用户名: 密码: 验证码:
基于数学形态学的大地电磁强干扰分离及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地电磁强干扰分离技术一直是大地电磁测深领域的研究热点和难点。迄今为止,它的研究工作已经取得了许多成果,但随着人类文明的不断发展,重工业密集等因素造成的环境噪声以及人类活动等因素造成的人文电磁噪声日益严重,导致大地电磁测深数据受到严重污染,大地电磁测深工作面临巨大困难。现有的大地电磁强干扰分离方法在矿集区实际应用和测试中表现出诸多不足,这一领域面临的困难和挑战也日益加剧。因此,为了提高大地电磁测深数据质量,抑制噪声干扰已成为当务之急。研究大地电磁强干扰的特征,提出有针对性的大地电磁强干扰分离方法,对改善大地电磁测深数据质量以及对大地电磁法探测结果的处理和解释具有重要意义。本文正是在这一背景下,在国家科技专项“深部矿产资源立体探测及实验研究”(SinoProbe-03)和国家自然科学基金“基于数学形态学的大地电磁信号与强干扰分离方法研究”(41104071)的联合资助下,利用数学形态学理论对大地电磁强干扰分离方法进行了深入研究,具有重要的理论和实际意义。
     本文基于数学形态学的思想,对大地电磁强干扰分离及应用展开了分析,重点研究了传统形态滤波和广义形态滤波的大地电磁强干扰分离方法以及在形态滤波的基础上,研究了Top-hat变换、中值滤波和信号子空间增强的大地电磁二次信噪分离方法。论文通过理论分析、模拟仿真以及实际应用等手段,围绕数学形态学开展大地电磁强干扰分离的研究工作。本文工作的主要贡献和创新总结如下:
     (1)研究了五种典型的大地电磁强干扰类型的特征规律,分析了矿集区主要的噪声来源。对一类点分别添加类方波干扰和类充放电三角波干扰,从时间域波形和卡尼亚电阻率测深曲线两方面研究了典型噪声干扰对大地电磁数据质量的影响情况。
     (2)数值模拟了典型的单一噪声干扰,研究了不同类型结构元素及尺寸的去噪性能,讨论了结构元素长度及类型的选取规律。
     (3)针对V5-2000不直接提供读取时间序列的软件,剖析了该仪器的数据采集格式,实现了大地电磁原始资料的读取及还原。提出了基于传统形态滤波的大地电磁信噪分离方法,分析了不同类型结构元素及同一类型、不同尺寸结构元素的去噪性能。
     (4)构建了组合广义形态滤波器,提出了基于组合广义形态滤波的大地电磁强干扰分离方法。在青海柴达木盆地开展了相关试验研究,选取了具有一定代表性的试验点进行组合广义形态滤波处理。对比了时间域波形和卡尼亚电阻率-相位测深曲线的改善情况,分析了该方法对包含比较单一的噪声干扰测点的去噪效果。对矿集区强干扰测点进行了组合广义形态滤波处理,综合评价了该方法对包含复杂噪声干扰类型的强干扰测点的噪声抑制能力。
     (5)在数学形态滤波的基础上,提出了基于Top-hat变换、中值滤波和信号子空间增强的大地电磁二次信噪分离方法。针对形态滤波提取的噪声轮廓或重构信号,进一步分离出包含大尺度低频细节成份的有用信号。对矿集区强干扰测点进行了二次信噪分离处理,对比分析了组合广义形态滤波和二次信噪分离方法的卡尼亚电阻率一相位测深曲线的改善情况,综合评价了两种方法在保留低频缓变化信息方面的优势,以及对大地电磁测深数据质量的改善效果。
     通过以上五个方面的研究表明,基于数学形态学的大地电磁强干扰分离方法有效地剔除了大地电磁强干扰中的大尺度干扰和基线漂移,较好地还原了大地电磁原始信号特征,改善了大地电磁测深数据质量。由于数学形态学运算速度快,具有潜在优势,为矿集区海量大地电磁信号与强干扰的分离提供了一条新的解决途径,应用前景广阔。
     最后,总结了全文的主要内容和创新点,讨论了数学形态学在大地电磁强干扰分离中的不足之处,并对下一步研究工作的开展提出了一些建议。
The magnetotelluric strong interference separation technology has always been the research hot and difficulty. So far, it has made a lot of achievements, but with the continuous development of human civilization, environmental noise caused by heavy industry intensive factors and humanities electromagnetic noise caused by human activities factors are growing more and more serious, result in magnetotelluric sounding data are serious pollution and magnetotelluric faced enormous difficulties. Existed magnetotelluric strong interference separation methods show many deficiencies in the practical application and measure. The difficulties and challenges are also increasing in this field. Therefore, in order to improve the quality of magnetotelluric sounding data, suppress the noise interference has become imperative. Studied the magnetotelluric strong interference characteristics and proposed the specific method, are the important significance to improve the magnetotelluric sounding data quality, and the processing and interpretation of the magnetotelluric method detection results. This work are co-funded by the National Scientific and Technological Project of Deep Probing on3D Structure and Geodynamic Process of Ore District (SinoProbe-03) and the National Natural Science Foundation of China of the Research of Magnetotelluric Strong Interference Separation Method based on Mathematical Morphology (Grant No.41104071), and has important theoretical and practical significance using mathematical morphology theory study the magnetotelluric strong interference separation method.
