用户名: 密码: 验证码:
微藻高油脂的生物合成与膜基萃取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用微藻生产生物柴油,应对化石燃料日益枯竭和能源供应日趋紧张的同时,与环境二氧化碳的捕捉进行偶联,缓解温室效应,具有广阔的开发利用前景。但要微藻生物柴油实现商业化利用,真正替代石化燃料,还存在许多挑战,还有很长的路要走。特别是微藻油脂产量的进一步提高,油脂提取成本的进一步降低,如果可以在这两方面得到改进,无疑能为微藻生物柴油真正实现商业化打下坚实基础。针对这一问题,本论文以微藻Chlorella sp.为出发藻种,从微藻生物学的基因工程改造和微藻高浓二氧化碳的驯化培养两个角度强化微藻油脂富集,并且采用新型膜基萃取技术用于微藻油脂提取,以期解决提高微藻油脂产量和降低油脂提取成本等问题,主要内容包括以下五个方面:
     (1)构建小球藻自养条件下核心及油脂积累的代谢网络模型,并对其进行分析。通过部分解释环境压力对代谢流分布的影响,淀粉合成途径与TAG合成途径的竞争,说明代谢网络模型较为可靠。通过TAG合成途径与生物质合成途径的对比,结合CASOP算法分析,均发现脂肪酸合成及Kennedy途径,特别是DGAT晦,对于TAG的合成有很高的重要性,为产油微藻的基因工程改造提供指导。
     (2)对出发藻种Chlorella sp进行分离、纯化与鉴定。采用抗生素组合处理法和平板划线分离法分别去除细菌和霉菌,获得无菌海水小球藻藻株,建立海水小球藻无菌培养体系。对比三种小球藻基因组DNA提取方法,植物基因组DNA快速提取试剂盒法,操作过程相对简单,所需时间相对较少,而该方法和改良SDS-CTAB法,均能够在保证DNA纯度的同时,获得较大的DNA总量和DNA产率。PCR扩增rbcL基因并进行序列测定,鉴定实验室海水小球藻属于海水普通小球藻,并对其进行系统进化分析。
     (3)采用农杆菌介导法转化普通小球藻,通过G418作为抗性标记进行转化子筛选,同时优化藻落PCR条件,将其应用于转化子的鉴定和稳定性监测。以PCR扩增获得酿酒酵母DGAT基因,构建pBI121-DGAT穿梭质粒,转化获得含有重组质粒的根癌农杆菌;以TAP作为藻菌共培养体系,根癌农杆菌转化普通小球藻,计算转化效率为127-148/106;优化藻落PCR条件,采用6%w/vChelex-100溶液,在温度100℃条件下,温浴10min,有利于提高藻落PCR效果;藻落PCR应用于转化子的鉴定和稳定性监测,发现转化不稳定问题。
     (4)比较评价称重法、FT-IR法、尼罗红染色法三种油脂含量测定方法,采用气升式光生物反应器进行高浓二氧化碳驯化与油脂富集。大规模培养且需低频率监测时,称重法优先选用;实验室规模且需中频率监测时,FT-IR法和尼罗红染色法均可选用,FT-IR法可以同时对油脂、蛋白质、碳水化合物含量进行定量,尼罗红染色法可以同时对中性脂滴进行定位;实验室规模且需高频率监测时,尼罗红染色法优先选用。驯化培养藻体细胞浓度1.37g L-1,为普通小球藻藻种在烟道气等高浓二氧化碳环境中的应用提供了可能;驯化培养油脂产量589mg L-1和油脂含量47.2%,实现了在普通小球藻高浓二氧化碳驯化的同时,进行油脂的富集;1.0%C02情况下,C02固定速率达到最大值,为106.9mg L-1h-1。
     (5)建立微藻油脂的膜基萃取技术。比较六种普通小球藻细胞破碎方法,高压均质为适宜的细胞破碎方法,处理3次后,细胞破碎效率为91.7%,油脂损失率为19.3%,释放油脂得率为74.0%;比较三种中空纤维膜材料,PVDF(细孔)为适宜的中空纤维膜材料,内外表面静态接触角分别为75.0°和77.1°,内表面为平整网状结构,外表面为粗糙且多孔结构,存在大量10-100nm圆形孔洞,断面为中间海绵层两端指状孔结构;比较两种有机萃取剂,乙酸乙酯为适宜的有机萃取剂,萃取率和总萃取率分别为56.2%、45.4%。优化操作条件,最佳水相流量为40mL min-1,折合膜外侧流速为0.28cm s-1,最佳有机相流量为21mL min-1,折合膜内侧流速为2.79cm s-1,萃取率和总萃取率分别为71.3%、57.5%;初步将其应用于浓缩藻液萃取,藻液浓缩2.5倍、5倍、15倍、30倍,萃取率和总萃取率分别为65.2%和52.9%、57.4%和46.8%、45.9%和37.8%、36.1%和30.1%。
Fossil energy crisis and global greenhouse effects are two major challenges of the21st century. Microalgae as an alternative and renewable feedstock for biodiesel production, has drawn wide attention. However, there are still many challenges for the commercial utilization of biodiesel from microalgae as the algal-oil price remained rather higher than that of fossil fuels. Particularly, the further improvements of microalgal lipid production, as well as the reduction of lipid extraction costs are two problematic areas for the algal biofuel production technology. In this study, two different aspects of genetic engineering strategy and high CO2concentration domestication strategy were used for the enhancement of microalgal lipid production with microalgae Chlorella sp., and a new membrane-based lipid extraction method was also proposed for the reduction of extraction costs. The main research of the thesis included the following five aspects:
     1. The core metabolic network and lipid accumulation network of Chlorella sp. under autotrophic condition was constructed and analyzed. The reliability of the metabolic network model was proved by the partially explanation of the environmental pressures impact on metabolic flux distribution and the competition between starch and TAG synthesis pathways. Combination of metabolic network analysis with CASOP algorithm analysis showed that fatty acid synthesis and Kennedy pathway, especially the DGAT enzyme, was of great importance for the TAG accumulation.
     2. Separation, purification and identification of Chlorella sp. were carried out. Antibiotic combination treatment and streak plate method were used to remove bacteria and mold, respectively, and the sterile cultivation system was established. The comparison of three genomic DNA extraction methods showed that the plant genomic DNA extraction kit was esay operated and short time consuming, and high DNA purity and DNA yield could be obtained together with the improved SDS-CTAB method. PCR amplification of rbcL gene indicated that the Chlorella sp. was further belonged to Chlorella vulgaris species, and the phylogenetic analysis was accomplished.
