用户名: 密码: 验证码:
纳米粒子在液/液界面自组装及其电催化和光谱的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子薄膜是指以纳米粒子为基本单元所构成的二维纳米结构材料,在催化、能源、传感以及医疗诊断等领域有广泛的应用。此外,二维纳米结构薄膜也可以进一步作为构筑单元来制备三维纳米结构。由于纳米粒子薄膜中纳米粒子间的相互作用,纳米粒子薄膜经常呈现出单个纳米粒子和本体材料不具备的宏观特性,因此,控制纳米粒子薄膜的结构就成为调控其特性的有效手段。为此,科研工作者发展了各式各样的纳米粒子薄膜制备方法。然而,在众多的纳米粒子薄膜的制备方法中,纳米粒子的液体/液体界面自组装以其简单、便捷和无需仪器的优势,备受科学家们的关注。因此,发展可控液/液界面自组装方法和研究纳米结构与其性能的关系,将是一项非常有意义且负有挑战性的工作。基于此,本论文主要开展了以下的研究:
     (1)液/液界面自组装机理研究:以乙醇诱导界面自组装方法为实验基础,以球体、立方体、圆柱体三种理论模型为研究对象,讨论粒子被吸附至界面过程中体系的能量变化。在球体、立方体和圆柱体粒子进行相应的理论和实验研究表明在热力学最稳定状态下球体、立方体和圆柱体三种构型的纳米粒子均能在油/水界面吸附,并组装成薄膜。同时,也讨论了表面活性剂和油的类型对纳米粒子组装的影响。
     (2)界面组装纳米粒子薄膜的机械稳定性研究:以铂纳米粒子为对象,采用循环伏安法和旋转圆盘电极计时电流法研究了界面组装的铂纳米粒子对氧分子的电还原。结果表明:界面组装制备的单层铂纳米粒子薄膜不仅具有良好的电催化能力,并且高强度地粘滞在玻碳电极表面,在电极旋转的这种恶劣的条件下也不脱落。
     (3)界面组装的金纳米粒子薄膜结构对CO电催化研究:将乙醇和甲苯混合溶液注入到金溶胶内部,诱导金纳米粒子在甲苯/水界面上吸附,并组装成纳米粒子薄膜,通过逐渐增加乙醇在混合物中的浓度来控制薄膜中金纳米粒子的聚集度。相对粒子状的金纳米粒子薄膜而言,链状聚集的金纳米粒子薄膜能够有效地电催化氧化CO。
     (4)金/铂复合纳米结构薄膜对甲醇的电催化研究:通过组装金纳米棒单层薄膜和金纳米粒子单层薄膜,并采用湿法化学方法在薄膜上修饰超薄纳米铂,考察铂修饰在金纳米材料薄膜上对碱性条件下甲醇的催化活性。结果表明,各种材料的催化能力如下:铂修饰的金纳米棒电极>铂修饰的金纳米粒子电极>铂修饰的电极,揭示了Au和Pt的协同效应是复合催化剂高活性的起源,同时也表明金纳米粒子的形状对电催化影响。
     (5)银纳米线和碳纳米管复合薄膜对H2O2的电催化研究:采用多次转移界面纳米粒子薄膜的方法制备了银纳米线和碳纳米管复合薄膜,由于层与层之间没有加入任何交联剂,这种复合材料显示出良好的电子传导能力,对H2O2的响应迅速,实现了对H2O2的快速检测。
     (6)“三明治”式的银纳米线薄膜的拉曼增强效应:采用层层组装技术将染料分子夹在两层银纳米线单层膜之间,上下两层纳米线的耦合能够进一步增强了表面等离子体共振强度,从而实现拉曼信号的增强。
     (7)界面上的银纳米立方体定向刻蚀:理论计算显示银纳米立方体在界面上是最稳定的状态:一面浸在油相,相同体积的一面浸没在水相。根据此原理,利用水溶性刻蚀试剂原位定向刻蚀处于油/水界面上的银纳米立方体,在立方体的一个面上定向刻蚀空洞。
Nanoparticle thin-films are two-dimensional (2D) nanostructures involvingnanoparticles as building blocks, which have wide applications in the fields ofcatalysis, energy source, sensing, medical diagnosis and so on. Further,2Dnanostructured films can be employed as novel building blocks to designthree-dimensional nanostructures. Due to interactions between nanoparticles innanoparticle films, nanoparticle films usually exhibit unique collective propertiesdifferent from the single nanoparticle or bulk counterparts. It means that theproperties of as-prepared nanoparticle films can easily be tuned by controllingstructures of nanoparticle films. Thus, varied methods for fabricating nanoparticlefilms have been proposed so now, but among which, the oil/water interfacialassembly is paid a lot of attention because it is simple, convenient andinstrument-free. Therefore, it is a very meaningful, challenging task to developcontrollable interfacial assembly and exploit the relations between nanostructuresand their properties. Based on the above consideration, this thesis involves thefollowing contents:
     (1) Mechanism of oil/water interfacial assembly: Base on ethanol-mediatedinterfacial assembly, the energy change of single nanoparticle was caculated when itmigrated from the bulk solution onto oil/water interfaces. The theoretical andexperimental data indicate that thermodynamical states of sphere, cube and cylindernanoparticle are the stablest when they are located at oil/water interfaces, formingnanoprticle films, respectively. Additionally, the effects of the type of surfactant andoil on interfacial assembly were discussed roughly, respectively.
     (2) Machanical stability of nanoparticle monolayer films obtained by theinterfacial assembly: Take Pt nanoparticles as an example, oxygen reduction wascarried out on Pt nanoparticle monolayer films by cyclic voltammetrical and rotatingdisk electrode techniques. The results showed the Pt nanoparticle monolayer filmexhibited satisfactory electrocatalytic activity, and was still fixed firmly on theelectrode surface under a relative harsh condition ofelectrode rotation.
     (3) Gold nanoparticle films for CO electrooxidation: Gold nanoparticles canadsorp onto toluene/water interfaces by injecting a mixture of ethanol and tolueneinto Au aqueous colloid, and then gradually formed a Au nanoparticle monolayer film. The fine nanostructure of as-prepared Au nanoparticle monolayer film wascontrolled well simply by changing the ethanol:toluent volume ratio in the mixture.Carbon monoxide was used as a probe for testing the electrocatalytic performancesof the above Au nanoparticle film. The results indicate that, compared with isolatedAu nanoparticle monolayer film, the chain-like Au nanoparticle film showed anexcellent catalytical activity.
     (4) Au/Pt composit nanofilms for methanol electrooxidation: Two types ofAu nanosturctures, Au nanorods and gold nanospheres, were fabricated, respectively,by the above interfacial assembly, and then each Au nanoparticle film was modifiedby a platinum ultra-thin films using wet chemistry method. Pt thin films on goldnanomaterials show satisfactory electrocatalytic activities for methanolelectrooxidation. By comparison, the performance of catalyst is in this order: Pt-goldnanorod film>Pt-gold nanoparticle film>Pt-bare electrode. The results disclosed thecontribution of the synergitical effect of Au and Pt and the effect of the shape of Aunanoparticle on methanol electrooxidation.
     (5) Ag nanowire/carbon nanotube composite films for H2O2electrooxidation: Ag nanowire monolayer film and carbon nanotube film fabricatedat oil/water interfaces, respectively, were transferred alternatively onto galssycarbon surface without any linkers, forming a composite film. As-preparedcomposite film showed good electronic conductivity and catalytic activity. Due tothe linker-free merit, it responded quickly to H2O2, and may be used in rapiddetection of H2O2.