     Based on the idea of mathematical morphology, we analyze the magnetotelluric strong interference separation and application, and focus on the traditional morphological filtering and the generalized morphological filtering as well as secondary signal-to-noise separation method of top-hat transformation, median filtering and signal subspace enhancement on the basis of morphological filtering. By means of theoretical analysis, simulation, and practical application, we carry out magnetotelluric strong interference separation research. The main contribution and innovation of this work are summarized as follows:
     (1) Study five typical magnetotelluric strong interference characteristics, and analyze the major noise sources in ore concentration area. Through add the similar square wave interference and the similar charge and discharge triangular wave interference to the measuring point, we study the quality of magnetotelluric data from both time-domain waveform and Cagniard resistivity curve impact on the typical noise.
     (2) Numerical simulate the typical single noise interference, and study the de-noising performance of different sizes and types of structural elements, moreover, discuss the selection rules of the structural elements sizes and types.
     (3) According to the V5-2000does not directly provide time series software, analyzing the instrument data acquisition format, realizing the magnetotelluric original material reading and restore. The work proposes the magnetotelluric signal-to-noise separation method based on traditional morphological filtering, and analyzes the de-noising performance of different type structural elements and the same type, different size structural elements.
     (4) The work constructs the combination generalized morphological filtering, and proposes magnetotelluric strong interference separation method based on the combination generalized morphological filtering. Qaidam basin in Qinghai Province, we carry out test research, and select a representative measuring point by using the combination generalized morphological filtering for processing. Compared with improvement situation both time domain waveform and Cagniard resistivity-phase curve, analyzed de-noising effect of measuring point including comparative single noise. Through the combination generalized morphological filtering to process the strong interference measuring point, comprehensive evaluated the noise suppression capability of strong interference measuring point including complex noise interference types.
     (5) On the basis of the mathematical morphological filtering, we propose magnetotelluric secondary signal-to-noise separation methods of top-hat transformation, median filtering and signal subspace enhancement. According to the noise contour or reconstructed signal extracted by morphological filtering, and further separated the useful signal which contains large-scale low frequency detail components. Using the secondary signal-to-noise separation to process the strong interference measuring point in ore concentrated area, we comparative analyze the Cagniard resistivity-phase curve improvement situation both the combination generalized morphological filtering and secondary signal-to-noise separation method, and comprehensive evaluate the advantages of the two methods on the reservation of low frequency slow change information, as well as the quality improvement effect for magnetotelluric sounding data.
     Through the above five aspects research, we show that, magnetotelluric strong interference separation method based on mathematical morphology can effectively eliminate large-scale interference and baseline drift for magnetotelluric strong interference, better restore the magnetotelluric original signal characteristics and improve the quality of magnetotelluric sounding data. Due to the mathematical morphology operation speed is fast, and it has potential advantages. The method provides a new solution for the separation of the mass magnetotelluric signals and strong interference in ore concentrated areas, and has broad application prospect.
     Finally, we summarize the main contents and innovations of this work, and discuss the deficiencies of mathematical morphology in the magnetotelluric strong interference separation, moreover, put forward some suggestions on the next stage of research work.
引文
[1]董树文,李廷栋.SinoProbe-中国深部探测实验[J].地质学报,2009,83(7):895-909.
    [2]董树文,李廷栋,高锐,等.地球深部探测国际发展与我国现状综述[J].地质学报,2010,84(6):743-770.
    [3]董树文,李廷栋,SinoProbe团队.深部探测技术与实验研究(SinoProbe)[J].地球学报,2011,32(S1):3-23.
    [4]Tikhonov A N. On determining electrical characteristics of the deep layers of the Earth's crust[J]. Dokl. Akad. Nauk. SSSR,1950,73(2):295-297.
    [5]Cagniard L. Basic theory of the magnetotelluric method of geophysical prospecting[J]. Geophysics,1953,18(3):605-635.
    [6]Kaufman A A, Keller G V.大地电磁测深法[M].北京:地震出版社,1987.