     3. A diacylglycerol acyltransferase (DGAT) gene from Saccharomyces cerevisiae S288c was constructed to pBI121vector, and the Agrobacterium-mediated transformation of DGAT in Chlorella vulgaris was established with tris acetate phosphate (TAP) as the co-cultivation medium and G418as the selection antibiotic. The results showed that the transformation frequency was127-148per106cells, and the colony PCR could be adopted to monitor the stability of DGAT transformation in Chlorella vulgaris when6%w/v Chelex-100solution was used as the DNA extraction buffer for10min of the incubation time. Although this transformation was still found to be unstable, the colony PCR did show its application in screening of the large scale genetically-engineered transformants besides that in the general amplification of genomic DNA fragments.
     4. The high CO2concentration domestication and lipid enrichment were carried out in the airlift photobioreactor, and three methods of gravimetric determination, FT-IR spectroscopy and Nile Red staining were evaluated for algal lipid content analysis. The gravimetric determination was preferable for large-scale cultivation with low-frequency monitoring, while FT-IR and Nile Red were suitable for general laboratory cultivation with medium-frequency monitoring, in particularly Nile Red was appropriate for small samples when high-frequency screening was required. Moreover, the FT-IR method can simultaneously analyze the carbohydrate and protein contents, while the Nile Red staining can locate the lipid droplets. The biomass concentration reached1.37g L-1with the lipid concentration and lipid content of589mg L-1and47.2%after domestication, respectively, and the CO2fixation rate reached the maximum of106.9mg L-1h-1under1.0%CO2condition.
     5. Microalgal lipid extraction with membrane based technology was established. High pressure homogenization was suitable for cell fragmentation with efficiency of91.7%after manipulation three times. PVDF (small one) hollow fiber membrane material was suitable for membrane based extraction, with the static contact angle of inner and outer surfaces of75.0°and77.1°, respectively. The inner surface was flat mesh structure, and the outer surface was rough and porous structure which had a large number of10-100nm circular holes, combining finger-like structures at two sides of the cross-section with microporous sponge-like structures in the middle. Ethyl acetate was suitable organic extractant and the extraction efficiency was56.2%. The operating conditions were optimized with aqueous phase flow of40mL min-1(0.28cm s-1) and organic phase flow of21mL min-1(2.79cm s-1). and the maximum extraction efficiency reached71.3%. As for the algal liquds concentrated with2.5times,5times.15times and30times, the extraction efficiency was65.2%.57.4%.45.9%and36.1%, respectively.
引文
[1]Demirbas A. Demirbas MF. Importance of algae oil as a source of biodiesel [J]. Energ. Convers. Manage.,2011,52:163-170.
    [2]Hu Q, Sommerfeld M, Jarvis E. Ghirardi M, Posewitz M. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances [J]. Plant J.,2008,54:621-639.
    [3]Williams PJB, Laurens LML. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics [J]. Energy Environ. Sci.,2010,3:554-590.
    [4]Radakovits R, Jinkerson RE, Darzins A. Posewitz MC. Genetic engineering of algae for enhanced biofuel production [J]. Eukaryot. Cell,2010,9:486-501.
    [5]Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum [J]. Metab. Eng.,2011,13:89-95.
    [6]Trinh CT, Wlaschin A, Srienc F. Elementary mode analysis:a useful metabolic pathway analysis tool for characterizing cellular metabolism [J]. Appl. Microbiol. Biotechnol.,2009,81:813-826.
    [7]Boghigian BA, Shi H, Lee K, Pfeifer BA. Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design [J]. BMC Syst. Boil.,2010,4:49.
    [8]Hadicke O, Klamt S. CASOP:a computational approach for strain optimization aiming at high productivity [J]. J. Biotechnol.,2010,147:88-101.
    [9]Xiong W, Gao C, Yan D, Wu C, Wu Q. Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production [J]. Bioresource Technol.,2010,101:2287-2293.
    [10]Roessler PG. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency [J]. Arch. Biochem. Biophys.,1988,267:521-528.
    [11]Dunahay T, Jarvis E, Dais S, Roessler P. Manipulation of microalgal lipid production using genetic engineering [J]. Appl. Biochem. Biotech.,1996.57-58: 223-231.
    [12]Sheehan J, Dunahay T. Benemann J, Roessler P. A Look Back at the US Department of Energy's Aquatic Species Program:Biodiesel from Algae. NREL/TP-580-24190,1998:67-139.
    [13]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002.
    [14]Remize F, Barnavon L, Dequin S. Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae [J]. Metab. Eng.,2001,3:301-312.
    [15]Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter [J]. Plant Biotechnol. J., 2007,5:431-441.
    [16]Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes [J]. Biochem. Soc.T.,2000,28:958-961.
    [17]Mputu MN, Rhazi L. Vasseur G, Vu TD, Gontier E, Thomasset B. Identification of a potential bottleneck in branched chain fatty acid incorporation into triacylglycerol for lipid biosynthesis in agronomic plants [J]. Biochimie,2009,91:703-710.
    [18]Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene [J]. Plant J.. 1999,19:645-653.
    [19]Taylor DC, Katavic V, Zou J, Mackenzie SL, Keller WA, An J, Friesen W, Barton DL, Pedersen KK, Giblin EM, Ge Y, Dauk M, Sonntag C, Luciw T, Males D. Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield [J]. Mol. Breeding, 2002,8:317-322.
    [20]Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker TA. Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels [J]. Plant Physiol., 1999,120:739-746.
    [21]Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis [J]. Plant Physiol.,2010,152:670-684.
    [22]Merchant SS, Prochnik SE, Vallon O, Harris EH, Rokhsar DS, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions [J]. Science,2007,318:245-251.
    [23]Yen CLE, Monetti M, Burri BJ, Farese RV. The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters [J]. J. Lipid Res.,2005,46:1502-1511.
    [24]Lardizabal KD, Mai JT:Wagner NW Wyrick A, Voelker T, Hawkins DJ. DGAT2 is a new diacylglycerol acyltransferase gene family:purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity [J]. J. Biol. Chem.,2001,276:38862-38869.
    [25]Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV Jr. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members [J]. J. Biol. Chem.,2001,276:38870-38876.
