用户名: 密码: 验证码:
FeCl_3-NiCl_2-GICs及其还原产物的制备与微波吸收性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨层间化合物(GICs)具有高导电、导热、密封、能量储存及转换等诸多优良特性,应用潜力巨大。但传统的制备方法,如双室法、液相插层法、电化学法等要么条件过于苛刻,要么结构难以控制,未能实现批量制备。熔盐法属于液相插层法之一,是制备三元及多元GICs的常用方法,设备及工艺简单,是最有可能实现GICs批量制备的方法之一。其工艺中需要抽真空并密封,因此反应器为玻璃管,便于熔封和加热。然而玻璃反应器的容积小、耐热温度低、耐压性能差,大大限制了新型GICs的合成及性能研究。本文以天然鳞片石墨为宿主,FeCl_3和NiCl_2为插入物,通过省掉抽真空环节的简化熔盐法制备了三元FeCl_3-NiCl_2-GICs,并对其工艺因素、插层过程及FeCl_3-NiCl_2-GICs还原前后的微波吸收性能进行了详细研究。具体结论如下:
     1、系统考察了省掉抽真空环节后的熔盐法制备过程中,各工艺因素对FeCl_3-NiCl_2-GICs阶结构的影响,设计并加工了大容量不锈钢反应器。结果表明,在玻璃反应器中存在定量空气(反应中空气的量无增减)的条件下,可以获得不同阶结构的GICs。产物阶结构随石墨粒度、石墨/氯化物比、NiCl_2/FeCl_3比、反应温度、反应时间及压力等工艺因素的变化规律与传统熔盐法一致;由未抽真空而引入的定量空气中的氧会与石墨反应,但主要分布在鳞片的表面及边缘,对FeCl_3-NiCl_2-GICs的整体结构未造成大的影响。以此为依据自行设计的不锈钢反应器的GICs单次制备量约为250g,实现了实验室GICs的小批量制备。熔盐法制备工艺的简化和反应器的改进为新型GICs制备、性能及应用研究创造了条件。
     2、根据三元GICs的结构特点,提出了四个有效表征三元FeCl_3-NiCl_2-GICs结构完善程度的评价指标:目标阶的体积分数V1、单个鳞片内Ni元素分布的均匀程度σ,产物中Ni与Fe元素的摩尔比S、产物与反应物中Ni和Fe元素的摩尔比之比S′。以上述四个参数为标准,对FeCl_3-NiCl_2-GICs的阶结构进行调控,确定了新反应器中合成纯阶FeCl_3-NiCl_2-GICs的最佳工艺条件。三元FeCl_3-NiCl_2-GICs结构评价指标的确立,避免了只用阶数作为多元GICs结构表征的片面性,突出了其结构特点,实现了GICs三元化程度的定量表征,对三元GICs微结构及工艺优化具有指导意义。
     采用XRD、SEM、EDS、Raman、HRTEM等分析手段对纯阶FeCl_3-NiCl_2-GICs的表面形貌、元素组成及分布、晶体结构等微观结构进行了表征。结果表明,FeCl_3、NiCl_2与天然鳞片石墨进行插层反应后,形成了石墨碳层与FeCl_3和NiCl_2交替排列,尺寸为5-10nm的GIC岛畴结构,其晶格条纹出现了弯曲,丧失了石墨中原有的连贯的特征;受插层反应剧烈程度的影响,一阶GICs的鳞片边缘遭到较大程度的腐蚀而呈锯齿状,随着GICs阶数的升高腐蚀程度逐渐减弱,逐渐接近原始石墨的形貌特征。
     3、详细研究了FeCl_3-NiCl_2-GICs在2-18GHz波段的微波吸收性能,及与之相关的导电性和磁性。微波吸收性能研究表明,FeCl_3-NiCl_2-GICs是一种吸收效果良好的轻质微波吸收剂,尤其在低频区;其微波损耗机制以介电损耗为主,因此其吸波性能受GICs导电率的影响;在考察范围内吸收剂与粘结剂石蜡的最佳质量比为1:1。粒度为100目的一阶FeCl_3-NiCl_2-GICs的微波损耗最大,吸波材料(MAM)厚度为5mm时最大理论反射损耗(TRL)为-11dB,匹配频率为3.2GHz。
     4、对三元FeCl_3-NiCl_2-GICs的插层过程及NiCl_2的扩散方式进行了详细研究。按三元FeCl_3-NiCl_2-GICs的插层反应特点可将其反应过程分五个阶段:FeCl_3、NiCl_2的选择性吸附和插层阶段、FeCl_3-GICs骨架形成阶段、FeCl_3、NiCl_2联合扩散的三元化初期阶段、NiCl_2单独嵌入三元化阶段、阶畴三元化阶段。其中的控制环节为第三元NiCl_2的扩散,在微区及阶畴内的均匀程度及插入量控制着GICs的三元化程度。对于FeCl_3、NiCl_2与石墨组成的混合体系,在500℃以下72h以内,第三元NiCl_2在石墨层间的扩散方式为单独嵌入和与FeCl_3联合插入,以单独嵌入式为主。FeCl_3-NiCl_2-GICs插层过程及机理的研究结论则为我们指明了改善三元GICs微结构的方法和途径。
     5、对FeCl_3-NiCl_2-GIC的还原工艺及还原产物的微波吸收性能进行了系统考察。实验确定了氢气、金属Na、水合肼及硼氢化钠等还原剂对FeCl_3-NiCl_2-GICs的还原效果。结果表明氢气对Cl元素的去除效果最好,且不会引入杂质。在此基础上,系统考察氢气为还原剂的还原过程中,还原温度、还原时间及石墨粒度等工艺参数对还原效果的影响。最佳还原条件下,二阶FeCl_3-NiCl_2-GICs还原产物中Cl元素的摩尔百分含量为31%。还原产物的物相构成为FeNi合金、石墨和FeCl_2,其中合金颗粒尺寸在20-200nm之间,均匀的分散在石墨烯层片间。造成FeCl_2不能被完全还原的主要原因是石墨的空间位阻效应。
     FeCl_3-NiCl_2-GIC还原产物的磁性为软磁性,其微波吸收性能较GICs有所增强,是一种较好的宽频、轻质微波吸收剂。MAM厚度为1mm时FeNi/C500损耗量大于-4dB的带宽为7GHz,覆盖了整个Ku(12.4-18GHz)波段;FeNi/C600在低频区具有较好的微波吸收效果,MAM厚度为2mm时,其最大反射损耗为-4.5dB,匹配频率为3.5GHz。
     6、以FeCl_3-NiCl_2-GIC的研究结果为指导,设计并制备了FeCl_3-CoCl_2-GICs及其还原产物,所得的FeCo/石墨纳米复合材料具有更好的微波吸收性能。三元过渡金属氯化物-GICs还原方法、工艺及性能的研究结果,为新型过渡金属/石墨纳米复合材料的设计及制备提供了实验依据,展示了一条设计和制备新型质轻、宽频的微波吸收材料的途径。
With many excellent characteristic, Graphite intercalation compounds (GICs)have a great potential application on high electrical and thermal conductivities,sealing, energy storage and conversion performances, etc. Howerver, it is difficult instably controlling the material structure and improving the yield of the products byuse of the traditional preparation methods of GICs including the two-zone vaportransport technique, the liquid intercalation method, and the electrochemical method,etc. The molten salts method which has simple process and equipment belongs to theliquid intercalation method, and is usually used to prepare ternary ormulti-component GICs. It has the biggest possibility to produce GICs with a largescale, while the reactor needs to be vacuumized and airproofed, so glass tube is usedas the reactor, of which the volume is small and the heat-resistant temperature is low.In this dissertation, ternary FeCl_3-NiCl_2-GICs were synthesized by molten saltsmethod in air. The natural graphite powders were used as host material and themixture of NiCl_2and FeCl_3were used as intercalants. The technological factors,process and microwave absorption properties of FeCl_3-NiCl_2-GICs and its reductionproducts were investigated. The conclusions are summarized as follows:
