用户名: 密码: 验证码:
大熊猫干扰下巴山木竹无性系种群生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴山木竹(Bashania fargesii)为地下茎复轴混生的中小型竹种,分布区以大巴山脉和秦岭为主,布及川、甘、陕、豫、鄂、渝等六省市,跨暖温带、北亚热带、中亚热带三个气候带,是大熊猫的主食竹种之一。本文选取了陕西佛坪国家级自然保护区核心区大熊猫活动密集斑块内巴山木竹无性系种群为研究对象,同时对比了保护状态下的巴山木竹无性系种群,从生物学特性以及近红外光谱技术应用等几方面系统研究了大熊猫种群活动对巴山木竹无性系种群造成的影响,结果如下:
     1.巴山木竹发笋存在较为明显的大小年现象,线性回归分析显示大熊猫取食强度与巴山木竹发笋量有显著相关性。干扰样地与非干扰样地巴山木竹竹笋的成竹率与退笋率分别为54.09%,45.91%;63.46%,36.54%。非干扰样地与干扰样地的巴山木竹竹笋出土后完成高生长大约需要60d和65d。非干扰样地幼竹高度测量值与总体平均值均高于干扰样地。
     2.干扰样地与非干扰样地各年龄段的巴山木竹生物量总量大小依次为:2年生>4年生>3年生>1年生>5年生及以上;2年生>1年生>3年生>4年生>5年生及以上。干扰样地与非干扰样地巴山木竹无性系种群生物量总量差别不大,但地上与地下部分所占比例差异明显,分别为60.74%,39.26%;56.19%,43.81%。
     3.非干扰样地巴山木竹无性系种群各年龄段所占比例逐年递减,分布有序;干扰样地的巴山木竹无性系种群年龄结构紊乱,没有表现出稳定的金字塔结构。干扰样地的巴山木竹无性系种群,87.20%的分株高度小于500cm;70.82%的分株胸径小于1.70cm。与之相比非干扰样地巴山木竹无性系种群,65.77%的分株高于500cm;64.43%的分株直径大于1.70cm。干扰样地与非干扰样地巴山木竹无性系种群静态生命表生存曲线分别接近于B型(直线型B2)与C型(凹型)。
     4.巴山木竹竹笋随着出土时间的增长,灰分、粗纤维的含量在逐步增加,而粗脂肪、粗蛋白与氨基酸的含量在逐渐减少。
     巴山木竹叶中Ca、灰分和粗纤维在一年生叶片中含量最低,随龄级增加呈现递增趋势。P、K、Zn和粗蛋白含量随龄级增长呈现依次递减趋势。Fe和Mg在第二年的叶片中含量最低,一年生叶片中含量最高。粗脂肪含量随叶片龄级别变化不明显。
     巴山木竹竹秆营养成分随着龄级的不同呈现出不同的变化趋势:Ca、Mg与粗纤维含量随着竹秆龄级增加而增大;K、Zn、粗脂肪和粗蛋白含量,随着龄级增加而减少;Fe和Zn含量随着龄级变化不明显。
     不同大熊猫取食阶段巴山木竹营养成分比较结果表明:在各个取食阶段,大熊猫主要选择可利用营养最为丰富巴山木竹部位作为主要摄食对象;在取食竹秆阶段,虽然竹秆中营养成分含量低于竹叶,但竹秆中粗纤维含量为全年最低,这可能是大熊猫在该阶段偏好取食竹秆的主导因素。
     5.应用近红外光谱结合PLS-DA方法对校正集样本建立的判别模型,使用竹叶正面光谱建模效果较好,校正和验证结果与实际分变量的相关系数均超过了0.96,交叉验证均方根误差(RMSECV)和预测均方根误差(RMSEP)都低于0.14,利用模型对验证集中4个竹种叶片正面近红外光谱进行判别,识别率均为100%。
     竹叶样品蛋白质、氨基酸、粗脂肪与粗纤维最优校正模型的均方差分别为0.351、0.279、0.221、1.603,校正决定系数分别为0.935、0.854、0.917、0.972。使用验证集对蛋白质、氨基酸、粗脂肪与粗纤维最优校正模型验证结果:相对分析误差分别为3.562、2.468、2.671、4.247,预测决定系数分别为0.916、0.734、0.816、0.962,预测标准差分别为0.835、0.637、0.228、0.249。验证结果表明,除氨基酸最优校正模型相对分析误差小于2.5,精度较低之外,其余各最优校正模型精度较好,可以用于巴山木竹竹叶营养成分的实际检测。
     竹秆样品蛋白质、氨基酸、粗脂肪与粗纤维最优校正模型的的均方差分别为0.172、0.153、0.095、2.550,校正决定系数分别为0.862、0.795、0.883、0.965。使用验证集对蛋白质、氨基酸、粗脂肪与粗纤维最优校正模型验证结果:相对分析误差分别为2.840、2.126、2.285、3.864,预测决定系数分别为0.874、0.720、0.735、0.925,预测标准差分别为0.124、0.162、0.433、0.291。验证结果表明,竹秆氨基酸与粗脂肪最优校正模型相对分析误差小于2.5,精度较低,只能用于估测,蛋白质与粗纤维最优校正模型精度较好,可以用于巴山木竹竹秆营养成分的实际检测。
Bashania fargesii is a kind of small and medium-sized amphipodial bamboo species. Thedistribution area is main in Daba mountain range and Qinling mountains such as Sichuan,Gansu, Shanxi, Henan, Hubei and Chongqing and cross warm temperate zone, north subtropicalzone and mid-subtropical zone triple climatic zones B. fargesii is one of bamboo species as themain food of giant panda. B. fargesii clone population under giant panda disturbance and undercontrol in Shanxi Foping national nature reserve were both chosen as the research object. Thebiological characteristics and NIRS technology were investigated for the comprehensive studyof the effects of B. fargesii clone population under giant panda disturbance.
     The main experimental results are as follows:
     1. Unstable yielding phenomenon in B. fargesii shooting characteristics was existed. Theresult of linear regression analysis showed that there was significant correlation between theintensity of giant panda foraging behavior and the bamboo shoot emerging amount. The maturebamboo rate and degenerated shoot rate of disturbance and control plots were54.09%,45.91%;63.46%,36.54%. The bamboo shoots of control and disturbance plots needed60d and65d tofinish the height growth stage. The data showed that the average height of bamboo in controlplots were higher than those in disturbance plots.