    [26]Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum [J]. Plant Cell,2006,18:2294-2313.
    [27]Saha S, Enugutti B, Rajakumari S, Rajasekharan R. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase [J]. Plant Physiol.,2006,141:1533-1543.
    [28]Kalscheuer R, Steinbuchel A. A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1 [J]. J. Biol. Chem.,2003,278:8075-8082.
    [29]Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches [J]. J. of Biotechnol.,2009; 141:31-41.
    [30]姚茹,程丽华,徐新华,张林,陈欢林.微藻的高油脂化技术研究进展[J].化学进展,2010,22:1221-1232.
    [31]Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight [J]. Plant Physiol.,2001, 126:861-874.
    [32]Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize [J]. Nat. Genet.,2008,40:367-372.
    [33]Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PB, Harwood JL. Increasing the flow of carbon into seed oil [J]. Biotechnol. Adv.,2009, 27:866-878.
    [34]Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production [J]. Prog. Lipid Res.,2010,49:235-249.
    [35]Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M. Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri [J[. Plant Physiol. Bioch.,2010,48: 407-416.
    [36]Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabolism:Recent advances in gene identification [J]. Biochimie,2011,93:91-100.
    [37]Xu J, Zheng Z, Zou J. A membrane-bound glycerol-3-phosphate acyltransferase from Thalassiosira pseudonana regulates acyl composition of glycerolipids [J]. Botany, 2009,87:544-551.
    [38]Zou J, Xu J, Zheng Z. Diacylglycerol acyltransferase 2 genes and proteins encoded thereby from algae. WIPO Patent Application WO/2009/085169,2009.
    [39]Li YT, Han DX, Hu GR, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii [J]. Biotechnol. Bioeng.,2010,107:258-268.
    [40]Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD. Grigoriev Ⅳ, Claverie JM, Van Etten JL. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex [J]. Plant Cell.,2010,22:2943-2955.
    [41]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS:an automatic genome annotation and pathway reconstruction server [J]. Nucleic Acids Res.,2007, 35:W182-185.
    [42]Walker TL, Purton S, Becker DK, Collet C. Microalgae as bioreactors [J]. Plant Cell Rep.,2005,24:629-641.
    [43]Potvin G, Zhang ZS. Strategies for high-level recombinant protein expression in transgenic microalgae:a review [J]. Biotechnol. Adv.,2010,28:910-918.
    [44]Mayfield SP, Kindle KL. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker [J]. Proc. Natl. Acad. Sci. USA,1990,87:2087-2091.
    [45]Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles [J]. Science, 1988,240:1534-1538.
    [46]El-Sheekh MM. Stable chloroplast transformation in Chlamydomonas reinhardtii using microprojectile bombardment [J]. Folia Microbiol.,2000,45:496-504.
    [47]Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, Kirk DL. Nuclear transformation of Volvox carteri [J]. Proc. Natl. Acad. Sci. USA,1994.91: 5080-5084.
    [48]Dawson HN, Burlingame R, Cannons AC. Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene [J]. Curr. Microbiol.,1997,35:356-362.
    [49]Chen Y, Li WB, Bai QH, Sun YR. Chin. J. Study on transient expression of gus gene in Chlorella ellipsoidea (Chlorophyta) by using biolistic particle delivery system [J]. Oceanol. Limnol.,1998,16(Suppl.1):47-49.
    [50]Chen Y, Wang YQ, Sun YR, Zhang LM, Li WB. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells [J]. Curr. Genet.,2001, 39:365-370.
    [51]张小宇.NP-1基因转化椭圆小球藻突变体及盐藻EST序列的测定[M].北京:北京林业大学,2006.
    [52]任雪艳,王恒强,祝建波,孔庆军.轮状病毒VP4_ST融合基因转化小球藻的筛选[J].中国兽医科学,2010,40:41-44.
    [53]El-Sheekh MM. Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles [J]. Biol. Plantarum,1999,42:209-216.
    [54]Teng C, Qin S, Liu J, Yu D, Liang C, Tseng C. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis [J]. J. Appl. Phycol.,2002, 14:497-500.
    [55]Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum [J]. Mol. Gen. Genet.,1996,252:572-579.
    [56]Boynton JE, Gillham NW. Chloroplast transformation in Chlamydomonas [J]. Methods Enzymol,1993,217:510-536.
    [57]Lerche K, Hallmann A. Stable nuclear transformation of Gonium pectoral [J]. BMC Biotechnol.,2009,9:64.
    [58]Kindle KL. Proc. High-frequency nuclear transformation of Chlamydomonas reinhardtii [J]. Natl. Acad. Sci. USA,1990,87:1228-1232.
    [59]Kindle KL, Richards KL, Stern DB. Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii [J]. Proc. Natl. Acad. Sci. USA,1990,88:1721-1725.
    [60]Feng S, Xue L, Liu H, Lu P. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method [J]. Mol. Bio. Rep.,2009,36:1433-1439.
    [61]Dunahay TG. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers [J]. Biotechniques,1993,15:452-460.
    [62]Wang K, Drayton P, Frame B, Dunwell J, Thompson J. Whisker-mediated plant transformation:an alternative technology [J]. In Vitro Cell. Dev. Biol.,1995,31: 101-104.
    [63]Geng DG, Han Y, Wang YQ, Wang P, Zhang LM, Li WB, Sun YR. Construction of a system for the stable expression of foreign genes in Dunaliella salina [J]. Acta Bot. Sin.,2004,46:342-346.
    [64]Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z. Expression of foreign genes in Dunaliella by electroporation [J]. Mol. Biotechnol.,2005,30:185-192.
    [65]Wang TY, Xue LX, Hou WH, Yang BS, Chai YR, Ji X, Wang YF. Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions [J]. Appl. Microbiol. Biotechnol.,2007,76:651-657.
    [66]Sun GH, Zhang XC, Sui ZH, Mao YX. Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta) [J]. Marine Biotechnol., 2008,10:219-226.
    [67]Sun Y, Gao XS, Li QY, Zhang QQ, Xu ZK. Functional complementation of a nitrate reductase defective mutant of a green alga Dunaliella viridis by introducing the nitrate reductase gene [J]. Gene,2006,377:140-149.
    [68]Walker TL, Becker DK, Dale JL, Collet C. Towards the development of a nuclear transformation system for Dunaliella tertiolecta [J]. J. Appl. Phycol.,2005,17: 363-368.