     (1) Systematic investigations were carried out on the effects of technologicalfactors upon the stage index of FeCl_3-NiCl_2-GICs under the new technique, and thestainless steel reactor with big volume was designed and employed. The results showthat the ternary FeCl_3-NiCl_2-GICs with different stage structure can be obtained inthe glass tube with a little air. The influence of particle size of graphite, reactiontemperature, reaction time, pressure, NiCl_2/FeCl_3and C/transition metal chlorideson the stage index of FeCl_3-NiCl_2-GICs, were similar with that of theFeCl_3-NiCl_2-GICs prepared in vacuum. XPS results showed that the oxygen elementmainly distributed on the surface of graphite flakes and have little influence on otherparts of GICs when it reacted with graphite. The weight of the products prepared inthe stainless steel designed and manufactured by ourselves was ca.250g for eachreaction. The process simplification and the improvement in reactor of the moltensalts method pave the way for the preparation of new GICs, the performance andapplication research.
     (2) In order to evaluate the microstructure and the conditions of ternaryFeCl_3-NiCl_2-GICs, four parameters were put forward, i.e., the volume fraction of theobject stage GICs(V1), the Ni standard deviation of the products(σ), Ni/Fe ratio in the products (S), and the ration of Ni/Fe ratio of the products and Ni/Fe ratio in rawmaterials(S′). According to these parameters, the optimized preparation conditionsof the FeCl_3-NiCl_2-GICs with pure stage index in the new container were obtained.The four parameters have guiding significance for the microstructre and processoptimization of ternary GICs. And the quantitative characterization of the degree ofdiversification for ternary GICs is realized by them.
     The microstructure of the FeCl_3-NiCl_2-GICs such as surface morphology,composition, element distribution, crystal structure was investigated by XRD, SEM,EDS, Raman and HRTEM. The results show that the FeCl_3&NiCl_2and the layer ofgraphite are arranged alternately, and the stage domain size is about5-10nm. Due tothe intercalation reaction, the broken lattice fringes of graphite are no longer straight.The flake edge of the corroded zigzag stage1FeCl_3-NiCl_2-GICs was observed. Withthe increase of the stage index of GICs, the corroding degree is weakened and finallylooks like the original graphite.
     (3) The properties of microwave (2-18GHz)absorption of the GICs werestudied in details. It is found that FeCl_3-NiCl_2-GICs are good microwave absorbingmaterials(MAM) and have an optimum absorption efficiency lying in lowerfrequency region. The main microwave absorption mechanism of GICs is dielectricloss, and the absorbing capability of GICs is related to the electrical conductivity ofGICs. The optimal mass ratio of GICs and paraffin wax is1:1. The maximum TRL ofthe stage1FeCl_3-NiCl_2-GICs which size is100mush is-11dB when the thickness ofMAM is5mm, and the matching frequency is3.2GHz.
