore formation inthe carbonized ion exchange resin by utilizing pillar effect. Carbon,1999,37(9):1455–1461
    [101] Liu Y H, Xue J S, Zheng T, et al. Mechanism of lithium insertion in hard carbonsprepared by pyrolysis of epoxy resins. Carbon,1996,34(2):193-200
    [102] Calvillo L, Celorrio V, Moliner R, et al. Control of textural properties of orderedmesoporous materials, Microporous and Mesoporous Materials,2008,116(1–3):292-298
    [103] Ozaki J, Kimura N, Anahara T, et al. Preparation and oxygen reduction activityof BN-doped carbons, Carbon,2007,45(9):1847–1853
    [104] Lenghaus K, Qiao G G, Solomon D H, et al. Controlling carbon microporosity:the structure of carbons obtained from different phenolic resin precursors.Carbon,2002,40(5):743–749
    [105] Teng H, Chang Y J, Hsieh C T. Performance of electric double-layer capacitorsusing carbons prepared from phenol–formaldehyde resins by KOH etching.Carbon,2001,39(13):1981–1987
    [106]唐路林,李乃宁,吴培熙.高性能酚醛树脂及其应用技术.北京:化学工业出版社,2008,2–3
    [107] Fitzer E, Schafer W. The effect of crosslinking on the formation of glasslikecarbons from thermosetting resins. Carbon,1970,8(3):353–364
    [108] Yamashita Y, Ouchi K. A study on carbonization of phenol-formaldehyde resinlabelled with deuterium and13C. Carbon,1981,19(2):89–94
    [109] Centeno T A, Fuertes A B. Supported carbon molecular sieve membranes basedon a phenolic resin. Journal of Membrane Science,1999,160(2):201–211
    [110] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and itsapplication to electrochemical double-layer capacitors. ChemicalCommunications,1999,(21):2177–2178
    [111] Endo M, Kim Y J, Ohta H, et al. Morphology and organic EDLC applications ofchemically activated AR-resin-based carbons. Carbon,2002,40(12):2613–2626
    [112] Xing W, Zhuo S P, Gao X L. Preparation of hierarchical porous carbon by postactivation. Materials Letters,2009,63(15):1311–1313
    [113] Juárez-Galán J M, Silvestre-Albero A, Silvestre-Albero J, et al. Synthesis ofactivated carbon with highly developed “mesoporosity”. Microporous andMesoporous Materials,2009,117(1-2):519–521
    [114] Sun J F, Wu G X, Wang Q R. The effects of carbonization temperature on theproperties and structure of PAN-based activated carbon hollow fiber. Journal ofApplied Polymer Science,2005,97(5):2155–2160
    [115] Kipling J J, Sherwood J N, Shooter P V, et al. Factors influencing thegraphitization of polymer carbons. Carbon,1964,1(3):315–320
    [116] Kobayashi K, Sugawara S, Toyoda S, et al. An X-ray diffraction study ofphenol-formaldehyde resin carbons. Carbon,1968,6(3):359–363
    [117] Xia X H, Liu H B, Shi L, et al. Tobacco stem-based activated carbons for highperformance supercapacitors, Journal of Materials Engineering and Performance,2012,21(9):1956-1961
    [118] Wang H Q, Zhong Y L, Li Q Y, et al. Cationic starch as a precursor to prepareporous activated carbon for application in supercapacitor electrodes. Journal ofPhysics and Chemistry of Solids,2008,69(10):2420-2425
    [119]近藤精一,石川达雄著,李国希(译).吸附科学.北京:化学工业出版社,2006,33
    [120] Miguel G S, Fowler G D, Sollars C J, et al. A study of the characteristics ofactivated carbons produced by steam and carbon dioxide activation of waste tyrerubber. Carbon,2003,41(5):1009–1016
    [121] Moreira R F P M, Jose′H J, Rodrigues A E. Modification of pore size inactivated carbon by polymer deposition and its effects on molecular sieveselectivity. Carbon,2001,39(15):2269–2275
    [122] Ruthven D M. Principles of adsorption and desorption processes, Wiley, NY,USA,1984, pp.55–58
    [123] Wen Z B, Qu Q T, Gao Q, et al. An activated carbon with high capacitance fromcarbonization of a resorcinol–formaldehyde resin. ElectrochemistryCommunications,2009,11(3):715-718
    [124] Sun W, Chen X Y. Fabrication and tests of a novel three dimensional microsupercapacitor. Microelectronic Engineering,2009,86(4-6):1307–1310
    [125] Li L M, Liu E H, Li J, et al. A doped activated carbon prepared from polyanilinefor high performance supercapacitors. Journal of Power Sources,2010,195(5):1516-1521