    [7]Kaufman A A, Keller G V.频率域和时间域电磁测深[M].北京:地质出版社,1987.
    [8]刘国栋,陈乐寿.大地电磁测深法研究[M].北京:地震出版社,1984.
    [9]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990.
    [10]罗延钟,张桂青.频率域激电法原理[M].北京:地质出版社,1988.
    [11]何继善.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [12]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [13]吕庆田,常印佛,SinoProbe-03项目组.地壳结构与深部矿产资源立体探测技术实验-SinoProbe-03项目介绍[J].地球学报,2011,32(S1):49-64.
    [14]吕庆田,史大年,汤井田,等.长江中下游成矿带及典型矿集区深部结构探测—SinoProbe-03年度进展综述[J].地球学报,2011,32(3):257-268.
    [15]王书明,王家映.关于大地电磁信号非最小相位性的讨论[J].地球物理学进展,2004,19(2):216-221.
    [16]王书明,王家映.大地电磁信号统计特征分析[J].地震学报,2004,26(6):669-674.
    [17]徐志敏,汤井田,强建科.矿集区大地电磁强干扰类型分析[J].物探与化探,2012,36(2):214-219.
    [18]朱威,范翠松,姚大为,等.矿集区大地电磁噪声场源分析及噪声特点[J].物探与化探,2011,35(5):658-662.
    [19]刘国栋.我国大地电磁测深的发展[J].地球物理学报,1994,37(S1):301-309.
    [20]魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245-254.
    [21]严家斌.大地电磁信号处理理论及方法研究[D].长沙:中南大学,2003.
    [22]杨生.大地电磁测深法环境噪声抑制研究及应用[D].长沙:中南大学,2004.
    [23]孙洁,晋光文,白登海,等.大地电磁测深资料的噪声干扰[J].物探与化探,2000,24(2):119-126.
    [24]张全胜,王家映.大地电磁测深资料的去噪方法[J].石油地球物理勘探,2004,39(11):17-23.
    [25]李桐林,刘福春,韩英杰,等.50万伏超高压输电线的电磁噪声的研究[J].长春科技大学学报,2000,30(1):310-315.
    [26]胡家华,陈清礼,严良俊,等.MT资料的噪声源分析及减小观测噪声的措施[J].江汉石油学院学报,1999,21(4):69-71.
    [27]苏朱刘,胡文宝,张翔.电磁资料中的物理去噪法[J].工程地球物理学报,2004,1(2):110-115.
    [28]龚炜,石青云,程民德.数字空间中的数学形态学—理论及应用[M].北京:科学出版社,1997.
    [29]岳蔚,刘沛.基于数学形态学消噪的电能质量扰动检测方法[J].电力系统自动化,2002,26(7):13-17.
    [30]李兵,张培林,任国全,等.基于数学形态学的分形维数计算及在轴承故障诊断中的应用[J].振动与冲击,2010,29(5):191-194.
    [31]赵晓群,王津.一种基于形态学的语音增强方法[J].同济大学学报:自然科学版,2006,34(10):1394-1397.
    [32]胡广书.数字信号处理——理论、算法与实现[M].北京:清华大学出版社,1997.
    [33]Vozoff K. The magnetotelluric method in the exploration of sedimentary basins [J]. Geophysics,1972,37(1):98-141.
    [34]Hermance J F. Processing of magetotelluric data[J]. Phys. Earth Planel Interiors, 1973,7:349-364.
    [35]Kao D W, Rankin D. Enhancement of signal-to-noise ratio in magnetotelluric data[J]. Geophysics,1977,42(1):103-110.
    [36]Gamble T M, Goubau W M, Clarke J. Magnetotelluric data analysis:removal of Bias[J]. Geophysics,1978,43(10):1157-1169.
    [37]Gamble T M, Gouban W M, Clarke J. Magnetotelluric with a remote magnetic reference[J]. Geophysics,1979,44(1):53-68.
    [38]熊识仲.远参考道大地电磁测深的实际应用[J].石油地球物理勘探,1990,25(5):594-599.
    [39]杨生,鲍光淑,张全胜.远参考大地电磁测深法应用研究[J].物探与化探,2002,26(1):27-31.
    [40]陈清礼,胡文宝,苏朱刘,等.长距离远参考大地电磁测深试验研究[J].石油地球物理勘探,2002,37(6):145-148.
    [41]Egbert G D, Booker J R. Robust estimation of geomagnetic transfer function[J]. Geophys. J. Roy. Astr. Soc.,1986,87:175-194.
    [42]Larsen J C, Mackie R L. Robust smooth magnetotelluric transfer functions[J]. Geophys. J. Int,1996,124(3):801-819.