    [69]Tang DKH, Qiao SY, Wu M. Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA [J]. Biochem. Mol. Biol. Intl., 1995,36:1025-1035.
    [70]Shimogawara K, Fujiwara S, Grossman A, Usuda H. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation [J]. Genetics,1998, 148:1821-1828.
    [71]Kovar JL, Zhang J, Funke RP, Weeks DP. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation [J]. Plant 1,2002,29:109-117.
    [72]Ladygin VG. The transformation of the unicellular alga Chlamydomonas reinhardtii by electroporation [J]. Microbiol.,2003,72:658-665.
    [73]Ladygin VG. Efficient transformation of mutant cells of Chlamydomonas reinhardtii by electroporation [J]. Process Biochem.,2004,39:1685-1691.
    [74]Chow KC, Tung WL. Electrotransformation of Chlorella vulgaris [J]. Plant Cell Rep.,1999,18:778-780.
    [75]王逸云.小球藻外源基因转化系统的建立及其表达植酸酶的研究[D].大连:大连理工大学,2005.
    [76]Wang C, Wang Y, Su Q, Gao X. Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation [J]. Biotechnol. Bioproc. Eng.,2007,12:180-183.
    [77]Chen HL, Li SS, Huang R, Tsai HJ. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (eustigmatophyceae) [J]. J. Phycol.,2008,44:768-776.
    [78]Li SS, Tsai HJ. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract [J]. Fish Shellfish Immunol.,2009,26:316-325.
    [79]Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens [J]. Plant Sci.,2004,166:731-738.
    [80]Kathiresan S, Chandrashekar A, Ravishankar A, Sarada R. Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (chlorophyceae, colvocales) [J]. J. Phycol.,2009,45:642-649.
    [81]Kathiresan S, Sarada R. Towards genetic improvement of commercially important microalga Haematococcus pluvialis for biotech applications [J]. J. Appl. Phycol.,2009,21:553-558.
    [82]Lutz KA, Maliga P. Construction of marker-free transplastomic plants [J]. Curr. Opin. Biotechnol.,2007,18:107-114.
    [83]Leon-Banares R, Gonzalez-Ballester D, Galvan A. Fernandez E. Transgenic microalgae as green cell-factories [J]. Trends Biotechnol.,2004,22:45-52.
    [84]Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii:a protein expression system for pharmaceutical and biotechnological proteins [J]. Mol. Biotechnol.,2006,34:213-223.
    [85]Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii:an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus [J]. EMBO J..1989.8: 2803-2809.
    [86]Remacle C, Cline S, Boutaffala L. Gabilly S, Larosa V, Barbieri MR, Coosemans N, Hamel PP. The ARG9 gene encodes the plastid-resident N-acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii [J]. Eukaryot. Cell. 2009,8:1460-1463.
    [87]Kindle KL, Schnell RA, Fernandez E, Lefebvre PA. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase [J]. J. Cell Biol.,1989,109:2589-2601.
    [88]Ferris PJ. Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii [J]. Genetics,1995,141:543-549.
    [89]Nelson JAE, Savereide PB, Lefebvre PA. The CRY1 gene in Chlamydomonas reinhardtii:structure and use as a dominant selectable marker for nuclear transformation [J]. Mol. Cell. Biol.,1994,14:4011-4019.
    [90]Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW, Boynton JE. Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides [J]. Plant Mol. Biol.,1998,38:839-859.
    [91]Steinbrenner J, Sandmann G. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis [J]. Appl. Environ. Microbiol.,2006,72:7477-7484.
    [92]Huang J, Liu J, Li Y, Chen F. Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (chlorophyta) [J]. J. Phycol., 2008,44:684-690.
    [93]Chang M, Li F, Odom OW, Lee J, Herrin DL. A cosmid vector containing a dominant selectable marker for cloning Chlamydomonas genes by complementation [J]. Plasmid,2003,49:75-78.
    [94]Zaslavskaia LA. Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering [J]. Science,2001,292:2073-2075.
    [95]Fischer H, Robl I, Sumper M, Kroger N. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (bacillariophyceae) [J]. J. Phycol.,1999,35,113-120.
    [96]卞曙光,姜鹏,崔玉琳,刘兆普,秦松.除草剂草丁膦抗性基因bar作为三角褐指藻基因工程选择标记的研究[J].海洋科学,2010,34:62-66.
    [97]Hall LM, Taylor KB, Jones DD. Expression of a foreign gene in Chlamydomonas reinhardtii [J]. Gene.,1993,124:75-81.
    [98]Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes [J]. J. Pycol.,2000,36:379-386.
    [99]Lohuis MR, Miller DJ. Genetic transformation of dinoflagellates(Amphidinium and Symbiodinium):expression of GUS in microalgae using heterologous promoter constructs [J]. Plant J.,1998,13:427-435.
    [100]Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila [J]. J. Phycol.,1995,31:1004-1012.
    [101]Stevens DR, Rochaix JD, Purton S. The bacterial phleomycin resistance geneble as a dominant selectable marker in Chlamydomonas [J]. Mol. Gen. Genet.,1996,251: 23-30.
    [102]Lumbreras V, Stevens DR, Purton S. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron [J]. Plant J.,1998,14: 441-447.
    [103]Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast:a selectable marker of site-directed transformation of chlamydomonas [J]. Nucleic Acids Res.,1991,19:4083-4089.
    [104]Cerutti H, Johnson AM, Gillham NW. Boynton JE. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii:integration into the nuclear genome and gene expression [J]. Genetics,1997,145:97-110.
    [105]Bateman JM, Purton S. Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker [J]. Mol. Gen. Genet.,2000, 263:404-410.
    [106]Berthold P, Schmitt R, Mages W. An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii [J]. Protist,2002,153:401-412.
    [107]Sizova I, Fuhrmann M, Hegemann P. A Streptomyces rimosus aphⅧ gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii [J]. Gene,2001,277:221-229.
    [108]王义琴,陈颖,白琴华,赵世民,李文彬,孙勇如.以小球藻为载体生产兔防御素的研究[J].高技术通讯,2001,9:1-5.
    [109]安洋,赵世民,孙勇如,白丽莉,尹维波,陈宇红,李元广,胡军,胡赞民. NP-1在小球藻硝酸还原酶缺失突变体中的表达与活性检测[J].农业生物技术学报,2008,16(4):635-641.