     2. The total biomass of B. fargesii of different ages in disturbance and control plots were inthe order of2>4>3>1>5,2>1>3>4>5. There was no significant different between the totalbiomass of B. fargesii in disturbance and control plots. But the biomass ratio of over-groundand underground in disturbance and control plots showed great difference, were60.74%,39.26%;56.19%,43.81%respectively.
     3. The distribution of age structure of B. fargesii age in control plots was ordered. Instead,the distribution of age structure of B. fargesii age in disturbance plots was unordered.87.20%ramet's height of the clone population of B. fargesii in disturbance plots was lower than500cmand70.82%ramet's diameter was lower than1.70cm. on the other hand,65.77%ramet's heightof the clone population of B. fargesii in control plots was higher than500cm and64.43%ramet's diameter was higher than1.70cm. The survival curve of static life table of B. fargesiiclone population in disturbance and control plots were B type and C type respectively.
     4. The contents of ash and crude fiber in B. fargesii shoots increased with increased time.In contrast, the contents of crude protein and crude fat in Bashania fargesii shoots decreasedwith increased time.
     The contents of Ca、ash and crude fiber was lowest in one year old leaves and increasedwith increased age classes. P、K、Zn and crude protein decreased with increased leaf age classes.The contents of Fe and Mg were lowest in two years old leaves and highest in one year oldleaves. There was no significant difference between age classes of crude fat contents in leaves.
     The nutrient contents of B. fargesii shoots culms showed different trends with different age classes. The contents of Ca、Mg and crude fiber increased with increased culm age classes. Thecontents of K、Zn、crude fat and crude protein decreased with increased culm age classes. Therewas no significant difference between age classes of Fe and Zn contents in culms.
     The comparison results of B. fargesii nutrient contents among different giant pandaforaging stages showed that: giant panda mostly chose the part of B. fargesii which had highernutrient contents as the food during different foraging stages. During the culm stage, the crudefiber of culms was lowest in the year. This result showed that the content of crude fiber mightbe the dominant factor which influences the foraging choice of giant panda.
     5. Near-infrared spectroscopy (NIRS) coupled with Partial Least Squares-DiscriminantAnalysis (PLS-DA) pattern recognition methods were used to identify different bamboo species.The results showed that the correlations between the predicted category variables of calibrationor validation and the measured category variables were all remarkable with a correlationcoefficient(R) over0.96and low RMSECV and RMSEP (<0.14) used the top near-infraredspectroscopy of bamboo leaves. The discrimination accuracy for the bamboo varieties was100%by PLS-DA model based on the validation set of samples.