     (4)The intercalation process of FeCl_3-NiCl_2-GICs and the diffusion of NiCl_2were analyzed. The results show that the intercalation process is divided into fivestages. The first is the selective absorption involved the intercalation between FeCl_3and NiCl_2. The second stage is the formation stage of FeCl_3-GICs. The third is theNiCl_2distribution stage including NiCl_2and FeCl_3together. The forth is thedistribution stage of NiCl_2alone. And the last one is the NiCl_2intercalating with theGICs domain stage. The speed of the intercalation process is greatly depended on thediffusion of Ni. The intercalation ways of NiCl_2are either embedding or meltingtogether with FeCl_3to form NiFe2Cl8when the condition is under500℃and lessthan72h, and the method of embedding is predominant. These conclusions about theintercalation process and mechanism show the method and way to improve themicrostructure of ternary GICs to us.
     (5) The reduce conditions of FeCl_3-NiCl_2-GICs and the properties of microwaveabsorption of the reduction products were investigated in details. The reductioneffects of FeCl_3-NiCl_2-GICs by H2, Na, hydrazine hydrate and sodium borohydride were studied. The results show that the reduction effect by H2is the best, and noimpurity is introduced into reduction products in H2reduction environment. Thereduced conditions of FeCl_3-NiCl_2-GICs by H2, such as temperature, time and theparticle size of graphite, were investigated. The results indicate that the content ofthe Cl in the reduction product is decreased with increasing of reduction temperature,prolonging of reduction time and the minimizing the particle size ofFeCl_3-NiCl_2-GICs. The molar content of Cl in the reduction product, which wasprepared by reducing the stage2under the optimized conditions, is about31%. Thereduction products of FeCl_3-NiCl_2-GICs are composed of FeNi, graphite and FeCl_2.A lot of FeNi particles with size of20~200nm are located in the graphite layers. Thekey reason that the FeCl_3-NiCl_2-GICs cannot be reduced thoroughly is the sterichindrance effect of graphite.
     The reduction products of FeCl_3-NiCl_2-GICs, a kind of soft magnetic material,have good microwave absorption properties. The absorbed frequency bandwidth ofthe FeNi/C500reaches7GHz, covering the whole Ku band (12.4-18GHz), when thethickness of MAM is1mm. The maximum TRL of FeNi/C600is-4.5dB at3.5GHzwhen the thickness of the MAM is2mm, which exhibits good absorption efficiencyat lower frequency region.
     6、According to these research conclusions, FeCl_3-CoCl_2-GICs and its reductionproducts were designed and manufactured, and the the properties of microwaveabsorption of them were investigated. These studies about the reduction method,process and performance of ternary transition metal chlorides-GICs provide theexperimental evidences for the design and preparation of the new transition metal/graphite nanocompositions, and set out a way to design and preparate the new MAMwith the low density and wide-frequency properties.
引文
[1]周公度,段连运.结构化学基础.北京:北京大学出版社.2002:149-185
    [2]新·炭素材料入门.中国金属学会炭素材料专业委员会编译.156-160
    [3] Dresselhaus M S, Kresselhals G. Intercalation compounds of graphite. Advances inphysics,1981,30(2):139-326
    [4]沈万慈,祝力,侯涛等.石墨层间化合物(GICs)材料的研究动向与展望.炭素技术,1993,5:22-28
    [5]沈万慈,祝力,侯涛等.石墨层间化合物(GICs)材料的研究动向与展望(续).炭素技术,1993,(6):26-32
    [6]卢锦,李贺军.石墨层间化合物的制备结构与应用.炭素技术,2003,124(1):21-25
    [7]稻垣道夫.石墨层间化合物.新型碳材料,1987,10(4):52-61
    [8]康飞宇.石墨层间化合物的研究与应用前景.新型碳材料.1991,3-4:89-97
    [9]稻垣道夫,前田康久.石墨层间化合物-它的生成和应用.新型碳材料,1985,(2):18-23
    [10] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films. Science,2004,306(5696):666-669.
    [11]稻垣道夫.石墨层间化合物.新型碳材料,1990,20(2):16-19
    [12] Lang H P, Wiesendanger R, Thommen-Geiser V, et al. Atomic Resolution SurfaceStudies of Binary and Ternary Alkali-Metal-Graphite Intercalation Compounds byScanning Tunneling Microscopy. Physical Review,1992,45:1829-1838.
    [13]刘洪波,肖谷雨,苏玉长等. FeCl3-GIC的结构稳定性与热稳定性研究.新型炭材料,2000,15(1):18-21
    [14] Lang H P, Thommen-Geiser V, Güntherodt H-J. Atomic resolution surface imagingof binary and ternary stage1alkali metal graphite intercalation compounds byscanning tunneling microscopy. Molecular Crystals and Liquid Crystals,1994,244:385-390
    [15]肖敏,刘静静,李赟等.三元型钾-四氢呋喃-GIC的制备及稳定性研究.新型碳材料,2003,18(1):53-59.
    [16]曹宏,刘奇,曾宪滨. CoCl2-FeCl3三元石墨层间化合物稳定性的初步研究.炭素,1995,(3):14-18
    [17]传秀云.超微粉石墨层间化合物CuCl2-NiCl2-GICs合成及电学性能.材料科学与工程,1998,16(2):68-71
    [18] Inagaki M, Wang Z D, Ohira M, et al. The synthesis of NiCl2-FeCl3-graphite interc-alation compounds. Synthetic Metals,1987,20:9-13
    [19]侯仰龙,韦永德,石建新. NdCl3-FeCl3-石墨层间化物化合物及结构模型.中国科学(B),2002,30:550-556
    [20] Nadi N E, E. Mcrae. E, Mareche J F, et al. Synthesis, chara-cterizeation andelectrical resistivity of graphite bi-intercalation compounds G-FeCl3-MCl3(M=Al,Ga, In) and the related binaries. Carbon,1986,24(6):695-704.