    [110]Davies JP, Weeks DP, Grossman AR. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii [J]. Nucleic Acids Res., 1992,20:2959-2965.
    [111]Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii [J]. Planta,2009,229:873-883.
    [112]Schroda M, Blocker D, Beck CF. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas [J]. Plant J.,2000,21: 121-131.
    [113]Schroda M, Beck CF, Vallon O. Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas [J]. Plant J.,2002, 31:445-455.
    [114]Quinn JM, Kropat J, Merchant S. Copper response element and Crr1-dependent Ni(2+)-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii [J]. Eukaryot. Cell,2003,2:995-1002.
    [115]Loppes R, Radoux M, Ohresser MC, Matagne RF. Transcriptional regulation of the Nial gene encoding nitrate reductase in Chlamydomonas reinhardtii:effects of various environmental factors on the expression of a reporter gene under the control of the Nial promoter [J]. Plant Mol. Biol., 1999,41:701-711.
    [116]张小宇,王鹏,赵世民,李霞,沈昕,孙勇如,储成才,王义琴.利用椭圆小球藻硝酸还原酶缺失突变体为生物反应器表达兔防御素NP-1蛋白[J].遗传,2006,28:1580-1584.
    [117]Heitzer M, Eckert A, Fuhrmann M, Griesbeck C. Influence of codon bias on the expression of foreign genes in microalgae [J]. Adv. Exp. Med. Biol.,2007,616: 46-53.
    [118]Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii [J]. Plant J.,1999,19:353-361.
    [119]Fuhrmann M. Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers [J]. Protist,2002,153:357-364.
    [120]Wu SX, Huang R, Xu LL, Yan GY, Wang QX, Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii [J]. J. Biotechnol.,2010,146:120-125.
    [121]Wu SX, Xu LL, Huang R, Wang QX. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii [J]. Bioresource Technol.,2011,102:2610-2616.
    [122]Welch M, Villalobos A, Gustafsson C, Minshull J. You're one in a googol: optimizing genes for protein expression [J]. J. R. Soc. Interface,2009,6(Suppl.4): 467-476.
    [123]Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast [J]. Plant Biotechnol. J.,2007,5:402-412.
    [124]Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S. Factors effecting expression of vaccines in microalgae [J]. Biologicals, 2009,37:133-138.
    [125]Faye L, Daniell H. Novel pathways for glycoprotein import into chloroplasts [J]. Plant Biotechnol. J.,2006,4:275-279.
    [126]Neupert J. Karcher D, Bock R. Generation of Chlamydomonas strains that efficiently express nuclear transgenes [J]. Plant J.,2009.57:1140-1150.
    [127]Yao Q, Cong L, Chang JL, Li KX, Yang GX, He GY. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment [J]. J. Exp. Bot.,2006,57:3737-3746.
    [128]Jayaraj J, Liang GH, Muthukrishnan S, Punja ZK. Generation of low copy number and stably expressing transgenic creeping bentgrass plants using minimal gene cassette bombardment [J]. Biol. Plantarum,2008,52:215-221.
    [129]Lowe BA, Prakash NS, Way M, Mann MT, Spencer TM, Boddupalli RS. Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA [J]. Transgenic Res.,2009,18:831-840.
    [130]Sorokin AP, Ke XY, Chen DF, Elliott MC. Production of fertile transgenic wheat plants via tissue electroporation [J]. Plant Sci.,2000,156:227-233.
    [131]Butaye KMJ, Cammue BPA, Delaure SL, De Bolle MFC. Approaches to minimize variation of transgene expression in plants [J]. Mol. Breeding,2005,16: 79-91.
    [132]Wu SJ, Wang HH, Li FF, Chen TZ, Zhang J, Jiang YJ, Ding Y, Guo WZ, Zhang TZ. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos [J]. Plant Mol. Biol. Rep.,2008,26:174-185.
    [133]Zale JM, Agarwal S, Loar S, Steber CM. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens [J]. Plant Cell Rep.,2009,28: 903-913.
    [134]Oltmanns H, Frame B, Lee LY, Johnson S, Li B, Wang K, Gelvin SB. Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome [J]. Plant Physiol.,2010,152:1158-1166.
    [135]Doran PM. Foreign protein degradation and instability in plants and plant tissue cultures [J]. Trends Biotechnol.,2006,24:426-432.
    [136]Lu J, Sheahan C, Fu PC. Metabolic engineering of algae for fourth generation biofuels production [J]. Energy Environ. Sci.,2011,4:2451-2466.
    [137]Samson R, Leduy A. Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle [J]. Can. J. Chem. Eng., 1985,63:105-112.
    [138]Ramos de Ortega A, Roux JC. Production of Chlorella biomass in different types of flat bioreactors in temperature zones [J]. Biomass,1986,10:141-156.
    [139]Cheng-Wu Z, Zmora O, Kopel R, Richmond A. An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae) [J]. Aquaculture,2001,195:35-49.
    [140]Tredici MR, Carlozzi P, Chini Zittelli G, Materassi R. A vertical alveolar panel (YAP) for outdoor mass cultivation of microalgae and cyanobacteria [J]. Bioresource Technol.,1991,38:153-159.
    [141]Tredici MR, Materassi R. From open ponds to vertical alveolar panels:the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms [J]. J. Appl. Phycol.,1992,4:221-231.
    [142]Pulz O. Laminar concept of closed photobioreactor designs for the production of microalgal biomass [J]. Russ. J. Plant Physiol.,1994,41:256-261.
    [143]Qiang H, Guterman H, Richmond A. Physiological characteristics of Spirulina platensis (cyanobacteria) cultured at ultrahigh cell densities [J]. J. Phycol.,1996,32: 1066-1073.
    [144]Kunjapur AM, Eldridge RB. Photobioreactor design for commercial biofuel . production from microalgae [J]. Ind. Eng. Chem. Res.,2010,49:3516-3526.
    [145]Janssen M, Tramper J, Mur LR, Wijffels RH. Enclosed outdoor photobioreactors:light regime, photosynthetic efficiency, scale-up, and future prospects [J]. Biotechnol. Bioeng.,2003,81:193-210.
    [146]Yu G, Li YG, Shen GM; Wang WL, Lin C, Wu HX, Chen ZS. A novel method using CFD to optimize the inner structure parameters of flat photobioreactors [J]. J. Appl. Phycol.,2009,21:719-727.