    [43]Sutamo D, Vozoff K. Robust M-estimation of magneloelluric impedance tensors[J]. Expl. Geophys,1989,22:382-398.
    [44]Sutamo D, Vozoff K. Phase-smoothed robust M-estimation of magnetotelluric impedance function[J]. Geophysics,1991,56(12):1999-2007.
    [45]江钊,刘国栋,孙洁,等.Robust估计及其在大地电磁资料处理中的初步应用[A].见:电磁方法研究与勘探[C].北京:地震出版社,1993:60-69.
    [46]张全胜,杨生.大地电磁测深资料去噪方法应用研究[J].石油物探,2002,41(4):493-499.
    [47]柳建新,严家斌,何继善,等.基于相关系数的海底大地电磁阻抗Robust估算方法[J].地球物理学报,2003,46(2):241-245.
    [48]Mallat S G. A theory for multiresolution signal decomposition:the Wavelet representation[J]. IEEE Transactions on pattern analysis and machine intelligence,1989,11(7):674-693.
    [49]邓贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1992.
    [50]崔锦泰,程正兴.小波分析导论[M].西安:西安交通大学出版社,1997.
    [51]宋守根,汤井田,何继善.小波分析与电磁测深中静态效应的识别、分离及压制[J].地球物理学报,1995,38(1):120-128.
    [52]何兰芳,王绪本,王成祥.应用小波分析提高MT资料信噪比[J].成都理工学院学报,1999,26(3):299-302.
    [53]徐义贤,王家映.基于连续小波变换的大地电磁信号谱估计方法[J].地球物理学报,2000,43(1):676-683.
    [54]Trada D O, Travassos J M. Wavelet filtering of magnetotelluric data[J]. Geophysics,2000,65:482-491.
    [55]刘宏.小波分析在MT去噪处理中的适定性[J].石油地球物理勘探,2004,39(4):331-337.
    [56]严家斌,刘贵忠.基于小波变换的脉冲类电磁噪声处理[J].煤田地质与勘探,2007,35(5):61-65.
    [57]范翠松,李桐林,王大勇.小波变换对MT数据中方波噪声的处理[J].吉林大学学报:地球科学版,2008,38(S1):61-63.
    [58]张贤达.时间序列分析—高阶统计量方法[M].北京:清华大学出版社,1996.
    [59]李宏伟,程乾生.高阶统计量与随机信号分析[M].武汉:中国地质大学出版社,2002.
    [60]杜宁平,史军,朱红涛,等.高阶统计量分析在油气预测中的应用[J].海洋地质动态,2004,20(8):27-29.
    [61]王书明,王家映.高阶统计量对大地电磁测深资料处理方法的改进[J].石油地球物理勘探,2004,39(S1):1-4.
    [62]王书明,王家映.高阶统计量在大地电磁测深数据处理中的应用研究[J].地球物理学报,2004,47(5):928-934.
    [63]王书明,李宏伟,王家映,等.地球物理学中的高阶统计量方法[M].北京:科学出版社,2006.
    [64]王通.大地电磁测深信号的高阶谱估计及应用研究[D].长沙:中南大学,2006.
    [65]蔡剑华,胡惟文,任政勇.基于高阶统计量的大地电磁数据处理与仿真[J].中南大学学报:自然科学版,2010,41(4):1556-1560.
    [66]余灿林.大地电磁信号处理的自适应滤波研究[D].长沙:中南大学,2009.
    [67]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-station time series analysis[J]. Proc. R. Soc. Lond. A,1998,454:903-995.
    [68]Huang N E, Wu M C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proc. R. Soc. Lond. A,2003,459: 2317-2345.
    [69]钟佑明,秦树人,汤宝平.Hilbert-Huang变换中的理论研究[J].振动与冲击,2002,21(4):13-18.
    [70]汤井田,化希瑞,曹哲民,等.Hilbert-Huang变换与大地电磁噪声压制[J].地球物理学报,2008,51(2):603-610.
    [71]石春香,罗奇峰.时程信号的Hilbert-Huang变换与小波分析[J].地震学报,2003,25(4):398-405.
    [72]张义平,李夕兵.Hilbert-Huang变换在爆破震动信号分析中的应用[J].中南大学学报:自然科学版,2005,36(5):882-887.
    [73]Rong J, Hong Y. Studies of spectral properties of short genes using the wavelet subspace Hilbert-Huang transform[J]. Physics A,2008,387:4223-4247.
    [74]汤井田,蔡剑华,化希瑞.Hilbert-Huang变换与大地电磁信号的时频分析[J].中南大学学报:自然科学版,2009,40(5):1399-1405.
    [75]蔡剑华,龚玉蓉,王先春.基于Hilbert-Huang变换的大地电磁测深数据处理[J].石油地球物理勘探,2009,44(5):617-621.