    [21] Ohira M, Inagaki M. Synthesis and local analysis of ternary FeCl3-PbCl2-Graphiteintercalation compounds. Carbon,1992,30(3):477-482.
    [22]刘洪波,张宝庆,张红波等.三元FeCl3-AlCl3-GIC的制备及其插层反应过程的研究.新型碳材料,2002,17(1):22-25
    [23]康飞宇,周洲,刘秀瀛.用溶盐法合成FeCl3-CuCl2三元石墨层间化合物的稳定性.碳素,1992,(1):6-12
    [24] Zine Aidoun, Marten Ternan. Salt impregnated carbon fibres as the reactive mediuma) in a chemical heat pump: the NH3–CoCl2system. Applied Thermal Engineering,2002,(22):1163–1173
    [25] Zhu J, Chen Z, Wang C. Preparation and characterization of CuCl2-FeCl3-H2SO4-graphite intercalation compounds by hydrothermal synthesis. Materials Letters,2003,(57):2145–2149
    [26] Zhang H Y, Shen W C, Wang Z D, et al. Formation of iron chloride-graphiteintercalation compounds in propylene carbonate by electrolysis. Carbon,1997,35(2):285-290
    [27] Kang F, Leng Y, Zhang T-Y. Electrochemical synthesis and characterization offormic acid-graphite intercalation compound. Carbon,1997,35(8):1089-1096
    [28] Mizutani Y, Abe T, Ikeda K, et al. Graphite intercalation compounds prepareded insolutions of alkali metals in2-methyltetrahydrofuran and2.5-dimethyltetrahydro-furan. Carbon,1997,35(1):61-65
    [29] Nemanich R J, Gorman M, Solin S A. Raman-brillouin light scattering determin-ation of the structural correlation range in ges2glass. Solid State Communications,1977,21(3):277-280
    [30] Dresselhaus M S, Dresselhaus G, Fischer J E. Graphite intercalation compounds:Electronic properties in the dilute limit. Physical Review B,1977,15:3180-3192
    [31] Underhill C, Leung S Y, Dresselhaus G, et al. Infrared and Raman spectroscopy ofgraphite-ferric chloride. Solid State Communications,1979,29(11):769-774
    [32] Hooley J G, Garby W P, Valentin J. The effect of sample shape on the brominationof graphite. Carbon,1965,3(1):7-16
    [33] Young D A. The intercalation process in graphite-bromine. Carbon,1977,15(6):373-377
    [34] Hibbs J D, Young D A. Ellipsometric investigation of the intercalation threshold inthe graphite and bromine system. Chemical Physics Letters,1978,53(2):361-365
    [35]高林,徐仲榆.钾-石墨层间化合物3阶向2阶转化的理想模型.新型碳材料.2000,15(2):48-52
    [36] Capkova P, Rafaja D, Aalter W J, et al. Real-time X-ray diffraction study ofconcentration profiles in CuCl2-intercalated graphite during deintercalation. Carbon,1995,33(10):1425-1432
    [37] Culity B D. Elements of X-ray Diffraction.冯根源译.北京:工业出版社,1965:316
    [38]张瑞军,刘建华,沈万慈.石墨层间化合物阶结构的标定方法.炭素,1998(2):5-8
    [39] Thomas J M, Millward G R, Schl gl R F, et al. Direct imaging of a graphiteintercalate: Evidence of interpenetration of ‘stages’ in graphite: Ferric chloride.Materials Research Bulletin,1980,15(5):671-676
    [40] Kirczenow G. Domain model of stage order and disorder in intercalation componds.Physical Review,1985, B31:5376-5386
    [41]张秀兰,粟印环,余国忠. X射线粉末衍射法分析石墨插层化合物的结构.信阳师范学院学报(自然科学版),2004,17(2):183-185
    [42] Leung S Y, Underhill C, Dresselhaus. Application of X–Ray structure factormeasurements to graphite intercalation compounds. Physics Letters,1980,76(1):89-91
    [43]李树棠.晶体X射线衍射学基础.北京:冶金工业出版社.1990:169-189
    [44] Dworkin A, Ubbelohde A R. Differential scanning calorimetry of intercalationcompounds of graphite. Carbon,1978,16(4):291-292
    [45] Ren Hui, Zhang Tong-lai, Qiao Xiao-jing. Study on the Stability of FeCl3-GraphiteIntercalation Compounds Synthesized by Molten Salt Method.含能材料.2003,11(3):138-140.