    [147]Chaumont D, Thepenier C, Gudin C, Junjas C. Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum. From laboratory to pilot plant (1981-1987) In Stadler T, Mollion J, Verdus MC, Karamanos Y. Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier Applied Science, London.1988, 199-208.
    [148]张一昕,赵兵涛,熊锴彬,张忠孝,郝小红,刘涛.微藻固定燃烧烟气中CO2的研究进展[J].生物工程学报,2011,27:164-171.
    [149]Silva HJ, Pirt SJ. Carbon dioxide inhibition of photosynthetic growth of Chlorella [J]. J. Gen. Microbiol.,1984,130:2833-2838.
    [150]Lee YK, Tay HS. High CO2 partial pressure depresses productivity and bioenergenetic growth yield of Chlorella pyrenoidosa culture [J]. J. Appl. Phycol., 1991,3:95-101.
    [151]杨忠华,陈明明,曾嵘,李轩科,刘郭飞.利用微藻技术减排二氧化碳的研究进展[J].现代化工,2008,28:15-19.
    [152]de Morais MG, Costa JAV. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors [J]. Biotechnol. Lett.,2007,29:1349-1352.
    [153]Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I. Chlorella strains from hot springs tolerant to high temperature and high CO2 [J]. Energy Convers. Manage.,1995,36:693-696.
    [154]Sung KD, Lee JS, Shin CS, Park SC, Choi MJ. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics [J]. Bioresource Technol.,1999,68:269-273.
    [155]de Morais MG, Costa JAV. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide [J]. Energy Convers. Manage.,2007,48(7):2169-2173.
    [156]de Morais MG, Costa JAV. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor [J]. J. Biotechnol.,2007,129:439-445.
    [157]Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor [J]. Bioresource Technol.,2008,99:3389-3396.
    [158]Yun YS, Park JM, Yang JW. Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration [J]. Biotechnol. Techniques,1996, 10:713-716.
    [159]Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration [J]. Bioresource Technol.,2009,100:833-838.
    [160]胡章喜,安民,段舜山,徐宁,孙凯峰,刘晓娟,李爱芬,张成武.不同氮源对布朗葡萄藻生长、总脂和总烃含量的影响[J].生态学报,2009,29:3288-3294.
    [161]朱笃.转基因聚球藻7942光自养培养及人源胸腺素a1表达的研究[D],上海:华东理工大学,2003.
    [162]Li YQ, Horsman M, Wang B, Wu N, Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans [J]. Appl. Microbiol. Biotechnol.,2008,81:629-636.
    [163]Li X, Hu HY, Gan K, Yang J. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources [J]. Ecol. Eng.,2010,36:379-381.
    [164]Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium [J]. Enzyme Microb. Technol.,2000,27: 631-635.
    [165]Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. Microalgae for oil:strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor [J]. Biotechnol Bioeng.,2009,102:100-112.
    [166]Li Y, Han D, Sommerfeld M, Hu Q. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions [J], Bioresource Technol.,2011,102:123-129.
    [167]Shifrin NS, Chisholm SW. Phytoplankton lipids:Interspecific differences and effects of nitrate, silicate and light-dark cycles [J]. J. Phycol.,1981,17:374-384.
    [168]Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus [J]. Phytochemistry,2006,67 (7):696-701.
    [169]杨凯.高油脂微藻筛选及不同培养条件对其脂肪酸含量及组分的影响[D].苏州:苏州大学,2009.
    [170]刘志媛,王广策.铁促进海水小球藻油脂积累的动态过程[J].海洋科学,2008, 32:56-60.
    [171]刘志媛.铁对几种不同代谢类型微藻的生长和油脂积累的影响[D].青岛:中国科学院海洋研究所,2008.
    [172]Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells [J]. J. Biosci. Bioeng.,2006,101:223-226.
    [173]de Castro Araujo S, Garcia VMT. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids [J]. Aquaculture,2005,246: 405-412.
    [174]Blanchemain A, Grizeau D. Eicosapentaenoic acid content of Skeletonema costatum as a function of growth and irradiance; relation with chlorophyll a content and photosynthetic capacity [J]. J. Exp. Mar. Biol. Ecol.,1996,196:177-188.
    [175]de Oliveira MACL, Monteiro MPC, Robbs PG, Leite SGF. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures [J]. Aquacult. Int.,1999,7:261-275.
    [176]Gardner R, Peters P, Peyton B, Cooksey KE. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta [J]. J. Appl. Phycol.,2011,23:1005-1016.
    [177]Hejazi MA, Wijffels RH. Milking of microalgae [J]. Trends Biotechnol.,2004, 22:189-194.
    [178]Hejazi MA, Holwerda E, Wijffels RH. Milking microalga Dunaliella salina for (3-carotene production in two-phase bioreactors [J]. Biotechnol. Bioeng.,2004,85: 475-481.
    [179]An JY, Sim SJ, Kim BW, Lee JS. Improvement of hydrocarbon recovery by two-stage cell-recycle extraction in the cultivation of Botryococcus braunii [J]. J. Microbiol. Biotechn.,2004,14:932-937.
    [180]张芳.微藻油脂合成调控及膜分散原位萃取研究[D].杭州:浙江大学,2011.
    [181]Xu Q, Cheng J, Ge Z, Yuan Y. Effects of organic solvents on membrane of Taxus cuspidata cells in two-liquid-phase cultures [J]. Plant Cell, Tiss. Org. Cult.. 2004,79:63-69.
    [182]Lee YK, Zhang DH. Production of astaxanthin by Haematococcus, Chemicals from Microalgae [M]. Taylor & Francis,1999,173-195.
    [183]Parker NS. Growth of the toxic dinoflagellate Aexandrium minutum (Dinophyceae) using high biomass culture systems [J]. J. Appl. Phycol..2002.14: 313-324,
    [184]Jiang Y. Chen F. Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii [J]. Process Biochem.,2000,35:1205-1209.
    [185]Kleinegris DM, Janssen M, Brandenburg WA, Wijffels RH. Two-phase systems: Potential for in situ extraction of microalgal products [J]. Biotechnol. Adv.,2011,29: 502-507.
    [186]Miranda AMM, Torp EG, Aasen IM, Livingston AG. Process for extracting fatty acids from aqueous biomass in a membrane contactor module. WIPO Patent Application WO/2010/143974,2010.