    [76]Cai J H, Tang J T, Hua X R, et al. An analysis method for magnetotelluric data based on the Hilbert-Huang transform[J]. Exploration Geophysics,2009,40(2): 197-205.
    [77]蔡剑华,汤井田.基于Hilbert-Huang变换的大地电磁信号谱估计方法[J].石油地球物理勘探,2010,45(5):762-767.
    [78]王大勇.长江中下游矿集区综合地质地球物理研究-以九瑞、铜陵矿集区为例[D].吉林:吉林大学,2010.
    [79]范翠松.矿集区强干扰大地电磁噪声特点及去噪方法研究[D].吉林:吉林大学,2009.
    [80]黄文彬.大地电磁测深中磁参数的影响研究[D].成都:成都理工大学,2009.
    [81]刘国栋,邓前辉.电磁方法研究与勘探[M].北京:地震出版社,1993.
    [82]邓前辉,白改先.互功率谱法在大地电磁阻抗张量估算中的应用[J].石油地球物理勘探,1982,4:57-64.
    [83]严良俊,胡文宝,陈清礼,等.远参考MT方法及其在南方强干扰地区的应用[J].江汉石油学院学报,1998,20(4):34-38.
    [84]陈高,金祖发,马永生,等.大地电磁测深远参考技术及应用效果[J].石油物探,2001,40(3):112-117.
    [85]Chave A D, Thomson D J, Ander M E. On the robust estimation of power spectra, coherencies, and transfer functions[J]. J.Geophys. Res.,1987,92(B1):633-648.
    [86]Chave A D, Thomson D J. Some comments on magnetotelluric response function estimation[J]. J.Geophys. Res.,1989,94(B10):14215-14225.
    [87]高怀静,汪文秉,朱光明.小波变换与信号瞬时特征分析[J].地球物理学报,1997,40:821-832.
    [88]徐义贤,王家映.小波谱及其对谐波信号的刻画能力[J].石油地球物理勘探, 1999,34(1):22-28.
    [89]柳建新,李杰,杨俊.改进的小波分频重构算法在石油地震勘探中的应用[J].地球物理学进展,2010,25(6):2009-2014.
    [90]曹建章,宋建平,唐天同.瞬变电磁测量中的自适应滤波方法[J].煤田地质与勘探,1997,25(6):44-47.
    [91]昌彦君,韩永琦.江浩.瞬变电磁法中消除工频噪声的自适应滤波器研究[J].工程地球物理学报,2004,1(5):407-411.
    [92]Rato R T, Ortigueira M D, Batista A G. On the HHT, its problems and some solutions[J]. Mechanical Systems and Signal Processing,2008,22(6): 1374-1394.
    [93]覃庆炎,王绪本,罗威.EMD方法在长周期大地电磁测深资料去噪中的应用[J].物探与化探,2011,35(1):113-117.
    [94]Peng Z K, Tse P W, Chu F L. An improved Hilbert-Huang transform and its application in vibration signal analysis[J]. Journal of Sound and Vibration,2005, 268(1):187-205.
    [95]唐常青,吕宏伯,黄铮,等.数学形态学方法及其应用[M].北京:科学出版社,1990.
    [96]Serra J, Soille P. Mathematical morphology and its applications to image processing[M]. Boston:Kluwer Academic Publishers,1994.
    [97]Li J, Tang J T, Xiao X. De-noising algorithm for magnetotelluric signal based on mathematical morphology filtering[J]. Noise and Vibration Worldwide,2011, 42(11):65-72.
    [98]Tang J T, Li J, Xiao X, et al. Application of mathematical morphology filtering method in noise suppression of magnetotelluric sounding data[C]. GEM Abstracts,2011,15(10):10.
    [99]Tang J T, Li J, Xiao X, et al. Research on strong interference separation based on mathematical morphology filtering for magnetotelluric sounding data in ore concentration area[C]. ISDEL Abstracts,2011:77.
    [100]陈乐寿,刘任,王天生.大地电磁测深资料处理与解释[M].北京:石油工业出版社,1989.
    [101]李建华.FIR数字滤波技术在电磁法勘探中有效信号的提取研究[D].桂林:桂林工学院,2008.
    [102]肖晓,汤井田,周聪,等.庐枞矿集区大地电磁探测及电性结构初探[J].地质学报,2011,85(5):873-886.
    [103]董树文,高锐,吕庆田,等.庐江—枞阳矿集区深部结构与成矿[J].地球学报,2009,30(3):279-284.
    [104]蔡剑华,汤井田,王先春.基于经验模态分解的大地电磁资料人文噪声处理[J].中南大学学报:自然科学版,2011,42(6):1786-1790.