    [46]侯仰龙,韦永德,石建新. NdCl3-FeCl3-石墨层间化合物的结构表征及稳定性研究.高技术通讯.1990,10:39-42
    [47] Dresselhaus M S. Future directions in carbon science. Annual Review of MaterialsResearch,1997,27:1-34
    [48]传秀云.膨胀石墨CuCl2-EGICs的微观结构TEM研究.无机材料学报,2000,15(1):79-87
    [49] Nishitani R, Nishina Y, Hashimoto S, et al. In situ Raman scattering and x-raydiffraction measurements during stage transformations of HNO3-GIC.1985,12(1–2):161–166
    [50] Nixon D E, Parry G S. Formation and structure of the potassium graphites. J. Phys.D: Applied Physics.1968,1(3):291
    [51] Nixon D E, Parry G S, Ubbelohde A R. Order-disorder transformations in graphitenitrates. Proceedings of the Royal Society,1966,291:324-339;
    [52] Caswell N, Solin S A. Vibrational excitations of pure FeCl3and graphite interca-lateed with ferric chloride. Solid State Communications.1978,27(10):961-967
    [53] Hooley J G, Garby W P, Valentin J. The effect of sample shape on the brominationof graphite. Carbon.1965,3(1):7-16
    [54] Hooley J G. Preparation and crystal growth of materials with layered structures.Edited by R. M. A.. Dordrecht: Reidel.1977:1
    [55] Barker J A, Croft. R C. Studies on the formation of graphite-ferric chloride comple-xes: kinetics of formation. Australian Journal of Chemistry,1953,6(3):302-314
    [56] Marchand A, Rouillon J C, Courtois F, et al. Carbon,1973,11:113
    [57] Aronson S. Bromine exchange in graphite-bromine lamellar compounds. Journal ofInorganic and Nuclear Chemistry,1963,25(8):907-918
    [58] Metz W, Siemsglüss L. Messungen und berechnugen zur kinetik der einlagerungvon FeCl3in graphit. Carbon,1978,16:225-229
    [59] Dowell M B, Badorrek D S. Diffusion coefficients of Br2, HNO3and PdCl2ingraphite. Carbon,1978,16(4):241-249
    [60] Sasa T, Takahashi Y, Mukaibo T. Crystal structure of graphite bromine lamellarcompounds. Carbon,1971,9(4):407-416
    [61] Salzano F J, Aronson S. The reaction between cesium and carbon blacks. Journal ofInorganic and Nuclear Chemistry,1968,30(9):2317-2329
    [62] Salzano F J, Aronson S. Some experimental observations in the cesium-graphitesystem. Journal of Inorganic and Nuclear Chemistry,1964,26(8):1456-1458
    [63] Herold A, Billaud D, Guérard D, et al. Intercalation of metals and alloys intographite. Physica B+C.1981,105,(1–3):253-260
    [64] Salzano F J, Aronson S. Thermodynamic properties of the cesium-graphite lamellarcompounds. Carbon,1965,3(3):362
    [65] Salzano F J, Aronson S. The mechanism of bromine exchange in the bromine-graphite lamellar compounds. Journal of Inorganic and Nuclear Chemistry.1966,28(6-7):1343-1353
    [66]张桂玲,戴柏青,韦永德.金属石墨层间化合物的量子化学和热力学研究.高等学校化学学报.1997,23(10):1907-1910
    [67]石建新,韦永德.用键参数函数法研究石墨层间化合物(GIC)的形成规律.哈尔滨工业大学学报.1997,29(6):26-30
    [68]宾晓蓓,曾宪滨.石墨层间化合物合成的动力学理论初探.西南工业学院学报,1999,14(3):6-11
    [69] Daumas N, Herold A. Domain model of graphite intercalation compounds in higherstage. Comptes Rendus de l' Academie des Sciences Serie IIc:Chemie,1969,268:272-378
    [70] Metz W, Hohlwein D. Darstellung von Graphit-FeCl3-Verbindungen mit periodisch-er Schichtfolge. Carbon,1975,13(1):84-86
    [71] Metz W, Hohlwein D. Charakterisierung von graphit-FeCl3-verbindungen als teil-weise geordnete schichtstrukturen. Carbon,1975,13(2):87-96
    [72]徐仲榆,苏玉长.石墨层间化合物在插层过程中阶的转变模式.炭素技术,1999,1:1-7
    [73] Marcus B, Touzain Ph, Soubeyroux J L. Kinetic study of electrochemicalintercalateion of potassium solvated by tetrahydrofuran into graphite. SyntheticMetals,1988,23(1-4):13-17
    [74] Herold A, Lagrang P. Chimisorption de l'hydrogène par les composés graphite-potassium de stade supérieur à un. Materials Science and Engineering,1977,31:33-37
    [75] Miyazaki H, Horie C. Time evolution of stage transformation in GICs. SyntheticMetals.1985,12(1–2):149-154
    [76] Miyazaki H, Igarashi S, Hatekeyama S, et al. Theory of orientational ordering in thesecond-stage graphite intercalation compounds. Synthetic Metals,1983,6:225
    [77]刘建东.石墨层间化合物的利用.碳素译丛,1986,(3):39-42
    [78]康飞宇.关于GIC研究的几点见解.炭素技术,2000,109(4):17-20
    [79]田金星,丁荣芝.石墨层间化合物的开发及应用前景.国外金属矿选矿,1994,1:20-26
    [80]关正辉.石墨层间化合物的特性及应用前景.甘肃科技,2002,18(10):48-49
    [81]王丽娟,田军.石墨层间化合物的发展、合成及应用.材料导报,2000,14(3):52-54
    [82]时虎,胡源.石墨层间化合物的合成与应用.炭素技术,2002,2:29-32
    [83] Fuzellier H, Melin J, Herold A. Conductibilité électrique des composés lamellairesgraphite-SbF5et graphite-SbCl5. Carbon,1977,15(1):45-46
    [84] Streifinger L, Boehm H P, Schl gl R, et al. The electric resistivity of compacts ofgraphite intercalation compounds with antimony pentafluoride and with antimonypentachloride. Carbon,1979,17(3):195-200
    [85]传秀云,陈代璋,周旬若,等. CuCl2-石墨层间化合物导电及其机理研究.物理学报,1999,48(6):1132-1137
    [86]候仰龙,韦永德.金属卤化物石墨层间化合物结构与性能研究新进展.功能材料,2000,31(3):237-240
    [87] Ossama El-Shazly. In-plane and c-axis transport properties of FeCl3-GIC. SyntheticMetals,1996,83:81-84
    [88] apková P, Rafaja D, Walter J, et al. Real-time X-ray diffraction study of concent-ration profiles in CuCl2-intercalated graphite during deintercalation. Carbon,1995,33(10):1425-1432
    [89] Suzuki M, Matsubara K, Sugihara K. Two-dimensional weak-localization effect inthe stage-4MoCl5graphite intercalation compound. Physical Review B,2000,61:5013-5018
    [90] Matsubara K, Sugihara K, Tsuzuku T. Electrical resistance in the c direction ofgraphite. Physical Review B,1990,41(2):969-974