    [187]Miranda AMM, Torp EG, Aasen IM, Livingston AG. Process for extracting fatty acids from aqueous biomass in a membrane contactor module. US Patent Application US/2012/0077255,2012.
    [188]温斯顿,张志诚.膜手册[M].北京:海洋出版社,1997.
    [189]汪家鼎,陈家镛.溶剂萃取手册[M].北京:化学工业出版社,2001.
    [1]Trinh CT, Wlaschin A, Srienc F. Elementary mode analysis:a useful metabolic pathway analysis tool for characterizing cellular metabolism [J]. Appl. Microbiol. Biotechnol.,2009,81:813-826.
    [2]Boghigian BA, Shi H, Lee K, Pfeifer BA. Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design [J]. BMC Syst. Boil.,2010,4:49.
    [3]Hadicke O, Klamt S. CASOP:a computational approach for strain optimization aiming at high productivity [J]. J. Biotechnol.,2010,147:88-101.
    [4]Schuster S, Dandekar T, Fell DA. Detection of elementary flux modes in biochemical networks:a promising tool for pathway analysis and metabolic engineering [J]. Trends Biotechnol.,1999,17:53-60.
    [5]Xiong W, Gao C, Yan D, Wu C, Wu Q. Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production [J]. Bioresource Technol.,2010,101:2287-2293.
    [6]Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex [J]. Plant Cell.,2010,22:2943-2955.
    [7]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS:an automatic genome annotation and pathway reconstruction server [J]. Nucleic Acids Res.,2007. 35:W182-185.
    [8]Ingraham JL, Maaloe O, Neidhardt FC. Growth of the bacterial cell [M]. Sunderland MA:Sinauer Associates, Inc.1983,1-172.
    [9]Soons Z, Ferreira E, Rocha I. Identification of minimal metabolic pathway models consistent with phenotypic data [J]. J. Process Contr.,2011,21:1483-1492.
    [10]Carlson R, Srienc F. Fundamental Escherichia coli biochemical pathways for biomass and energy production:identification of reactions [J]. Biotechnol. Bioeng., 2004,85:1-19.
    [11]Xiong W, Liu L, Wu C, Yang C, Wu Q.13C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides [J]. Plant physiol.,2010,154:1001-1011.
    [12]Kliphuis AM, Klok AJ, Martens DE, Lamers PP, Janssen M, Wijffels RH. Metabolic modeling of Chlamydomonas reinhardtii:energy requirements for photoautotrophic growth and maintenance [J]. J. Appl. Phycol.,2012,24:253-266.
    [13]Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions [J]. Biochem. Eng. J.,2000,6:87-102.
    [14]Funahashi A, Morohashi M, Kitano H, Tanimura N. CellDesigner:a process diagram editor for gene-regulatory and biochemical networks [J]. Biosilico,2003,1: 159-162.
    [15]Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H. CellDesigner 3.5:a versatile modeling tool for biochemical networks [J]. Proc. IEEE, 2008,96:1254-1265.
    [16]Keating SM, Bornstein BJ, Finney A, Hucka M. SBMLToolbox:an SBML toolbox for MATLAB users [J]. Bioinformatics,2006,22:1275-1277.
    [17]Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of cellular networks with CellNetAnalyzer [J]. BMC Syst. Biol.2007,1:2.
    [18]von Kamp A, Schuster S. Metatool 5.0:fast and flexible elementary modes analysis [J]. Bioinformatics,2006,22:1930-1931.
    [19]Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga [J]. PLoS One,2011,6:e25851.
    [20]Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol [J]. Metab. Eng.,2010,12:387-391.
    [1]Takeda H, Hirokawa T. Studies on the cell wall of Chlorella III. Incorporation of photosynthetically fixed carbon into cell walls of synchronously growing cells of Chlorella ellipsoidea [J]. Plant Cell Physiol.,1982,23:1033-1040.
    [2]Blumreisinger M, Meindl D, Loos E. Cell wall composition of chlorococcal algae [J]. Phytochemistry,1983,22:1603-1604.
    [3]Takeda H, Hirokawa T. Studies on the cell wall of Chlorella V.:Comparison of the cell wall chemical compositions in strains of Chlorella ellipsoidea [J]. Plant Cell Physiol.,1984,25:287-295.
    [4]Kapaun E, Reisser W. A chitin-like glycan in the cell wall of a Chlorella sp. (Chlorococcales, Chlorophyceae) [J]. Planta,1995,197:577-582.
    [5]Yamada T, Sakaguchi K. Protoplast induction in Chlorella species [J]. Agric. Biol. Chem.,1981,45:1905-1909.
    [6]Spreitzer RJ. Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase [J]. Arch. Biochem. Biophys.,2003,414:141-149.
    [7]Fujiwara S, Tsuzuki M, Kawachi M. Molecular phylogeny of the Haptophyta based on the rbcL gene and sequence variation in the spacer region of the RUBISCO operon [J]. J. Phycol.,2001,37:121-129.
    [8]Cottrell MT, Suttle CA. Production of axenic cultures of Micromonas pusilla (Prasinophyceae) using antibiotic [J]. J. Phycol.,1993,29:385-387.
    [9]Kan Y, Pan J. A one-shot solution to bacterial and fungal contamination in the green alga Chlamydomonas reinhardtii culture by using an antibiotic cocktail [J]. J. Phycol.,2010,46:1356-1358.
    [1]冯国栋,程丽华,徐新华,张林,陈欢林.微藻高油脂化基因工程研究策略[J].化学进展,2012,24:1413-1426.
    [2]Roessler PG. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency [J]. Arch. Biochem. Biophys.,1988.267:521-528.
    [3]Dunahay TG, Jarvis EE, Dais SS, Roessler PG. Manipulation of microalgal lipid production using genetic engineering [J]. Appl. Biochem. Biotech..1996,57-58: 223-231.
    [4]Sheehan J, Dunahay T, Benemann J, Roessler P. A Look Back at the US Department of Energy's Aquatic Species Program:Biodiesel from Algae [R].1998, NREL/TP-580-24190.
    [5]Jain RK, Coffey M, Lai K, Kumar A, MacKenzie SL. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes [J]. Biochem. Soc. T.,2000,28:958-961.
    [6]Zou J, Katavic V, Giblin EM,.Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene [J]. Plant Cell,1997,9:909-923.
    [7]Maisonneuve S, Bessoule JJ, Lessire R, Delseny M. Roscoe TJ. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis [J]. Plant Physiol.,2010,152:670-684.