     (6) Ag nanowire “sandwich” structures for surface-enhanced Ramanscattering: Ag nanowire “sandwich” structures were fabricated by repeatedlytransfering Ag nanowire monolayer film locating at a oil/water interface onto thesame slide glass. Before repeating the transfer of Ag nanowire monolayer film, theslide galss covered with one layer of Au nanowire monolayer film was inmmersedinto a dye aqueous solution to absorb dye molecules. Due to the location of dyemolecules between two layers of Ag nanowire monolayer films, the “sandwith”structure showed better SERS activity than Ag nanowire monolayer film with dyemolecuels, which may result from enhancement of electromagnetic field betweentwo layers of Ag nanowire monolayer film.
     (7) Oriented etcting of Ag nanocube at oil/water interface: The theoreticalcalculations above show that the stablest state of each silver nanocube at theinterface is one of its sides in the oil phase and the opposite side was in the aqueous phase. According to this principle, in-situ etching of silver nanoparticles at oil/liquidinterfaces was done to prepare a concavity on the side of Ag nanocube.
引文
[1] Bai C. Ascent of Nanoscience in China. Science,2005,309(5731):61-63
    [2] Pileni M P. Supracrystals of Inorganic Nanocrystals: An Open Challenge forNew Physical Properties. Accounts of Chemical Research,2008,41(12):1799-1809
    [3] Niemeyer C M. Nanoparticles, Proteins, and Nucleic Acids: BiotechnologyMeets Materials Science. Angewandte Chemie International Edition,2001,40(22):4128-4158
    [4] Dillon A C, Parilla P A, Alleman J L, et al. Controlling Single-Wall NanotubeDiameters with Variation in Laser Pulse Power. Chemical Physics Letters,1999,316(1):13-18
    [5] Tarasov S, Kolubaev A, Belyaev M, et al. Study of Friction Reduction byNanocopper Additives to Motor Oil. Wear,2002,252(1):63-69
    [6] Feyneman R. There's Plenty of Room at the Bottom. Journal ofMicroeleciromechanical Systems,1992,1(1):60-66
    [7] Goesmann H, Feldmann C. Nanoparticulate Functional Materials. AngewandteChemie International Edition,2010,49(8):1362-1395
    [8] Xia H, Wang D. Fabrication of Macroscopic Freestanding Films of MetallicNanoparticle Monolayers by Interfacial Self-Assembly. Advanced Materials,2008,20(22):4253-4256
    [9] Masashi S, Taishi T, Atsuo Y, et al. Hydrogen Storage in Single Walled CarbonNanotube Bundles and Peapods. Chemical Physics Letters,2002,358(3):213-218
    [10] Rapoport L, Bilik Y, Feldman Y, et al. Hollow Nanoparticles of WS2asPotential Solid-state Lubricants. Nature,1997,387(6635):791-793
    [11] Seitzman L, Bolster R, Singer I, et al. Relationship of Endurance toMicrostructure of IBAD MoS2coatings. Tribology Transactions,1995,38(2),445-451
    [12] Tao A, Sinsermsuksakul P, Yang P D. Tunable Plasmonic Lattices of SilverNanocrystals. Nature Nanotechnology,2007,2(7):435-440
    [13] Tao A, Kim F, Hess C, et al. Langmuir-Blodgett Silver Nanowire Monolayersfor Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. NanoLetters,2003,3(9):1229-1233
    [14]周震,阎杰,王先友等.纳米材料的特性及其在电催化中的应用.化学通报,1998,4(6):23-27
    [15] Tian N, Zhou Z, Sun S, et al. Synthesis of Tetrahexahedral PlatinumNanocrystals with High-index Facets and High Electro-oxidation Activity.Science,2007,316(5825):732-735
    [16] Hong S, Freeman A. Structural, Electronic, and Magnetic Properties of Cleanand Ag-covered Fe Monolayers on W(110). Physical Review B,1988,38(17),12156-12163
    [17] Yuasa S, Nagahama T, Fukushima A, et al. Giant Room-temperatureMagnetoresistance in Single-crystal Fe/MgO/Fe Magnetic Tunnel Junctions.Nature Materials,2004,3(12):868-871
    [18]张立德,牟季美.纳米材料和纳米结构.1.北京:科学出版社,2001,1-1
    [19] Grzelczak M, Vermant J, Furst E, et al. Directed Self-Assembly ofNanoparticles. ACS Nano,2010,4(7):3591-3605
    [20] Xia Y, Yang P, Sun Y, et al. One-Dimensional Nanostructures: Synthesis,Characterization, and Applications. Advanced Materials,2003,15(5):353-389
    [21] Eder D. Carbon Nanotube-Inorganic Hybrids. Chemical Reviews,2010,110(3):1348-1385
    [22] Niemeyer C M. Nanoparticles, Proteins, and Nucleic Acids: BiotechnologyMeets Materials Science. Angewandte Chemie International Edition,2001,40(22):4128-4158
    [23] Drain C, Varotto A, Radivojevic I. Self-Organized Porphyrinic Materials.Chemical Reviews,2009,109(5),1630-1658
    [24] Habibi Y, Lucia L, Rojas O. Cellulose Nanocrystals: Chemistry,Self-Assembly, and Applications. Chemical Reviews,2010,110(6):3479-3500
    [25] Chen J, Lim B, Lee E. Shape-controlled Synthesis of Platinum Nanocrystalsfor Catalytic and Electrocatalytic Applications. Nano Today,2009,4(1):81-95
    [26] Jun Y, Choi J, Cheon J. Shape Control of Semiconductor and Metal OxideNanocrystals through Nonhydrolytic Colloidal Routes. Angewandte ChemieInternational Edition,2006,45(21):3414-3439
    [27] Park J, Joo J, Kwon S, et al. Synthesis of Monodisperse SphericalNanocrystals. Angewandte Chemie International Edition,2007,46(25):4630-4660
    [28] Jana N R, Gearheart L, Murphy C J. Wet Chemical Synthesis of High AspectRatio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B,2001,105(19):4065-4067
    [29] Zhang Q, Li W, Moran C, et al. Seed-Mediated Synthesis of Ag Nanocubeswith Controllable Edge Lengths in the Range of30-200nm and Comparisonof Their Optical Properties. Journal of the American Chemical Society,2010,132(32):11372-11378
    [30] Zhang Q, Li N, Goebl J, et al. A Systematic Study of the Synthesis of SilverNanoplates: Is Citrate a “Magic” Reagent? Journal of the American ChemicalSociety,2011,133(46):18931-18939
    [31] Zhang L, Zhang J, Kuang Q, et al. Cu2+-Assisted Synthesis of HexoctahedralAu-Pd Alloy Nanocrystals with High-Index Facets. Journal of the AmericanChemical Society,2011,133(43):17114-17117
    [32] Zhou S, McIlwrath K, Jackson G, et al. Enhanced CO Tolerance for HydrogenActivation in Au-Pt Dendritic Heteroaggregate Nanostructures. Journal of theAmerican Chemical Society,2006,128(6):1780-1781
    [33] Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles.Science,298(5601):2176-2179
    [34] Sun Y, Xia Y. Mechanistic Study on the Replacement Reaction between SilverNanostructures and Chloroauric Acid in Aqueous Medium. Journal of theAmerican Chemical Society,2004,126(12):3892-3901