    [105]郭自强,罗祥麟.矿山爆破中的电磁辐射[J].地球物理学报,1999,42(6):834-840.
    [106]蔡剑华.基于Hilbert-Huang变换的大地电磁信号处理方法与应用研究[D].长沙:中南大学,2010.
    [107]杨生,鲍光淑,张少云.MT法中利用阻抗相位资料对畸变视电阻率曲线的校正[J].地质与勘探,2001,37(6):42-45.
    [108]林君,项葵葵,朱宝龙,等.MT信号现场处理的实现技术研究[J].数据采集与处理,1997,12(1):52-55.
    [109]徐志敏.庐枞大地电磁干扰噪声研究[D].长沙:中南大学,2012.
    [110]Matheron G. Random sets and integral geometry[M]. New York:Wiley Press, 1975.
    [111]Serra J. Image analysis and mathematical morphology[M]. New York: Academic Press,1982.
    [112]Haralick R M, Sternberg S R, Zhuang X. Image analysis using mathematical morphology [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1987,9(4):532-552.
    [113]Lee K H. Adaptive basis matrix for the morphological function processing opening and closing[J]. IEEE Trans. On Image Processing,1997,6(5): 769-774.
    [114]Chanda B. A multi-scale morphological edge detector[J]. Pattern Recognition, 1998,31(10):1469-1478.
    [115]程扬军,黄纯,何朝晖,等.基于自适应顺序形态滤波的电能质量去噪算法[J].计算机仿真,2009,26(12):218-220.
    [116]杜必强,唐贵基,石俊杰.旋转机械振动信号形态滤波器的设计与分析[J].振动与冲击,2009,28(9):79-81.
    [117]陈辉,胡英,李军.数学形态学在地震裂缝检测中的应用[J].天然气工业,2008,28(3):48-50.
    [118]王润秋,郑桂娟,付洪洲,等.地震资料处理中的形态滤波去噪方法[J].石油地球物理勘探,2005,40(3):277-282.
    [119]李春枝,何荣建,田光明.数学形态滤波在振动信号分析中的应用研究[J]. 计算机工程与科学,2008,30(9):126-128.
    [120]胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130.
    [121]Trahanias P E. An approach to QRS complex detection using mathematical morphology[J]. IEEE Trans, on Biomedical Engineering,1993,40(2):201-205.
    [122]Reinhardt J M, Higgins W E. Comparison between the morphology skeleton and morphology shape decomposition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1996,18(9):951-957.
    [123]张文斌,杨辰龙,周晓军.形态滤波方法在振动信号降噪中的应用[J].浙江大学学报:工学版,2009,43(11):2096-2099.
    [124]赵静,何正友,钱清泉.利用广义形态滤波与差分熵的电能质量扰动检测[J].中国电机工程学报,2009,29(7):121-126.
    [125]陈辉,郭科,胡英.数学形态学在地震信号处理中的应用研究[J].地球物理学进展,2009,24(6):1995-2002.
    [126]沈路,周晓军,张文斌,等.广义数学形态滤波器的旋转机械振动信号降噪[J].振动与冲击,2009,28(9):70-73.
    [127]舒泓,王毅.基于数学形态滤波和Hilbert变换的电压闪变测量[J].中国电机工程学报,2008,28(1):111-114.
    [128]Goutsias J, Heijmans H J A M. Multiresolution signal decomposition schemes. Part 1:Linear and morphological pyramids[J]. IEEE Trans. On Image Processing,2000,9(11):1862-1876.
    [129]Goutsias J, Heijmans H J A M. Multiresolution signal decomposition schemes. Part 2:Morphological wavelets [J]. IEEE Trans. On Image Processing,2000, 9(11):1877-1896.
    [130]黄向生,杨小帆,王阳生.基于提升方案的高维形态小波构造[J].自动化学报,2003,29(5):726-732.
    [131]赵春晖.数学形态滤波器理论及其算法研究[D].哈尔滨:哈尔滨工业大学,1998.
    [132]柏林,刘小峰,秦树人.小波-形态-EMD综合分析法及其应用[J].振动与冲击,2008,27(5):1-4.
    [133]Maragos P, Schafer R W. Morphological filters-Part I:Their set theoretic analysis and relation to linear shift invariant filters[J]. IEEE Trans. On ASSP, 1987,35(8):1153-1169.
    [134]Maragos P, Schafer R W. Morphological filters-Part II:Their relation to median, order-statistic and stack filters[J]. IEEE Trans. On ASSP,1987,35(8): 1170-1184.
    [135]Wang J, Xu G H, Zhang Q, et al. Application of improved morphological filter to the extraction of impulsive attenuation signals[J]. Mechanical Systems and Signal Processing,2009,23(1):236-245.