    [126] Arulepp M, Permann L, Leis L, et al. Influence of the solvent properties on thecharacteristics of a double layer capacitor. Journal of Power Sources,2004,133(2):320-328
    [127]崔晓莉,江志裕.交流阻抗图的表示及应用.上海师范大学学报,2001,30(4):53-61
    [128] Liu C L, Dong W S, Cao G P, et al. Influence of KOH followed by oxidationpretreatment on the electrochemical performance of phenolic based activatedcarbon fibers. Journal of Electroanalytical Chemistry,2007,611(1-2):225–231
    [129] Wang D W, Li F, Fang H T, et al. Effect of pore packing defects in2-D orderedmesoporous carbons on ionic transport. The Journal of Physical Chemistry B,2006,110(17):8570–8575
    [130] Rufford T E, Hulicova-Jurcakova D, Fiset E, et al. Double-layer capacitance ofwaste coffee ground activated carbons in an organic electrolyte.Electrochemistry Communications,2009,11(5):974–977
    [131] Schmitt C, Pr bstle H, Fricke J. Carbon cloth-reinforced and activated aerogelfilms for supercapacitors. Journal of Non-Crystalline Solids,2001,285(1–3):277–282
    [132] Frackowiak E, Bégui F. Carbon materials for the electrochemical storage ofenergy in capacitors. Carbon,2001,39(6):937–950
    [133] Gamby J, Taberna P L, Simon P, et al. Studies and characterisations of variousactivated carbons used for carbon/carbon supercapacitors. Journal of PowerSources,2001,101(1):109–116
    [134] Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical super-capacitors. Journal of Power Sources,2001,100(1–2):164–170
    [135]张治安,杨邦朝,邓梅根.电化学电容器的设计.电源技术,2004,28(5):318–323
    [136] Levie R. On porous electrodes in electrolyte solutions: I. Capacitance effects.Electrochimica Acta,1963,8(10):751–780
    [137] Austin L G, Gagnon E G. The triangular voltage sweep method for deter-miningdouble-layer capacity of porous electrodes. Journal of The ElectrochemicalSociety,1973,120(2):251–254
    [138] Kim I J, Yang S, Jeon M J, et al. Structures and electrochemical performances ofpyrolized carbons from graphite oxides for electric double-layer capacitor.Journal of Power Sources,2007,173(1):621–625
    [139] Ue M, Takesa M, Takehara M, Electrochemical properties of quaternaryammonium salts for electrochemical capacitors. Journal of The ElectrochemicalSociety,1997,144(8):2684–2688
    [140] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electro-chemical energy storagein ordered porous carbon materials. Carbon,2005,43(6):1293-1302
    [141] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitanceat pore sizes less than1nanometer. Science,2006,313:1760–1763
    [142] Raymundo-Pinero E, Kierzek K, Machnikowski J, et al. Relationship betweenthe nanoporous texture of activated carbons and their capacitance properties indifferent electrolytes. Carbon,2006,44(12):2498–2507
    [143] Fang B, Binder L. A modified activated carbon aerogel for high-energy storagein electric donble layer capacitors. Journal of power source,2006,163(1):616–622
    [144]田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展.电源技术,2002,26(6):466–469
    [145] Li J, Wang X, Huang Q, et al. Studies on preparation and performances ofcarbon aerogel electrodes for the application of supercapacitor. Journal of powersources,2006,158(1):784–788
    [146] Lazzari M, Soavi F, Mastragostino M. High voltage, asymmetric EDLCs basedon xerogel carbon and hydrophobic IL electrolytes. Journal of power sources,2008,178(1):490–496
    [147] Zhang L, Liu H B, Wang M. Structure and electrochemical properties ofresorcinol–formaldehyde polymer-based carbon for electric double-layercapacitors. Carbon,2007,45(7):1439–1445
    [148] Tamon H, Ishizaka H. SAXS study on gelation process in preparation ofresorcinol-formaldehyde aerogel. Journal of Colloid and Interface Science,1998,206(2):577–582
    [149] Biesmans G, Mertens A, Duffours L, et al. Polyurethane based organic aerogelsand their transformation into carbon aerogels. Journal of Non-Crystalline Solids,1998,225:64–68
    [150] Tian Y M, Song Y, Tang Z H, et al. Influence of high temperature of porouscarbon on the electrochemical performance in supercapacitor. Journal of PowerSource,2008,184(2):675–681
    [151]秦国彤,李文翠,郭树才.气凝胶结构控制.功能材料,2000,31(1):26–32.