    [35]李永军,刘艳春.有序纳米结构薄膜.1.北京:化学工业出版社,2006,5-6
    [36] Filpo G, Nicoletta F, Chidichimo G. Flexible Nano-Photo-Electrochromic Film.Chemistry of Materials,2006,18(19):4662-4666
    [37] Kishimoto K, Suzawa T, Yokota T, et al. Nano-Segregated Polymeric FilmExhibiting High Ionic Conductivities. Journal of the American ChemicalSociety,2005,127(44):15618-15623
    [38]李永军,刘艳春.有序纳米结构薄膜.1.北京:化学工业出版社,2006,6-6
    [39] Ko H, Park J, Shin H, et al. Rapid Self-Assembly of Monodisperse ColloidalSpheres in an Ink-Jet Printed Droplet. Chemistry of Materials,2004,16(22):4212–4215
    [40] Kiely C. Fink J. Brust M, et al. Spontaneous Ordering of Bimodal Ensemblesof Nanoscopic Gold Clusters. Nature,396(6710):444-446
    [41] Murray C B, Kagan C R, Bawendi M G. Synthesis and Characterization ofMonodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies.Annual Review of Materials Research,2000,30:545-610
    [42] Collier C P, Vossmeyer T, Heath J R. Nanocrystal Superlattices. AnnualReview of Physical Chemistry,1998,49:371-404
    [43] Denkov N D, Velev O D, Kralchevsky P A, et al. Two-DimensionalCrystallization. Nature,1993,361(6407):26-26
    [44] Bodnarchuk M, Kovalenko M, Heiss W, et al. Energetic and EntropicContributions to Self-Assembly of Binary Nanocrystal Superlattices:Temperature as the Structure-Directing Factor. Journal of the AmericanChemical Society,2010,132(34):11967-11977
    [45] Shevchenko E, Talapin D, Kotov N, et al. Structural diversity in binarynanoparticle superlattices. Nature,2006,439(7072):55-59
    [46] Tao A, Huang J, Yang P. Langmuir-Blodgettry of Nanocrystals and Nanowires.Accounts of Chemical Research,2008,41(12):1662-1673
    [47] Audrieth L, Nelson H. Electrodeposition of Metals from Non-aqueousSolvents. Chemical Reviews,1931,8(2):335-352
    [48] Carim A, Gu J, Maldonado S. Overlayer Surface-Enhanced RamanSpectroscopy for Studying the Electrodeposition and Interfacial Chemistry ofUltrathin Ge on a Nanostructured Support. ACS Nano,2011,5(3):1818-1830
    [49] Deng Y, Huang W, Chen X, et al. Facile Fabrication of Nanoporous Gold FilmElectrodes. Electrochemistry Communications,2008,10(5):810-813
    [50] Ge X, Wang R, Liu P, et al. Platinum-Decorated Nanoporous Gold Leaf forMethanol Electrooxidation. Chemistry of Materials,2007,19(24):5827-5829
    [51] Jiang P, McFarland M. Large-Scale Fabrication of Wafer-Size ColloidalCrystals, Macroporous Polymers and Nanocomposites by Spin-Coating.Journal of the American Chemical Society,2004,126(42):13778-13786
    [52] Pradhan N, Acharya S, Ariga K, et al. Chemically Programmed UltrahighDensity Two-Dimensional Semiconductor Superlattice Array. Journal of theAmerican Chemical Society,2010,132(4):1212-1213
    [53] Heath J. Superlattice Nanowire Pattern Transfer (SNAP). Accounts ofChemical Research,2008,41(12):1609-1617
    [54] Whitesides G. Self-Assembly at all Scales. Science,2002,295(5564):2418-2421
    [55] Glotzer S. Some Assembly Required. Science,2004,306(5695):419-420
    [56] Binks B P. Particles as Surfactants: Similarities and Differences. CurrentOpinion in Colloid&Interface Science,2002,7(1-2):21-41
    [57] Pieranski P. Two-Dimensional Interfacial Colloidal Crystals. Physical ReviewLetters,1980,45(7):569-572
    [58] Ramsden W. Separation of Solids in the Surface-Layers of Solutions and'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, andMechanical Coagulation). Proceedings of the Royal Society of London,1903,72:156-164
    [59] Pickering S U. Emulsions. Journal of the Chemical Society, Transactions,1907,91:2001-2021
    [60] Abdel-Fattah A I, El-Genk M S. On Colloidal Particle Sorption onto aStagnant Air-Water Interface. Advances in Colloid and Interface Science,1998,78(3):237-266
    [61] Binks B P, Horozov T S. Colloidal Particles at Liquid Interfaces.1th. UK:Cambridge Universith Press,2006:1-501
    [62] Reincke F, Kegel W, Zhang H, et al. Understanding the self-assembly ofcharged nanoparticles at the water/oil interface. Physical Chemistry ChemicalPhysics,2006,8(33):3828-3835
    [63] Duan H, Wang D, Kurth D, et al. Directing Self-Assembly of Nanoparticles atWater/Oil Interfaces. Angewandte Chemie International Edition,2004,43(42):5639-5642
    [64] Kumar A, Mandal S, Mathew S P, et al. Benzene-and Anthracene-MediatedAssembly of Gold Nanoparticles at the Liquid-Liquid Interface. Langmuir,2002,18(17):6478-6483
    [65] Zheng L, Li J. Self-Assembly of Ordered3D Pd Nanospheres at aLiquid/Liquid Interface. The Journal of Physical Chemistry B,2005,109(3):1108-1112
    [66] Lee K, Kim M, Hahn J, et al. Assembly of Metal Nanoparticle-CarbonNanotube Composite Materials at the Liquid/Liquid Interface. Langmuir,2006,22(4):1817-1821
    [67] Hu J, Han G, Ren B, et al. Theoretical Consideration on Preparing SilverParticle Films by Adsorbing Nanoparticles from Bulk Colloids to an Air-WaterInterface. Langmuir,2004,20(20):8831-8838
    [68] Lee K, Kim M, Lee Y, et al. Fabrication of Metal Nanoparticles-CarbonNanotubes Composite Materials in Solution. Chemical Physics Letters.2007,440(4),249-252
    [69] Reincke F, Hickey S G, Kegel W K, et al. Spontaneous Assembly of aMonolayer of Charged Gold Nanocrystals at the Water/Oil Interface.Angewandte Chemie International Edition,2004,43(4):458-462
    [70] Li Y J, Huang W J, Sun S G. A Universal Approach for the Self-Assembly ofHydrophilic Nanoparticles into Ordered Monolayer Films at a Toluene/WaterInterface. Angewandte Chemie International Edition,2006,45(16):2537-2539
    [71] Yun S, Park Y K, Kim S K, et al. Linker-Molecule-Free Gold NanorodLayer-by-Layer Films for Surface-Enhanced Raman Scattering. AnalyticalChemistry,2007,79(22):8584-8589
    [72] Nikolaides M, Bausch A, Hsu M, et al. Electric-Field-Induced CapillaryAttraction between like-Charged Particles at Liquid Interfaces. Nature,2002,420(6913):299-301
    [73] Wickman H, Korley J. Colloid Crystal Self-Organization and Dynamics at theAir/Water Interface. Nature,1998,393(6684):445-447
    [74] Cai H, Wang Y Q, He P G, et al. Studies on an Electrochemical DNA BiosensorBased on Gold Nanoparticle-Labeled DNA Probe. Chemical Journal ofChinese Universities-Chinese,2003,24(8):1390-1394