    [136]庚农.基于形态学理论的目标检测技术[D].长沙:国防科学技术大学,2000.
    [137]张建成,吴新杰.形态滤波在实时信号处理中应用的研究[J].传感技术学报,2007,20(4):828-831.
    [138]项学智,赵春晖.形态梯度恒常的复值小波光流求解[J].哈尔滨工程大学学报,2008,29(8):872-876.
    [139]马义德,杨淼,李廉.一种全方位多角度自适应形态滤波器及其算法[J].通信学报,2004,25(9):86-92.
    [140]汤井田,李晋,肖晓,等.基于数学形态滤波的大地电磁强干扰分离方法[J].中南大学学报:自然科学版,2012,43(6):2215-2221.
    [141]柳建新,刘春明,马捷.V5-2000大地电磁测深仪文件头数据格式研究[J].物探与化探计算技术,2007,29(4):359-362.
    [142]何兆海.琼北火山区大地电磁的三维数值模拟研究[D].北京:中国地震局地质研究所,2004.
    [143]汤井田,李晋,肖晓,等.数学形态滤波与大地电磁噪声压制[J].地球物理学报,2012,55(5):1784-1793.
    [144]白银刚,于盛林,李建明.一类新的广义形态开和广义形态闭滤波器[J].中国图象图形学报,2009,14(8):1523-1529.
    [145]吕铁英,彭嘉雄.一种基于数学形态学的图象多尺度分析方法的研究[J].数据采集与处理,1998,13(2):107-111.
    [146]王霞.数学形态学在语音识别中的应用研究[D].天津:河北工业大学,2008.
    [147]赵春晖,乔景渌,孙圣和.一类多结构元自适应广义形态滤波器[J].中国图象图形学报,1997,2(11):806-809.
    [148]郭兵,阳春华,胡志坤.基于二抽取的多结构元素并行复合形态滤波器[J].湖南师范大学学报:自然科学版,2009,32(4):51-55.
    [149]崔屹.图象处理与分析:数学形态学方法及应用[M].北京:科学出版社,2000.
    [150]白相志,周付根,解永春,等.新型Top-hat变换及其在红外小目标检测中 的应用[J].数据采集与处理,2009,24(5):643-649.
    [151]叶斌,彭嘉雄.基于形态学Top-hat算子的小目标检测方法[J].中国图像图形学报,2002,7(7):638-642.
    [152]侯阿临,徐欣,史东承,等.基于Top-hat预处理和小波能量分析的车牌定位算法[J].吉林大学学报:信息科学版,2007,25(3):342-347.
    [153]张文超,王岩飞,陈贺新.基于Top-hat变换的复杂背景下运动点目标识别算法[J].中国图象图形学报,2007,12(5):871-874.
    [154]Burgeth B, Bruhn A, Papenberg N, et al. Mathematical morphology for matrix fields induced by the Loewner ordering in higher dimensions[J]. Signal Processing,2007,87(2):277-290.
    [155]Zeng M, Li J, Peng Z. The design of top-hat morphological filter and application to infrared target detection[J]. Infrared Physics and Technology, 2006,48:67-76.
    [156]Jackway P T. Improved morphological top-hat[J]. Electronics Letters,2000, 36(14):1194-1195.
    [157]De I, Chanda B, Chattopadhyay B. Enhancing effective depth-of-field by image fusion using mathematical morphology[J]. Image and Vision Computing,2006, 24(12):1278-1287.
    [158]金秋春,郑小东,童小利.多方向Top-hat变换在叶脉特征提取中的应用研究[J].计算机工程与应用,2011,47(4):195-197.
    [159]Andrei C J, Michael W, Jos R. Morphological hat-transformation scale spaces and their use in pattern classification[J]. Pattern Recognition,2004,37: 901-915.
    [160]Bai X Z, Zhou F G. Unified form for multi-scale top-hat transform based algorithms[C]. CISP,2010,3:1097-1100.
    [161]娄源清,李伟.大地电磁测量中的尖峰干扰抑制问题[J].地球物理学报,1994,37(S1):493-500.
    [162]Gallagher N J, Wise G. A theoretical analysis of the properties of median filters[J]. IEEE Trans on Acoustics, Speech and Signal Processing,1981,29(6): 1136-1141.
    [163]Nodes T. Median filters:Some modifications and their properties[J]. IEEE Trans on Acoustics, Speech and Signal Processing,1982,30(5):739-746.
    [164]Bednar J B. Applications of median filtering to deconvolution, pulse estimation, and statistical editing of seismic data[J]. Geophysics,1983,48(12):1598-1610.