    [91] Shimamura S. A model for c-axis electrical conduction in graphite intercalationcompounds. Synthetic Metals,1985,12(1–2):365-370
    [92] Belash I T, Bronnikov A D, Zharikov O V, et al. Superconductivity of graphite inte-rcalation compound with lithium C2Li. Solid State Communications,1989,69(9):921-923
    [93] Belash I T, Bronnikov A D, Zharikov O V, et al. On the superconductivity ofgraphite intercalation compounds with sodium. Solid State Communications,1987,64(12):1445-1447
    [94] Kobayashi M, Enoki T, Inokuchi H, et al. Superconductivity in the first stagerubidium graphite intercalation compound C8Rb. Synthetic Metals,1985,12(1–2):341-346
    [95] Belash I T, Zharikov O V, Palnichenko A V. Superconductivity of GIC with Li, Naand K. Synthetic Metals,1989-1990,34(1–3):455-460
    [96] Kadowaki K, Nabemoto T, Yamamoto T. Synthesis and superconducting propertiesof graphite compounds intercalated with Ca:C6Ca. Physica C,2007,460-462:152-153
    [97] Emery N, Hérold C, Marêché J-F, et al. Superconductivity in Li3Ca2C6intercalate-d graphite. Journal of Solid State Chemistry,2006,179:1289–1292
    [98] Hérold C, Emery N, Marêchê J-F, et al. Synthesis and superconducting properties ofbulk CaC6GIC. Carbon,2008,46:1627-1629
    [99] Upton M H, Forrest T R, Walters A C, et al. Phonos and superconductivity in YbC6and related conpounds. Physical Review, B,2010,82:134515-134519
    [100] Ubbelohde A R. Intercalation overpotentials for compound formation by graphite.Carbon,1972,10(2):201-206
    [101] Pernot P, Marêché J F, McRae E, et al. Transport studies on some metal chlorideintercalated graphites and the corresponding biintercalation compounds. SyntheticMetals,1989-1990,34(1-3):473-477
    [102] Linden D, Reddy T B. Hand book of batteries,2002,3:1~936.
    [103] Yamaura J. Extended abstracts of sixth international meeting on lithium batteries.1992
    [104]张胜利,余仲宝,韩周祥.锂离子电池的研究与发展.电池工业.1999,4(1):26-28
    [105]孙学亮,秦秀娟,卜立敏,等.锂离子电池碳负极材料研究进展.有色金属,2011,63(2):147-151
    [106] Yuan-Haun Lee, Wen-Ku Chang, Chn-Hsiung Fang, et al. Electronic behavior ofLi-GIC in the lithium secondary battery. Materials Chemistry and Physics,1998,53:243-246.
    [107] Shi H, Barker J, Saidi M Y, et al. Graphite structure and lithium intercalation.Journal of Power Sources,1997,68:291-295.
    [108] Letellier M, Chevallier F, Mathieu Morcrette. In situ7Li nuclear magneticresonance observation of the electrochemical intercalation of lithium in graphite;1stcycle. Carbon,2007,45:1025-1034.
    [109] Ohta N, Sogabe T, Kuroda K. A novel binder for the graphite anode of recharge-able lithium ion batteries for the improvement of reversible capacity. Carbon,2001,39:1434-1436
    [110] Ohta N, Nozaki H, Nagaoka K, et al. A carbon coated graphite anode for lithiumion secondary batteries. New carbon materials.2002,17(2):61-63
    [111] Tatsumi K, Kawamura T, Higuchi S, et al. Anode characteristics of non-graphit-izable carbon fibers for rechargeable lithium-ion batteries. Journal of Power Sources,1997,68(2):263-266
    [112] Toyoda M, Katoh H, Inagaki M. Intercalation of nitric acid into carbon fibers.Carbon,2001,39(14):2231-2234
    [113]赵瑞红,刘玉敏,张东京.氯乙酸酯化反应催化研究.化学世界,2005,1:10-12
    [114]陈焕章,赵地顺.羧酸酯化反应催化剂研究新进展.石油与天然气化工,1998,2:78-81
    [115] Vol'pin M E, Yu. N. Novikov, Lapkina N D, et al. Lamellar compounds of graphitewith transition metals. Graphite as a ligand. Journal of the American ChemicalSociety,1975,97(12):3366-3373
    [116] Kojima Y, Suzuki N. Hydrogen adsorption and desorption by potassium-dopedsuperactivated carbon. Appled physics letters,2004,84(20):4113-4115
    [117] Mizutani Y, Abe T, Ikeda K, et al. Graphite intercalation compounds prepareded insolutions of alkali metals in2-methyltetrahydrofuran and2.5-dimethyltetr-hydrofuran. Carbon,1997,35(1):61-65
    [118] Ichimura K, Takamura E, Sano M. Hydrogen in alkali-metal-graphite intercalationcompounds. Synthetic Metals,1991,40(3):355-368
    [119] Sano M, Nishimura H, Ichimura K. Dissociation of hydrogen molecules by afirst-stage graphite-caesium intercalation compound. Synthetic Metals,1989,31(1):73-78
    [120] Murakami H, Kanazawa I, Sano M, et al. Hydrogen in a graphite-rubidiumintercalation compound RbC8studied by positron annihilation. Journal of Physicsand Chemistry of Solids,1988,49(4):457-460
    [121] Suzuki M, Louis J. Santodonato, Mildred Yeh, et al. Structural and magneticproperties of random mixture graphiteintercalation compounds. Journal of MaterialsResearch,1996,5(2):422-427
    [122]时虎,胡源.石墨层间化合物的合成和应用.炭素技术.2002,119(2):29-32
    [123]孟宪光.无硫高抗氧化膨胀石墨及其制品的生产.非金属矿,1996,110(2):22-24
    [124]徐淑云.由碱金属-石墨-四氢呋喃三元层间化合物合成膨胀石墨.碳素译丛,1989,3:27-31
    [125] Pilliere H, Takahashi Y, Yoneoka T, et al. Oligomerization process during theintercalation of ethylene in CsC24. Synthetic Metals,1993,59(2):191-199
    [126] Takahashi Y, Akuzawa N, Béguin F. Host effect in the sorption of ethylene byCsC24and KC24. Synthetic Metals,1995,73(1):45-48
    [127] Ka ucki K, Morawski A W. On the reduction of graphite intercalation compoundswith iron trichloride. Reactivity of Solids,1988,6(1):29-38
    [128]刑丽英.隐身材料.北京:北京工业出版社.2004:1-82
    [129] Salvatore Celozzi, Rodolfo Araneo, Giampiero Lovat.电磁屏蔽原理与应用.北京:机械工业出版社.2009:17-31
    [130]张季爽编.基础物理化学2.北京:科学工业出版社.2000:205-210.