    [75] Wang Q L, Lu G X, Yang B J. Direct Electrochemistry and Electrocatalysis ofHemoglobin Immobilized on Carbon Paste Electrode by Silica Sol-Gel Film.Biosensors&Bioelectronics,2004,19(10):1269-1275
    [76] Zhang F H, Cho S S, Yang S H, et al. Gold Nanoparticle-Based MediatorlessBiosensor Prepared on Microporous Electrode. Electroanalysis,2006,18(3):217-222
    [77] Li J P, Yu Q L, Peng T Z. Electrocatalytic Oxidation of Hydrogen Peroxideand Cysteine at a Glassy Carbon Electrode Modified With PlatinumNanoparticle-Deposited Carbon Nanotubes. Analytical Sciences,2005,21(4):377-381
    [78] Luo J, Maye M M, Kariuki N N, et al. Electrocatalytic Oxidation of Methanol:Carbon-Supported Gold-Platinum Nanoparticle Catalysts Prepared ByTwo-Phase Protocol. Catalysis Today,2005,99(3-4):291-297
    [79] Xiao L H, He Y, Yeung E S. High Throughput Single Molecule SpectralImaging of Photoactivated Luminescent Silver Clusters on Silver Island Films.The Journal of Physical Chemistry C,2009,113(15):5991-5997
    [80] Yoo H, Yang J, Nakamura Y, et al. Fluorescence Dynamics of DirectlyMeso-Meso Linked Porphyrin Rings Probed by Single Molecule Spectroscopy.Journal of the American Chemical Society,2009,131(4):1488-1494
    [81] Nuli Y, Zhao S, Qin Q. Nanocrystalline Tin Oxides and Nickel Oxide FilmAnodes for Li-ion Batteries. Journal of Power Sources,2003,114(1):113-120
    [82] Liu Y, Lia J, Zhang Q, et al. Porous Nanostructured V2O5Film Electrode withExcellent Li-ion Intercalation Properties. Electrochemistry Communications,2011,13(11):1276-1279
    [83] Hong J, Bae W, Lee H, et al. Tunable Superhydrophobic and OpticalProperties of Colloidal Films Coated with Block Copolymer Micelles/MicelleMultilayers. Advanced Materials,2007,19(24):4364-4369
    [84] Feng Y, Li L, Ge M, et al. Improved Catalytic Capability of Mesoporous TiO2Microspheres and Photodecomposition of Toluene. ACS Applied Materials&Interfaces,2010,2(11):3134-3140
    [85] Osbornea J, Blohowiaka K, Taylorb S, et al. Testing and Evaluation ofNonchromated Coating Systems for Aerospace Applications. Progress inOrganic Coatings,2001,41(4):217-225
    [86] Kawata S, Kawata Y. Three-Dimensional Optical Data Storage UsingPhotochromic Materials. Chemical Reviews,2000,100(5):1777-1788
    [87] Star A, Lu Y, Bradley K, et al. Nanotube Optoelectronic Memory Devices.Nano Letters,2004,4(9):1587-1591
    [88] Frens G. Controlled Nucleation for Regulation of Particle-Size inMonodisperse Gold Suspensions. Nature-Physical Science,1973,241(105):20-22
    [89] Dahl J A, Maddux B L S, Hutchison J E. Toward Greener Nanosynthesis.Chemical Reviews,2007,107(6):2228-2269
    [90] Lee P, Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silverand Gold Sols. The Journal of Physical Chemistry,1982,86(17):3391-3395
    [91] Gole A, Murphy C J. Seed-Mediated Synthesis of Gold Nanorods: Role of theSize and Nature of the Seed. Chemistry of Materials,2004,16(19):3633-3640
    [92] Qin G, Pei W, Ma X, et al. Enhanced Catalytic Activity of Pt Nanomaterials:From Monodisperse Nanoparticles to Self-Organized Nanoparticle-LinkedNanowires. The Journal of Physical Chemistry C,2010,114(15):6909-6913
    [93] Skrabalak S E, Au L, Li X, et al. Facile Synthesis of Ag Nanocubes and AuNanocages. Nature Protocols,2007,2(9):2182-2190
    [94] Korte K E, Skrabalak S E, Xia Y N. Rapid Synthesis of Silver Nanowiresthrough a CuCl-or CuCl2-Mediated Polyol Process. Journal of MaterialsChemistry.2008,18(4):437-441
    [95] Turkevich J, Stevenson P C, Hillier J. A Study of the Nucleation and GrowthProcesses in the Synthesis of Colloidal Gold. Discussions of the FaradaySociety,1951,11:55-75
    [96] Teranishi T, Hosoe M, Tanaka T, et al. Size Control of Monodispersed PtNanoparticles and Their2D Organization by Electrophoretic Deposition. TheJournal of Physical Chemistry B,1999103(19):3818-3827
    [97] Zijlstra P, Bullen C, Chon J, et al. High-Temperature Seedless Synthesis ofGold Nanorods. The Journal of Physical Chemistry B,2006,110(39):19315-19318
    [98] Stober W, Fink A. Controlled Growth of Monodisperse Silica Spheres in theMicron Size Range. Journal of Colloid and Interface Science,1968,26(1):62-69
    [99] Li B, Wang Y. Facile Synthesis and Enhanced Photocatalytic Performance ofFlower-like ZnO Hierarchical Microstructures. The Journal of PhysicalChemistry C,2010,114(2):890-896
    [100] Robinson J, Perkins F, Snow E, et al. Reduced Graphene Oxide MolecularSensors. Nano Letters,2008,8(10):3137-3140
    [101] Goss C, Charych D, Majda M. Application of (3-mercaptopropyl)trimethoxysilane as a Molecular Adhesive in the Fabrication of Vapor-depositedGold Electrodes on Glass Substrates. Analytical Chemistry,1991,63(1):85-88
    [102] Grabar K, Freeman R, Hommer M, et al. Preparation and Characterization ofAu Colloid Monolayers. Analytical Chemistry,1995,67(4):735-743
    [103] Park Y, Yoo S, Park S. Assembly of Highly Ordered Nanoparticle Monolayersat a Water/Hexane Interface. Langmuir,2007,23(21):10505-10510
    [104] WangY, Chen H, WangE. Facile Fabrication of Gold Nanoparticle Arrays forEfficient Surface-Enhanced Raman Scattering. Nanotechnology,2008,19(10):105604-105604
    [105] Jo J, Jung J, Lee J, et al. Fabrication of Highly Conductive and TransparentThin Films from Single-Walled Carbon Nanotubes Using a New Non-ionicSurfactant via Spin Coating. ACS Nano,2010,4(9):5382-5388
    [106] LeMieux M, Sok S, Roberts M, et al. Solution Assembly of Organized CarbonNanotube Networks for Thin-Film Transistors. ACS Nano,2009,3(12):4089-4097
    [107] Chang H, Wang G, Yang A, et al. A Transparent, Flexible, Low-Temperature,and Solution-Processible Graphene Composite Electrode. AdvancedFunctional Materials,2010,20(17):2893-2902
    [108] Yang L, Zhang T, Zhou H, et al. Solution-Processed Flexible Polymer SolarCells with Silver Nanowire Electrodes. ACS Applied Materials&Interfaces,2011,3(10):4075-4084
    [109] Hu L, Kim H, Lee J, et al. Scalable Coating and Properties of Transparent,Flexible, Silver Nanowire Electrodes. ACS Nano,2010,4(5):2955-2963