    [152]何余生,李忠,奚红霞.气固吸附等温线的研究进展.离子交换与吸附,2004,20(4):376–384
    [153] Yoshisa A, Tanahashi I, Nishino A. Effect of concentration of surface acidicfunctional groups on electric double-layer properties of activated carbon fibers.Carbon,1990,28(5):611–615
    [154]张熙贵,解晶莹,王涛.活性炭双电层电容器的研究.电源技术,2004,28(1):34–37
    [155] Kim Y J, Horie Y, Ozaki S, et al. Correlation between the pore and solvated ionsize on capacitance uptake of PVDC-based carbons. Carbon,2004,42(8-9):1491–1500
    [156] Jurewicz K, Vix-Guterl C, Frackowiak E, et al. Capacitance properties ofordered porous carbon materials prepared by a templating procedure. Journal ofPhysics and Chemistry of Solids,2004,65(2-3):287–293
    [157] Li H Q, Liu R L, Zhao D Y, et al. Electrochemical properties of an orderedmesoporous carbon prepared by direct tri-constituent co-assembly. Carbon,2007,45(13):2628-2635
    [158] Yamada H, Moriguchi I, Kudo T. Electric double layer capacitance onhierarchical porous carbons in an organic electrolyte.Journal of Power Sources,2008,175(1):651-656
    [159] Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporouspolymer resin and carbon structures from organic organic self-assembly.Chemistry of Materials,2006,18(18):4447–4464
    [160] Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodicsurfactant/inorganic composite materials. Nature,1994,368:317-321
    [161] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblockcopolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable, Mesoporous Silica Structures. Journal of the AmericanChemical Society,1998,120(24):6024–6036
    [162] Olasz A, Mignon P, Proft F D. Effect of the π-π stacking interaction on theacidity of phenol. Chemical Physics Letters,2005,407(4–6):504–509
    [163] Min H Ch, Ho Y B, In J Ch. The effect of chain length of fexible diacid onmorphology and mechanical property of modiled phenolic resin. Polymer,2002,43(16):4437–4444
    [164] Zeng X H, Wu D C, Fu R W. Preparation and electrochemical properties ofpitch-based activated carbon aerogels. Electrochimica Acta,2008,53(18):5711–5715
    [165] Shi H. Activated carbons and double layer capacitance. Electrochimica Acta.,1996,41(10):1633–1639
    [166]黄勇,陈晓峰,刘俊红.热固性酚醛树脂固化环氧树脂反应动力学研究.四川理工学院学报,2009,22(5):73–75
    [167]张琳,刘洪波,李步广. PF与PVB共混炭化制备双电层电容器用多孔炭材料的研究.炭素,2005,1:7–13
    [168] Wang C S, Hwang H J. Bismaleimide—triazine resin and production methodthereof:US.5886134.1999-03-23
    [169] Gaku M, Nakamichi K. Curable resin compositions of cyanate esters: US.4110364,1978,08-29
    [170]王结良,梁国正,赵雯.液体端羧基丁腈橡胶增韧改性氰酸酯树脂.复合材料学报,2005,22(1):1–6
    [171] Feng Y, Fang Z P, Gu A J. Toughening of cyanate es ter resin by carboxylterminated nitrile rubber. Polymer for Advanced Technology,2004,15(10):628–635
    [172] Devi A, Srivastava D. Studies on the blends of cardanol-based epoxidizednovolac resin and CTPB. European Polymer Journal,2007,43(6):2422–2432
    [173]石敏先,黄志雄,郦亚铭.端羧基丁腈橡胶改性环氧树脂的结构与性能.高分子材料科学与工程,2008,24(2):47–50
    [174] Zhong Z, Guo Q. Crosslinkable interpolymer complexes of novolac resin andpoly(ethylene oxide). Journal of Polymer Science Part A: Polymer Chemistry,1998,36(3),401–411
    [175] Pennacchia J R, Pearce E M, Kwei T K, et al. Compatibility of substitutedphenol condensation resins with poly(methyl methacrylate), Macromolecules,1986,19(4):973–977
    [176] Zhong Z, Guo Q. The miscibility and morphology of hexamine cross-linkednovolac/poly(e-caprolactone)blends,Polymer,1997,38(2):279–286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700