    [165]Duncan G, Beresford G. Some analyses of 2-D median f-k filters[J]. Geophysics, 1995,60(4):1157-1168.
    [166]Mi Y, Li X, Margrave G F. Median filtering in Kirchhoff migration for noisy data[C]. Expanded Abstracts of SEG,2000:822-825.
    [167]Zhang R, Ulrych T J. Multiple suppression based on the migration operator and a hyperbolic median filter[C]. Expanded Abstracts of SEG,2003:1949-1952.
    [168]Liu C, Liu Y, Yang B, et al. A 2D multistage median filter to reduce random seismic noise[J]. Geophysics,2006,71(5):105-111.
    [169]张怿平,夏洪瑞,董江伟.循环中值滤波在消除可控震源地震资料噪声中的应用[J].江汉石油职工大学学报,2009,22(2):93-96.
    [170]刘洋,刘财,王典,等.时变中值滤波技术在地震随机噪声衰减中的应用[J].石油地球物理勘探,2008,43(3):327-332.
    [171]刘洋,王典,刘财,等.局部相关加权中值滤波技术及其在叠后随机噪声衰减中的应用[J].地球物理学报,2011,54(2):358-367.
    [172]王典.地震勘探几种数字新技术及其应用[D].吉林:吉林大学,2006.
    [173]Xiao X, Li J, Tang J T. Strong interference separation method based on morphology-median filtering for magnetotelluric sounding data in ore concentration area[J]. International Journal of Advancements in Computing Technology,2012,4(16):396-403.
    [174]骆怀恩,容太平.子空间分解方法在语音增强系统中的应用[J].电声技术,2003,1:5-7.
    [175]徐望,丁琦,王炳锡.一种基于信号子空间和听觉掩蔽效应的语音增强方法[J].电声技术,2003,12:41-44.
    [176]欧世峰,赵晓晖,顾海军.改进的基于信号子空间的多通道语音增强算法[J].电子学报,2005,33(10):1786-1789.
    [177]Ephraim Y, Van Trees H L. A signal subspace approach for speech enhancement [J]. IEEE Trans on Speech and Audio Processing,1995,3(4): 251-266.
    [178]赵胜跃,戴蓓蒨.基于最小统计噪声估计的信号子空间语音增强[J].数据采集与处理,2007,22(4):453-457.
    [179]Lev-Ari H, Ephraim Y. Extension of the signal subspace speech enhancement approach to colored noise[J]. IEEE Signal Processing Lett,2003,10(4): 104-106.
    [180]赵彦平,赵晓晖,顾海军.冲击噪声环境下基于信号子空间的多通道语音 增强算法[J].吉林大学学报:工学版,2007,37(2):453-457.
    [181]Gazor S, Rezayee A. An adaptive KLT approach for speech enhancement[J]. IEEE Trans on Speech and Audio Processing,2001,9(2):95-97.
    [182]Jabloun F, Champagne B. Incorporating the human hearing properties in the signal subspace approach for speech enhancement[J]. IEEE Trans on Speech and Audio Processing,2003,11(6):700-708.
    [183]Hu Y, Loizou P C. A generalized subspace approach for enhancing speech corrupted by colored noise[J]. IEEE Trans on Speech and Audio Processing, 2003,11(4):334-340.
    [184]吴周桥,谈新权.基于子空间方法的语音增强算法研究[J].声学与电子工程,2005,3:20-23.
    [185]李超,刘文举.基于F范数的信号子空间维度估计的多通道语音增强算法[J].声学学报,2011,36(4):451-460.
    [186]王文杰,王霞,王国君,等.一种改进的子空间语音增强方法[J].电子设计工程,2010,18(6):127-129.
    [187]曹梅双,曾庆宁,陈芙蓉.一种基于广义奇异值分解的语音增强算法[J].微电子学与计算机,2010,27(3):83-86.
    [188]谭乔来,钱盛友,陈亚琦.基于信号子空间和信息复杂度的语音端点检测[J].计算机工程与应用,2007,43(34):55-56.
    [189]闫润强,朱贻盛.基于信号递归度分析的语音端点检测方法[J].通信学报,2007,28(1):35-39.
    [190]陈振标,徐波.基于子带能量特征的最优化语音端点检测算法研究[J].声学学报,2005,30(2):171-176.
    [191]Li Q, Zheng J S, Tsai A, et al. Robust endpoint detection and energy normalization for real-time speech and speaker recognition[J]. IEEE Trans on Speech and Audio Processing,2002,10(3):146-157.
    [192]Evangelopoulos G, Maragos P. Multiband modulation energy tracking for noisy speech detection[J]. IEEE Trans on Audio, Speech, and Language Processing, 2006,14(6):2024-2038.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700