    [110] De S, Higgins T, Lyons P, et al. Silver Nanowire Networks as Flexible,Transparent, Conducting Films: Extremely High DC to Optical ConductivityRatios. ACS Nano,2009,3(7):1767-1774
    [111] Earnshaw J. Interfacial Colloidal Particles: an Electrostatic TrappingMechanism. Journal of Physics D: Applied Physics,1986,19(10):1863-1863
    [112] Binks B, Desforges A. Synergistic Stabilization of Emulsions by a Mixture ofSurface-Active Nanoparticles and Surfactant. Langmuir,2007,23(3):1098-1106
    [113] Lai R, Fuerstenau W. Liquid-liquid extraction of ultrafine particles.Transactions Society of Mining Engineers,1968,24(3):549-555
    [114] Binks B, Rodrigues J. Synergistic Interaction in Emulsions Stabilized by aMixture of Silica Nanoparticles and Cationic Surfactant. Langmuir,2007,23(7):3626-3636
    [115] Lim B, Jiang M, Tao J, et al. Shape-Controlled Synthesis of Pd Nanocrystalsin Aqueous Solutions. Advanced Functional Materials,2008,19(2):189-200
    [116] Xia Y, Xiong Y, Lim B, et al. Shape-Controlled Synthesis of MetalNanocrystals: Simple Chemistry Meets Complex Physics? AngewandteChemie International Edition,2009,48(1):60-103
    [117] Shi H, Hu B, Yu X, et al. Ordering of Disordered Nanowires: SpontaneousFormation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-AirInterface. Advanced Functional Materials,2010,20(6):958-964
    [118] Bi Y, Hu H, Lu Gong. Highly Ordered Rectangular Silver NanowireMonolayers: Water-Assisted Synthesis and Galvanic Replacement ReactionWith HAuCl4. Chemical Communications,2010,46(4):598-600
    [119] Gao Y, Jiang P, Liu D, et al. Evidence for the Monolayer Assembly ofPoly(vinylpyrrolidone) on the Surfaces of Silver Nanowires. The Journal ofPhysical Chemistry B,2004,108(34):12877-12881
    [120] Zong S, Wang Z, Yang J, et al. Intracellular pH Sensing Usingp-Aminothiophenol Functionalized Gold Nanorods with Low Cytotoxicity.Analytical Chemistry,2011,83(11):4178-4183
    [121] Wang Z, Zong S, Yang J, et al. One-Step Functionalized Gold Nanorods asIntracellular Probe with Improved SERS Performance and ReducedCytotoxicity. Biosensors and Bioelectronics,2010,26(1):241-247
    [122] Dong L, Tao X, Zhang L, et al. Nanorobotic Spot Welding: Controlled MetalDeposition with Attogram Precision from Copper-Filled Carbon Nanotubes.Nano Letters,2007,7(1):58-63
    [123] Peng Y, Cullis T, Inkson B. Bottom-up Nanoconstruction by the Welding ofIndividual Metallic Nanoobjects Using Nanoscale Solder. Nano Letters,2009,9(1):91-96
    [124] Ristau R, Tiruvalam R, Clasen P, et al. Electron Microscopy Studies of TheThermal Stability of Gold Nanoparticle Arrays. Gold Bulletin,42(2):133-143
    [125] Hirayama H, Kawamoto Y, Ohshima Y, et al. Nanospot Welding of CarbonNanotubes. Applied Physics Letters,2001,79(8):1169-1171
    [126] Forrest S. The Path to Ubiquitous and Low-Cost Organic ElectronicAppliances on Plastic. Nature,2004,428(6980):911-918
    [127] Garnier F, Hajlaoui R, Yassar A, et al. All-Polymer Field-Effect TransistorRealized by Printing Techniques. Science,1994,265(5179):1684-1686
    [128] Eda G, Fanchini G, Chhowalla M. Large-area Ultrathin Films of ReducedGraphene Oxide as a Transparent and Flexible Electronic Material. NatureNanotechnology,2008,3(5):270-274
    [129] Ferguson G, Chaudhury M, Sigal G, et al. Contact Adhesion of Thin GoldFilms on Elastomeric Supports: Cold Welding Under Ambient Conditions.Science,1991,253(5021):776-778
    [130] Kim C, Burrows P, Forrest S. Micropatterning of Organic Electronic Devicesby Cold-Welding. Science,2000,288(5467):831-833
    [131] Lu Y, Huang J, Wang C, et al. Cold Welding of Ultrathin Gold Nanowires.Nature Nanotechnology,2010,5(3):218-224
    [132] Nagahiro T, Ishibashi K, Kimura Y, et al. Ag Nanoparticle Sheet as a Markerof Lateral Remote Photocatalytic Reactions. Nanoscale,2010,2(1):107-113
    [133] Bi Y, Ye J. Cold-Welding Fabrication of Highly Ordered Gold NanochannelMonolayers in Aqueous Medium. Chemical Communications,2010,46(37):6912-6914
    [134] Sun S, Cai W, Wan L, et al. Infrared Absorption Enhancement for COAdsorbed on Au Films in Perchloric Acid Solutions and Effects of SurfaceStructure Studied by Cyclic Voltammetry, Scanning Tunneling Microscopy,and Surface-Enhanced IR Spectroscopy. The Journal of Physical Chemistry B,1998,102(37):7238-7250
    [135] Maye M, Lou Y, Zhong C. Core-Shell Gold Nanoparticle Assembly as NovelElectrocatalyst of CO Oxidation. Langmuir,2000,16(19):7520-7523
    [136] Jaramillo T, Baeck S, Cuenya B, et al. Catalytic Activity of Supported AuNanoparticles Deposited from Block Copolymer Micelles. Journal of theAmerican Chemical Society,2003,125(24):7148-7149
    [137] Borkowska Z, Tymosiak-Zielinska A, Nowakowski R. High Catalytic Activityof Chemically Activated Gold Electrodes towards Electro-Oxidation ofMethanol. Electrochimica Acta,2004,49(16):2613-2621
    [138] Yu C, Jia F, Ai Z, et al. Direct Oxidation of Methanol on Self-SupportedNanoporous Gold Film Electrodes with High Catalytic Activity and Stability.Chemistry of Materials,2007,19(25):6065-6067
    [139] Bond G. Gold: A Relatively New Catalyst. Catalysis Today,2002,72(1):5-9
    [140] Cuenya B, Baeck S, Jaramillo T, et al. Size-and Support-DependentElectronic and Catalytic Properties of Au0/Au3+Nanoparticles Synthesizedfrom Block Copolymer Micelles. Journal of the American Chemical Society,2003,125(42):12928-12934
    [141] Jena B, Raj C. Synthesis of Flower-like Gold Nanoparticles and TheirElectrocatalytic Activity towards the Oxidation of Methanol and theReduction of Oxygen. Langmuir,2007,23(7):4064-4070
    [142] Jena B, Raj C. Shape-Controlled Synthesis of Gold Nanoprism andNanoperiwinkles with Pronounced Electrocatalytic Activity. The Journal ofPhysical Chemistry C,2007,111(42):15146-15153
    [143] Diao P, Zhang D, Guo M, et al. Electrocatalytic Oxidation of CO on SupportedGold Nanoparticles and Submicroparticles: Support and Size Effects inElectrochemical Systems. Journal of Catalysis,2007,250(2):247-253
    [144] Guo L, Chen G, Kim D. Three-Dimensionally Assembled Gold Nanostructuresfor Plasmonic Biosensors. Analytical Chemistry,2010,82(12):5147-5153
    [145] Mayer K, Hafner J. Localized Surface Plasmon Resonance Sensors. ChemicalReviews,2011,111(6):3828-3857