    [131]孟新强.隐身技术的研究与应用现状.雷达与对抗,1999,3:1-5
    [132]赵东林,沈曾民.炭纤维结构吸波材料及其结构设计.兵器材料科学与工程,2000,23(6):51-56
    [133]彭志华.碳纳米管材料的微波吸收机理研究:[湖南大学博士论文].长沙:湖南大学,2010:1-36
    [134] Franchitto M, Faez R, Orlandoa J F, et al. Electromagnetic behavior of radarabosorbing materials based on conducting polymers. Ln: Microwave andOptoelectronics Conference. York,2001,137-140
    [135] Pant R P, Dhawan S K, Kataria N D. Investigations on ferrofluid-conductingpolyaniline polymer and its application. Journal of Magnetism and MagneticMaterials,2002,252:16-19
    [136]高虹霓,曹泽阳.21世纪隐身新途径—等离子体隐身技术.飞航导弹,2002,1:54-55
    [137] Tanaka K, Yamabe T, Fukui K. The sicience and techology of carbon nanotubes.The Netherlands:1991:1-32
    [138]朱长纯,邓宁.碳纳米管薄膜对电磁波吸收特性的研究.西安交通大学学报,2000,34(12):102-104
    [139]秦嵘,陈雷.国外新型隐身材料研究动态.宇航材料工艺,1997,(4):17-19
    [140] Jiang P, Jona F, Marcus P M. Surface effects in metal microclusters. PhysicalReview B,1987,36(12):6336-6338
    [141] Peng C H, Wang H W, Kan S W, et al. Microwave absorbing materials usingAg-NiZn ferrite core-shell nanopowders as fillers. Journal of Magnetism andMagnetic Materials,2004,284:113-119.
    [142] Kima S S, Kima S T, Ahnb J M, et al. Magnetic and microwave absorbingproperties of Co-Fe thin films plated on hollow ceramic microspheres of low density.Journal of Magnetism and Magnetic Materials,2004,271:39-45
    [143] Ruan S, Xu B, Suo H, et al. Microwave absorptive behavior of ZnCo-substitutedW-type Ba hexaferrite nanocrystalline composite material. Journal of Magnetism andMagnetic Materials,2000,212:175-177
    [144]张克立,从长杰,郭光辉,等.纳米吸波材料的研究现状与展望.武汉大学学报(理学版).2003,49(3):680-684
    [145]彭伟才,陈康华,李晶儡,等.随机分布Fe纳米线复合材料的吸波性能.中国有色金属学报.2005,15(2):2-7
    [146]纳米吸波复合材料的研究与发展趋势.化学世界,2004,4:278-280.
    [147]曹莹.新型镍、钴、铁氢氧化物纳米吸波材料的研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2001,1-26
    [148]都有为.超微颗粒的物理特性.材料导报,1992,(5):1-3
    [149]何雄辉,杨剑喻.金属超细颗粒的微波吸收特性.西安科技学院学报,2000,20(3):257-259
    [150]陈利民.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性.微波学报,1999,15(4):314-316.
    [151]陈蓓京,陈利民,亓家钟,等.纳米微波吸收材料的研究及其应用.功能材料,2004,35:833-836
    [152]于冬亮,杨少光,朱浩,等.钴纳米线阵列的制备和磁性研究.南京化工大学学报,2000,19(1-2):345-348
    [153]宋清涛,潘谷平,戴志晖.有序Ni纳米线阵列的样模制备法及其磁单畴特性.南京师大学报,2000,23(3):63-69
    [154] Zhu H, Yang S G, Ni G, et al. Fabrication and magnetic properties of Co67Ni33alloynanowire array. Scripta Mater,2001,44(2):2291-2295
    [155] Ni S, Sun Xiaole, Wang X, et al. Low temperature synthesis of Fe3O4microspheresandits microwave absorption properties. Materials Chemistry and Physics,2010,124(1):353-358.