    [8]Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight [J]. Plant Physiol.,2001, 126:861-874.
    [9]Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski MC. Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize [J]. Nat. Genet.,2008,40:367-372.
    [10]Hofmann MA, Brian DA. Sequencing PCR DNA amplified directly from a bacterial colony [J]. Biotechniques,1991,11:30-31.
    [11]Ward AC. Rapid analysis of yeast transformants using colony-PCR [J]. Biotechniques,1992,13:350.
    [12]van Zeijl CM, van de Kamp EH, Punt PJ, Selten GC, Hauer B, van Gorcom RF, van den Hondel CA. An improved colony-PCR method for filamentous fungi for amplification of PCR-fragments of several kilobases [J]. J. Biotechnol.,1998,59: 221-224.
    [13]Cao M, Fu Y, Guo Y, Pan J. Chlamydomonas (Chlorophyceae) colony PCR [J]. Protoplasma,2009,235:107-110.
    [14]Wan M, Rosenberg JN, Faruq J, Betenbaugh MJ, Xia J. An improved colony PCR procedure for genetic screening of Chlorella and related microalgae [J]. Biotechnol. Lett.,2011,33:1615-1619.
    [15]Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens [J]. Plant Sci.,2004,166:731-738.
    [16]Kathiresan S, Sarada R. Towards genetic improvement of commercially important microalga Haematococcus pluvialis for biotech applications [J]. J. Appl. Phycol.,2009,21:553-558.
    [17]Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R. Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales) [J]. J. Phycol.,2009,45:642-649.
    [18]Chen Y, Li WB, Bai QH, Sun YR. Study on transient expression of GUS gene in Chlorella ellipsoidea (Chlorophyta), by using biolistic particle delivery system [J]. Chin. J. Oceanol. Limnol.,1998,16 Suppl:47-49.
    [19]Chow KC, Tung WL. Electrotransformation of Chlorella vulgaris [J]. Plant Cell Rep.,1999,18:778-780.
    [20]Wang C. Wang Y, Su Q. Gao X. Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95. via electroporation [J]. Biotechnol. Bioproc. Eng.,2007; 12:180-183.
    [21]Walsh P, Metzger D, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material [J]. Biotechniques.1991,10: 506-513.
    [22]Dallas-Yang Q, Jiang GQ, Sladek FM. Avoiding false positives in colony PCR [J]. Biotechniques,1998,24:580-582.
    [1]张一昕,赵兵涛,熊锴彬,张忠孝,郝小红,刘涛.微藻固定燃烧烟气中CO2的研究进展[J].生物工程学报,2011,27:164-171.
    [2]Silva HJ, Pirt SJ. Carbon dioxide inhibition of photosynthetic growth of Chlorella [J]. J. Gen. Microbiol.,1984,130:2833-2838.
    [3]Lee YK, Tay HS. High CO2 partial pressure depresses productivity and bioenergenetic growth yield of Chlorella pyrenoidosa culture [J]. J. Appl. Phycol., 1991,3:95-101.
    [4]杨忠华,陈明明,曾嵘,李轩科,刘郭飞.利用微藻技术减排二氧化碳的研究进展[J].现代化工,2008,28:15-19.
    [5]杨忠华,李方芳,曹亚飞,赵燕,陈庚华,周云川,周卫,侯亚利.微藻减排C02制备生物柴油的研究进展[J].生物加工过程,2012,10:70-76.
    [6]Bligh EG, Dyer WM. A rapid method of lipid extraction and purification [J]. Can. J. Biochem. Physiol,1959,37:911-917.
    [7]Alonzo F, Mayzaud P. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red [J]. Mar. Chem.,1999,67:289-301.
    [8]Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy [J]. Biotechnol. Bioeng.,2009,103:123-129.
    [9]吕建明.微藻强化培养及油脂转化的研究[M].杭州:浙江大学,2010.
    [10]张芳.微藻油脂合成调控及膜分散原位萃取研究[D].杭州:浙江大学,2011.
    [11]程丽华.微藻(酶)膜反应器去除密闭环境空气中CO2的研究[D].杭州:浙江大学,2006.
    [12]Cooney M, Young G, Nagle N. Extraction of bio-oils from microalgae [J]. Sep. Purif. Rev.,2009,38:291-325.
    [13]Laurens LML, Quinn M, Wychen S, Templeton DW, Wolfrum EJ. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification [J]. Anal. Bioanal. Chem..2012,403:167-178.
    [14]Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production [J]. Eukaryot. Cell,2010,9:486-501.
    [15]Potvin G, Zhang Z. Strategies for high-level recombinant protein expression in transgenic microalgae:A review [J]. Biotechnol. Adv.,2010.28:910-918.
    [16]Lu J, Sheahan C, Fu PC. Metabolic engineering of algae for fourth generation biofuels production [J]. Energy Environ. Sci.,2011,4:2451-2466.
    [17]姚茹,程丽华,徐新华,张林,陈欢林.微藻的高油脂化技术研究进展[J].化学进展,2010,22:1221-1232.
    [18]Cheng LH, Zhang L, Chen HL, Gao CJ. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor [J]. Sep. Purif. Technol.,2006,50: 324-329.
    [1]Kleinegris DM, Janssen M, Brandenburg WA, Wijffels RH. Two-phase systems: Potential for in situ extraction of microalgal products [J]. Biotechnol. Adv.,2011,29: 502-507.
    [2]Miranda AMM, Torp EG, Aasen IM, Livingston AG. Process for extracting fatty acids from aqueous biomass in a membrane contactor module. WIPO Patent Application WO/2010/143974,2010.
    [3]Miranda AMM, Torp EG, Aasen IM, Livingston AG. Process for extracting fatty acids from aqueous biomass in a membrane contactor module. US Patent Application US/2012/0077255,2012.
    [4]邱实.基于碳纳米管的有机/无机杂化膜的制备及性能研究[D].杭州:浙江大学,2011.
    [5]张亚涛.纳米复合凝胶固定化酶膜反应器去除低浓度CO2的研究[D].杭州:浙江大学,2009.
    [6]汪家鼎,骆广生.溶剂萃取[M].北京:清华大学出版社;广州:暨南大学出版社,2002.
    [7]刘茉娥,陈欢林.新型分离技术基础[M].杭州:浙江大学出版社.1999.
    [8]汪家鼎,陈家镛.溶剂萃取手册[M].北京:化学工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700