    [146] Mandal S, Shundo A, Acharya S, et al. Hydrogen-Bond-Assisted “Gold ColdFusion” for Fabrication of2D Web Structures. Chemistry-An Asian Journal,2009,4(7):1055-1058
    [147] Weitz D, Huang J, Lin M, et al. Dynamics of Diffusion-Limited KineticAggregation. Physical Review Letters,1984,53(17):1657-1660
    [148] Lin M, Lindsay H, Weitz D, et al. Universal Reaction-Limited ColloidAggregation. Physical Review Letters,1990,41(4):2005-2020
    [149] Brust M, Bethell D, Kiely C, et al. Self-Assembled Gold Nanoparticle ThinFilms with Nonmetallic Optical and Electronic Properties. Langmuir,1998,14(19):5425-5429
    [150] Mirkin C, Letsinger R, Mucic R, et al. A DNA-Based Method for RationallyAssembling Nanoparticles into Macroscopic Materials. Nature,1996,382(6592):607-609
    [151] Wang M, Hu J, Li Y, et al. Au Nanoparticle Monolayers: Preparation,Structural Conversion and Their Surface-Enhanced Raman Scattering Effects.Nanotechnology,2010,21(14):145608-145608
    [152] Diao P, Wang J, Zhang D, et al. The Effect of Halide Ions on theElectrooxidation of CO on Gold Particles Supported by Indium Tin Oxide.Journal of Electroanalytical Chemistry,2009,630(1):81-90
    [153] Angerstein-Kozlowska H, Conway B, Hamelin A, et al. Elementarysteps ofElectrochemical Oxidation of Single-Crystalplanes of Au Part II. A Chemicaland Structural Basis of Oxidation of the (111) Plane. Journal ofElectroanalytical Chemistry and Interfacial Electrochemistry,1987,228(1):429-453
    [154] Long C, Gilbertson J, Vijayaraghavan G, et al. Kinetic Evaluation of HighlyActive Supported Gold Catalysts Prepared from Monolayer-Protected Clusters:An Experimental Michaelis Menten Approach for Determining the OxygenBinding Constant during CO Oxidation Catalysis. Journal of the AmericanChemical Society,2008,130(31):10103-10115
    [155] Ferreiraa V, Solla-Gullónc J, Aldaz A, et al. Progress in the Understanding ofSurface Structure and Surfactant Influence on the Electrocatalytic Activity ofGold Nanoparticles. Electrochimica Acta,2011,56(26):9568-9574
    [156] Lu Y, Tu J, Gu C, et al. Growth of and Methanol Electro-Oxidation by GoldNanowires with High Density Stacking Faults. Journal of Materials Chemistry,2011,21(13):4843-4849
    [157] Luo J, Jones V, Maye M, et al. Thermal Activation of Molecularly-Wired GoldNanoparticles on a Substrate as Catalyst. Journal of the American ChemicalSociety,2002,124(47):13988-13989
    [158] Nagaraju D, Lakshminarayanan V. Electrochemically Grown MesoporousGold Film as High Surface Area Material for Electro-Oxidation of Alcohol inAlkaline Medium. The Journal of Physical Chemistry C,2009,113(33):14922-14926
    [159] Borkowska Z, Tymosiak-Zielinska A, Shul G. Trends in SurfaceElectrochemistry: from Single Crystals to Nanoparticles Electrooxidation ofMethanol on Polycrystalline and Single Crystal Gold Electrodes.Electrochimica Acta,2004,49(8):1209-1220
    [160] Luo J, Njoki P, Lin Y, et al. Characterization of Carbon-Supported AuPtNanoparticles for Electrocatalytic Methanol Oxidation Reaction. Langmuir,2006,22(6):2892-2898
    [161] Assiongbon K, Roy D. Electro-oxidation of Methanol on Gold in AlkalineMedia: Adsorption Characteristics of Reaction Intermediates Studied UsingTime Resolved Electro-Chemical Impedance and Surface Plasmon ResonanceTechniques. Surface Science,2005,594(1):99-119
    [162] Chen A, Holt-Hindle P. Platinum-Based Nanostructured Materials: Synthesis,Properties, and Applications. Chemical Reviews,2010,110(6):3767-3804
    [163] Zhong C, Luo J, Fang B, et al. Nanostructured Catalysts in Fuel Cells.Nanotechnology,2010,21(6):062001-062001
    [164] Heinzela A, Heblinga C, Müller M, et al. Fuel Cells for Low PowerApplications. Journal of Power Sources,2002,105(2):250-255
    [165] Parsons R, VanderNoot T. The Oxidation of Small Organic Molecules: ASurvey of Recent Fuel Cell Related Research. Journal of ElectroanalyticalChemistry and Interfacial Electrochemistry,1988,257(1):9-45
    [166] Arenz M, Stamenkovic V, Schmidt T, et al. The Electro-Oxidation of FormicAcid on Pt-Pd Single Crystal Bimetallic Surfaces. Physical ChemistryChemical Physics,2003,5(19):4242-4251
    [167] Casado-Rivera E, Gál Z, Angelo A, et al. Electrocatalytic Oxidation of FormicAcid at an Ordered Intermetallic PtBi Surface. ChemPhysChem,2003,2(17):193-199
    [168] Chen W, Kim J, Sun S, et al. Composition Effects of FePt Alloy Nanoparticleson the Electro-Oxidation of Formic Acid. Langmuir,2007,23(22):11303-11310
    [169] Gasteiger H, Markovic N, Jr R, et al. CO Electrooxidation onWell-Characterized Pt-Ru Alloys. Journal of Physical Chemistry,1994,98(2):617-625
    [170] Wang H, Jusys Z, Behm R. Ethanol Electro-Oxidation on Carbon-Supported Pt,PtRu and Pt3Sn Catalysts: A Quantitative DEMS Study. Journal of PowerSources,2006,154(2):351-359
    [171] Kristian N, Wang X. Pt Shell–Au Core/C Electrocatalyst with a ControlledShell Thickness and Improved Pt Utilization for Fuel Cell Reactions.Electrochemistry Communications.2008,10(1):12-15
    [172] Xu C, Shen P. Electrochamical Oxidation of Ethanol on Pt-CeO2/C Catalysts.Journal of Power Sources,2005,142(1):27-29
    [173] Kristiana N, Yua Y, Gunawana P. Controlled Synthesis of Pt-decorated AuNanostructure and its Promotedactivity toward Formic Acid Electro-oxidation.Electrochimica Acta,2009,54(21):4916-4924
    [174] Xu J, Zhao T, Yang W, et al. Effect of Surface Composition of Pt-Au AlloyCathode Catalyst on the Performance of Direct Methanol Fuel Cells.International Journal of Hydrogen Energy,2010,35(16):8699-8706
    [175] Liu C, Li Y, Wang M, et al. Rapid Fabrication of Large-Area NanoparticleMonolayer Films via Water-Induced Interfacial Assembly. Nanotechnology,2009,20(6):065604-065604
    [176] Kometani N, Tsubonishi M, Fujita T, et al. Preparation and OpticalAbsorption Spectra of Dye-Coated Au, Ag, and Au/Ag ColloidalNanoparticles in Aqueous Solutions and in Alternate Assemblies. Langmuir,2001,17(3):578-580
    [177] Cherevko S, Xing X, Chung C. Pt and Pd Decorated Au Nanowires: ExtremelyHigh Activity of Ethanol Oxidation In Alkaline Media. Electrochimica Acta.2011,56(16):5771-5775