    [156]黄全霞,曹全喜,卫云鸽,等.零维纳米Fe2O3粉体的制备与微波性能的研究.功能材料与器件学报.2004,10(2):251-254
    [157]催升,沈晓东,林本兰.四氧化三铁纳米粉的制备方法及应用.无机盐工业,2005,37(2):4-6
    [158]何秋星.微乳液法制备纳米磁性Fe3O4微粒工艺条件研究.磁性材料及器件,2003,34(4):9-11
    [159] Wang Y, Zhu J, Zhang L, et al. Preparation and characterization of perovskiteLaFeO3nanocrystals. Materials Letters,2006,60(13–14):1767-1770
    [160]阮圣平,王兢,刘永刚,等. BaFe12O19铁氧体纳米复合材料微波吸收性能的研究.吉林大学学报(理学版),2003,41(1):70-72
    [161] Dai X, Yu C, Wu Q. Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9-Co0.1O3perovskite oxides as oxygen carrier for partial oxidation of methane. Journalof Natural Gas Chemistry,2008,17(4):415-418
    [162]宋月贤,韦玮,郑元锁,等.用于电磁屏蔽与吸波技术的苯胺导电聚合物的研究进展.化工新型材料,2000,(9):3-7
    [163] Boara G, Sparpaglione M. Synthesis of polyaniline with high electrical conducti-vity. Synthetic Metals,1995,(72):135-140
    [164]邓建国,杨迎春.磁性导电聚合物微波吸收材料的研究.纳米技术,2007,(5):15-19
    [165]王国强,邹勇,石义杰,等.掺杂Mn-Zn复合聚苯胺电磁参数及吸波性能的研究.河南教育学院学报(自然科学版).2000,9(1):22-25
    [166]任慧,焦清介,沈万慈等.宽频谱红外烟幕剂CuCl2-NiCl2-GIC的研究.含能材料,2005(1):45-48
    [167]任慧,乔小晶.红外消光材料CuCl2-GIC的研究.弹箭与制导学报,2002,22(4):206-208.
    [168]任慧,焦清介,沈万慈,等.超微粉石墨层间化合物FeCl3-NiCl2-GICs的制备及电磁性能研究.材料科学与工程学报,2003,21(3):346-349
    [169] Gaier J R. Intercalation graphite fiber composites as EMI shields in aerospacestructures. IEEE Transactions on Electromagnetic Compatibility,1992,34(3):351-356.
    [170] Fengyonghe.扫描电镜SEM/EDS. http://bbs.instrument.com.cn/shtml/20110417/3253986/,2011.4.18
    [171]王伟强.高温高压化工容器的设计.湖北:武汉大学出版社,2002:112-115
    [172]蒋文忠.材料机械设计基础.长沙:湖南大学出版社.2000:57-59
    [173] Briggs D. X射线与紫外光电子能谱.桂琳琳,黄慧忠,郭国霖译.北京:北京大学出版社,1984:168
    [174] Milman E, Corson M R, Hoy G R. Intercalative model of FeCl3-GIC formation.Physical Review B,1982,25(11):6959-6601
    [175] Zhang Y, Zhang Z, Li T, et al. XPS and XRD study of FeCl3-graphite intercalationcompounds prepared arc discharge in aqueous solution. Spectrochimica Acta Part A.2008,(70):1060-1064
    [176] Usha N, Viswanathan B, Murthy R K V, et al. X-ray photoelectron spectroscopicstudy of some pure stages of graphite ferric chloride intercalation compounds.Spectrochimica Acta Part A,1997,53(11):1761-1765
    [177] Li Yang, Hongbo Liu, Yuxi Chen,et al. Huan He, and Hui Chen. FormationProcess of FeCl3-NiCl2-Graphite Intercalation Compounds. Journal of MaterialsEngineering and Performance,2012,21(3):339-344
    [178]郑少华,姜奉华.试验设计与数据处理.北京:中国建材工业出版社,2004:61-67.
    [179]蔡爱军.三元FeCl3-NiCl2-GICs合成及还原工艺研究:[湖南大学硕士学位论文].长沙:湖南大学,2004,38-46,23-37,48-60
    [180] Andrea C Ferrari, Robertson J.谭平恒,李峰,成会明译.碳材料的拉曼光谱——从纳米管到金刚石.北京:化学工业出版社,2007:187-218
    [181] Grüneis A, Attaccalite C, Rubio A, et al. Electronic structure and electron-phononcoupling of doped graphene layers in KC8.Physical Review B,2009,79:205106-205111
    [182] Zou Y, Liu H, Yang L, et al. The influence of temperature on magnetic andmicrowave absorption properties of Fe/graphite oxide nanocomposites. Journal ofMagnetism and Magnetic Materials,2006,(302):343-347
    [183]吴晓光,车哗秋编译.国外微波吸收材料.长沙:国防科技大学出版社,1992:152
    [184]曾祥云,马铁军,李家俊.吸波材料(RAM)用损耗介质及RAM技术发展趋势.材料导报,1997,11(3):57-60
    [185] Toshikatsu Ishikawa. Recent Development of the SiC fiber nicalon and itscomposites. Comp. Sci. and Tech..1994,(51):135-144
    [186]巩晓阳,董企铭,田保红,等.纳米Fe含量对Fe/环氧树脂复合材料吸波性能的影响.河南科技大学学报.2004,25(1):14-17
    [187]颜爱国,邱冠周,刘小鹤,等. Fe3O4纳米晶的粒径控制合成、表征及其吸波性能.高等学校化学学报.2008,29(1):23-27
    [188] FactSage Family of Products and Services. http://www.crct.polymtl.ca/factsage/fs_family.php.2008,6
    [189]张雪峰,李哲男,王威娜,等.磁性Fe、Co、Ni纳米粒子的吸波性能研究.粉末冶金工业,2006,16(1):11-16
    [190] B. Lu, X.L. Dong, H. Huang, et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. Journal of Magnetism and MagneticMaterials,2008,(320):1106–1111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700