    [178] Jain P, Eustis S, El-Sayed M. Plasmon Coupling in Nanorod Assemblies:Optical Absorption, Discrete Dipole Approximation Simulation, andExciton-Coupling Model. The Journal of Physical Chemistry B.2006,110(37):18243-18253
    [179] Yan S, Zhang S. Investigation of Methanol Electrooxidation on Au/C Catalystin Alkaline Medium. International Journal of Hydrogen Energy,2011,36(21):13392-13397
    [180] Wang H, Vliet D, More K, et al. Multimetallic Au/FePt3Nanoparticles asHighly Durable Electrocatalyst. Nano Letters,2011,11(3):919-926
    [181] Kristian N, Yan Y, Wang X. Highly Efficient Submonolayer Pt-Decorated AuNano-Catalysts for Formic Acid Oxidation. Chemical Communications,2008,44(3):353-355
    [182] Talapin D, Lee J, Kovalenko M, et al. Prospects of Colloidal Nanocrystals forElectronic and Optoelectronic Applications. Chemical Reviews,2010,110(1):389-458
    [183] Roduner E. Size Matters: Why Nanomaterials are Different. Chemical SocietyReviews,2006,35(7):583-592
    [184] Lin Z, Lin M, Chang H. Facile Synthesis of Catalytically Active PlatinumNanosponges, Nanonetworks, and Nanodendrites. Chemistry-A EuropeanJournal,2009,15(18):4656-4662
    [185] Mostafa S, Behafarid F, Croy J, et al. Shape-Dependent Catalytic Properties ofPt Nanoparticles. Journal of the American Chemical Society,2010,132(44):15714-15719
    [186] Fujii K, Ashida Y, Uekusa H, et al. Vapour Induced CrystallineTransformation Investigated by ab initio Powder X-ray Diffraction Analysis.Crystal Growth&Design.2009,9(2):1201-1207
    [187] Mar G, Timbrell P, Lamb R. Factors Influencing the Chemical VaporDeposition of Oriented ZnO Films Using Zinc Acetate. Chemistry of Materials,1995,7(10):1890-1896
    [188] Jana S, Dutta B, Bera R, et al. Immobilization of Palladium in MesoporousSilica Matrix: Preparation, Characterization, and Its Catalytic Efficacy inCarbon-Carbon Coupling Reactions. Inorganic Chemistry,2008,47(12):5512-5520
    [189] Ganesan M, Freemantle R, Obare S. Monodisperse Thioether-Stabilized Palladium Nanoparticles: Synthesis, Characterization, and Reactivity. Chemistry of Materials,2007,19(14):3464-3471
    [190] Wang Q, Lee S, Choi H. Aging Study on the Structure of Fe0-Nanoparticles:Stabilization, Characterization, and Reactivity. The Journal of PhysicalChemistry C,2010,114(5):2027-2033
    [191] Nanda K, Maisels A, Kruis F, et al. Higher Surface Energy of FreeNanoparticles. Physical Review Letters,2003,91(10):106102-106105
    [192] Tian N, Zhou Z, Sun S. Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. The Journal of Physical Chemistry C,2008,112(50):19801-19817
    [193] Li N, Sun S, Chen S. Studies On The Role of Oxidation States of The PlatinumSurface in Electrocatalytic Oxidation of Small Primary Alcohols. Journal ofElectroanalytical Chemistry,1997,430(1):57-67
    [194] Li N, Sun S. In situ FTIR Spectroscopic Studies of the Electrooxidation of C-4Alcohols on Platinum Electrodes in Acid Solutions-Part I. ReactionMechanism of1,3-butanediol Oxidation. Journal of ElectroanalyticalChemistry.1997,436(1):65-72.
    [195] Hitmi H, Belgsir E, Léger J, et al. A Kinetic Analysis of the Electrooxidationof Ethanol at a Platinum-Electrode in Acid-Medium. Electrochimica Acta,1994,39(3):407-415
    [196] Balamurugan A, Chen S. Silver Nanograins Incorporated PEDOT ModifiedElectrode for Electrocatalytic Sensing of Hydrogen Peroxide. Electroanalysis,2009,21(12):1419-1423
    [197] Song Y, Cui K, Wang L, et al. The Electrodeposition of Ag Nanoparticles on aType I Collagen-Modified Glassy Carbon Electrode and Their Applications asa Hydrogen Peroxide Sensor. Nanotechnology,2009,20(10):105501-105501
    [198] Hurdis E, Romeyn H. Accuracy of Determination of Hydrogen Peroxide byCerate Oxidimetry. Analytical Chemistry,1954,26(2):320-325
    [199] Matsubara C, Kawamoto N, Takamura K. Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium (IV): an Ultra-High Sensitivity SpectrophotometricReagent for Hydrogen Peroxide. Analyst,1992,117(11):1781-1784
    [200] Luo L, Zhang Z. Sensors Based on Galvanic Cell Generated Electrochemiluminescence and its Application. Analytica Chimica Acta,2006,580(1):14-17
    [201] Lin Y, Cui X, Li L. Low-potential Amperometric Determination of HydrogenPeroxide with a Carbon Paste Electrode Modified with NanostructuredCryptomelane-Type Manganese Oxides. Electrochemistry Communications,2005,7(2):166-172
    [202] Zhang J, Zhou Y, Yoon J, et al. Recent Progress in Fluorescent andColorimetric Chemosensors for Detection of Precious Metal Ions (Silver, GoldAnd Platinum Ions). Chemical Society Reviews,2011,40(7):3416-3429
    [203] Yang W, Ratinac K, Ringer S, et al. Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene? Angewandte Chemie InternationalEdition,2010,49(12):2114-2138
    [204] Aroca R, Goulet P, Santos D, et al. Silver Nanowire Layer-by-Layer Films asSubstrates for Surface-Enhanced Raman Scattering. Analytical Chemistry,2005,77(2):378-382
    [205] Kelly K, Coronado E, Zhao L, et al. The Optical Properties of MetalNanoparticles: The Influence of Size, Shape, and Dielectric Environment.The Journal of Physical Chemistry B,2003,107(3):668-677
    [206] Gotschy W, Vonmetz K, Leitner A, et al. Optical Dichroism ofLithographically Designed Silver Nanoparticle Films. Optics Letters,1996,21(15):1099-1101
    [207] Lian W, Wang L, Song Y, et al. A Hydrogen Peroxide Sensor Based onElectrochemically Roughened Silver Electrodes. Electrochimica Acta,2009,54(18):4334-4339
    [208] Welch C, Banks C, Simm A, et al. Silver Nanoparticle Assemblies SupportedOn Glassy-Carbon Electrodes for The Electro-Analytical Detection OfHydrogen Peroxide. Analytical and Bioanalytical Chemistry,2005,382(1):12-21
    [209] Zhao W, Wang H, Qin X, et al. A Novel Nonenzymatic Hydrogen PeroxideSensor Based on Multi-Wall Carbon Nanotube/Silver NanoparticleNanohybrids Modified Gold Electrode. Talanta,2009,80(2):1029-1033
    [210] Song M, Hwang S, Whang D. Amperometric Hydrogen Peroxide BiosensorBased on a Modified Gold Electrode with Silver Nanowires. Journal ofApplied Electrochemistry,2008,40(12):122099-122105
    [211] Qian X, Nie S. Single-Molecule and Single-Nanoparticle SERS: fromFundamental Mechanisms to Biomedical Applications. Chemical SocietyReviews,2008,37(5):912-920
    [212] Nie S, Emory S. Probing Single Molecules and Single Nanoparticles bySurface-Enhanced Raman Scattering. Science,1997,275(5303):1102-1106
    [213] Lal S, Grady N, Kundu J, et al. Tailoring Plasmonic Substrates for SurfaceEnhanced Spectroscopies. Chemical Society Reviews,2008,37(5):898-911
    [214] Banholzer M, Millstone J, Qin L, et al. Rationally Designed Nanostructuresfor Surface-Enhanced Raman Spectroscopy. Chemical Society Reviews,2008,37(5):885-897
    [215] Han X, Kitahama Y, Itoh T, et al. Protein-Mediated Sandwich Strategy forSurface-Enhanced Raman Scattering: Application to Versatile ProteinDetection. Analytical Chemistry,2009,81(9):3350-3355
    [216] Wang H, Levin C, Halas N. Nanosphere Arrays with Controlled Sub-10-nmGaps as Surface-Enhanced Raman Spectroscopy Substrates. Journal of theAmerican Chemical Society,2005,127(43):14992-14993
    [217] Han X, Kitahama Y, Itoh T, et al. Protein-Mediated Sandwich Strategy forSurface-Enhanced Raman Scattering: Application to Versatile ProteinDetection. Analytical Chemistry,2009,81(9):3350-3355
    [218] Oates T, Shiratori Y, Noda S. Two-Dimensional Combinatorial Investigationof Raman and Fluorescence Enhancement in Silver and Gold SandwichSubstrates. The Journal of Physical Chemistry C.2009,113(22):9588-9594
    [219] Camargo P, Cobley C, Rycenga M, et al. Measuring the Surface-EnhancedRaman Scattering Enhancement Factors of Hot Spots Formed between anIndividual Ag Nanowire and a Single Ag Nanocube. Nanotechnology,2009,20(43):434020-434020
    [220] Fang Y, Wei, H, Hao F, et al. Remote-Excitation Surface-Enhanced RamanScattering Using Propagating Ag Nanowire Plasmons. Nano Letters,2009,9(5):2049-2053
    [221] Halas N, Lal S, Chang W, et al. Plasmons in Strongly Coupled MetallicNanostructures. Chemical Reviews,2011,111(6):3913-3961
    [222] Toma M, Toma K, Michioka K, et al. Collective Plasmon Modes Excited on aSilver Nanoparticle2D Crystalline Sheet. Physical Chemistry ChemicalPhysics,2011,13(16):7459-7466
    [223] Gole A, Murphy C. Polyelectrolyte-Coated Gold Nanorods: Synthesis,Characterization and Immobilization. Chemistry of Materials,2005,17(6):1325-1330
    [224] Vial S, Pastoriza-Santos I, Pérez-Juste J, et al. Plasmon Coupling inLayer-by-Layer Assembled Gold Nanorod Films. Langmuir,2007,23(8):4606-4611
    [225] Nikoobakht B, Wang J, El-Sayed M, et al. Surface-Enhanced RamanScattering of Molecules Adsorbed on Gold Nanorods: off-surface PlasmonResonance Condition. Chemical Physics Letters,2002,366(1):17-23
    [226] Liu C, Li Y, Sun S, et al. Room-Temperature Cold-Welding of GoldNanoparticles for Enhancing the Electrooxidation of Carbon Monoxide.Chemical Communications,2011,47(15):4481-4483
    [227] Lu Y, Liu G, Lee L. High-Density Silver Nanoparticle Film withTemperature-Controllable Interparticle Spacing for a Tunable SurfaceEnhanced Raman Scattering Substrate. Nano Letters,2005,5(1):5-9
    [228] Aslan K, Malyn S, Zhang Y, et al. Conversion of Just-Continuous MetallicFilms to Large Particulate Substrates for Metal-Enhanced Fluorescence.Journal of Applied Physics,2008,103(8):084307-084307
    [229] Wang J, Chen Y, Liu H, et al. Synthesis of Pd Nanowire Networks by a SimpleTemplate-Free and Surfactant-Free Method and Their Application in FormicAcid Electrooxidation. Electrochemistry Communications,2010,12(2):219-222
    [230] Lin X, Cui Y, Xu Y, et al. Surface-Enhanced Raman Spectroscopy:Substrate-Related Issues. Analytical and Bioanalytical Chemistry,2009,394(7):1729-1745
    [231] Gennes P. Soft Matter. Reviews of Modern Physics.1992,64(3):645-648
    [232] Walther A, Muller A. Janus Particles. Soft Matter,2008,4(4):663-668
    [233] Cheung D, Bon S. Stability of Janus Nanoparticles at Fluid Interfaces. SoftMatter,2009,5(20):3969-3976
    [234] Nisisako T, Torii T, Takahashi T, et al. Synthesis of Monodisperse BicoloredJanus Particles with Electrical Anisotropy Using a Microfluidic Co-FlowSystem. Advanced Materials,2006,18(9):1152-1156
    [235] Behrend C, Anker J, McNaughton B, et al. Metal-Capped Brownian andMagnetically Modulated Optical Nanoprobes (MOONs): Micromechanics inChemical and Biological Microenvironments. The Journal of PhysicalChemistry B,2004,108(29):10408-10414
    [236] Behrend C, Anker J, Kopelman R. Brownian Modulated Optical Nanoprobes.Applied Physics Letters,2004,84(1):154-156
    [237] Golestanian R, Liverpool T, Ajdari A. Propulsion of a Molecular Machine byAsymmetric Distribution of Reaction Products. Physical Review Letters,2005,94(22):220801-220805
    [238] Casagrande C, Fabre P, Raphael E, et al."Janus Beads": Realization andBehaviour at Water/Oil Interfaces. Europhysics. Letters,1989,9(3):251-255
    [239] Liu B, Wei W, Qu X, et al. Janus Colloids Formed by Biphasic Grafting at aPickering Emulsion Interface. Angewandte Chemie International Edition,2008,47(21):3973-3975
    [240] Chen J, McLellan J, Siekkinen A, et al. Facile Synthesis of Gold-SilverNanocages with Controllable Pores on the Surface. Journal of the AmericanChemical Society.2006,128(46):14776-14777
    [241] Mahmoud M, Tabor C, El-Sayed M. Surface-Enhanced Raman ScatteringEnhancement by Aggregated Silver Nanocube Monolayers Assembled by theLangmuir-Blodgett Technique at Different Surface Pressures. The Journal ofPhysical Chemistry C,2009,113(14):5493-5501
    [242] Mahmoud M, El-Sayed M. Comparative Study of the Assemblies and theResulting Plasmon Fields of Langmuir-Blodgett Assembled Monolayers ofSilver Nanocubes and Gold Nanocages. The Journal of Physical Chemistry C,2008,112(37):14618-14625
    [243] Creux P, Lachaise J, Graciaa A, et al. Specific Cation Effects at theHydroxide-Charged Air/Water Interface. The Journal of Physical Chemistry C,2007,111(9):3753-3755
    [244] Gray-Weale A, Beattie J, An Explanation for the Charge on Water’s Surface.Phys. Physical Chemistry Chemical Physics.2009,11(46):10994-11005
    [245] Creux P, Lachaise J, Graciaa A, et al. Strong Specific Hydroxide Ion Bindingat the Pristine Oil/Water and Air/Water Interfaces. The Journal of PhysicalChemistry B,2009,113(43)14146-14150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700