     SECV and rcof the optimal calibration models for crude protein, amino acid, crude fat andcrude fiber were0.351,0.279,0.221,1.603and0.935,0.854,0.917,0.972respectively. And thevalidation results were that, RPD were3.562,2.468,2.671,4.247; rpwere0.916,0.734,0.816,0.962; SEP was0.835,0.637,0.228, and0.249. The verification results showed that the RPDvalue were all higher than2.5except the value of amino acid. The optimal calibration model ofcrude protein, crude fat and crude fiber had good accuracy could be used in actual test of B.fargesii leaves nutrient contents.
     .SECV and rcof the optimal calibration models for crude protein, amino acid, crude fat andcrude fiber were0.172,0.153,0.095,2.550and0.862,0.795,0.883,0.965respectively. And thevalidation results were that, RPD were2.840,2.126,2.285,3.864; rpwere0.874,0.720,0.735,0.925; SEP was0.124,0.162,0.433, and0.291. The verification results showed that the RPDvalue of crude protein and crude fiber were higher2.5but the RPD value of amino acid andcrude fat were lower than2.5. The optimal calibration model of crude protein and crude fiberhad better accuracy could be used in actual test of B. fargesii culms nutrient contents.
引文
1Alexander J S, Walter H S, Lowell E. M, et al. Prediction of leaf/Stem ratio using near-reflectancespectroscopy (NIRS): a technical note [J]. Agronomy Journal,2004,96(1/2):316-318.
    2Alpert P. Nitrogen sharing among ramets increase clonal growth in Fragaria chiloensis. Plant Ecology,1991,72(1):69-80.
    3Arminda M B, Ian M, Rhona M P, et al. Use of near infrared reflectance spectroscopy (NIRS) for theprediction of the chemical composition and nutritional attributes of green crop cereals[J]. Animal FeedScience and Technology,1998,75:15-25.
    4Bell A D. The hexagonal branching pattern of Alpinia speciosa L [J]. Annals of Botany,1979,43:209-223.
    5Brown C D, Vega-Montoto L, Wentzell P D. Derivative Preprocessing and Optimal Corrections forBaseline Drift in Multivariate Calibration [J]. Appl. Spectrosc.,2000,54(7):1055-1068.
    6Caraeo T, Kelly C. On the adaptive value of physiological integration in clonal plants. Ecology,1991,72(1):81-94.
    7Celine Boutin, John L. Harper. A comparative study of the population dynamics of five species ofVeronica in natural habitats. Journal of Ecology,1991,79:199-221
    8Chang C-S, Bongarten B, Hamrick J. Genetic structure of naural populations of black locust(Robiniapseudoacacia L.) at Cowecta, North Carolina[J].J. Plant Res.,1998,111:17-24.
    9Doust J L. Modules of production and reproduction in a deciduous clonal shrub Rhus typhina [J].Ecology,1988,69(3):741-750.
    10De Kroon H, Schieving F. Habitat exploration through morphological plasticity in two chalk grasslandperennials [J]. Oikos,1990,59:39-49.
    11De Kroon H, Feike Schieving. Resource allocation patterns as a function of clonal morphology: ageneral model applied to a foraging clonal plant [J]. Journal of Ecology,1991,79:519-530.
    12De Peinder P, Vredenbregtb M J, Visserc T, et al. Detection of lipitor counterfeits: A comparison of NIRand raman spectroscopy in combination with chemo-metrics [J]. Journal of Pharmaceutical andBiomedical Analysis,2008,47(4/5):688-694.
    13Dong Ming. Morphological plasticity of the clonal herb in response to spatial shading [J]. Newphysiologist,1993,124(2):291-230.
    14Dong Ming. Morphological responses to local light conditions in clonal herbs from contrasting habitatsand their modification due to physiological integration [J].Oecologia,1995,101:282-288.
    15Eriksson O, Jerling L. Hierarchical selection and risk spreading in clonal plant [A]. In: van GroenendalJ,de Kroon H. Clonal growth in plants: regulation and function[C]. Hague, SPB Academic Publishing,1990,79-94.
    16Eriksson O. Patterns. of ramet survivorship in clonal fragments of the stoloniferous plant Potentialanserine. Ecology,1988,69(3):736-740.
    17Eriksson O. Ramet behaviour and population growth in the clonal herb Potentilla anserine. Journal ofEcology,1988,76:522-536.
    18FAO/WHO. Energy and Protein Requirements. Nutrition meeting report series [M]. Rome,1973:52-63.
    19Fenner M, Thompson K.The Ecology of Seeds. Cambridge: Cambridge University Press,2005.
    20F Guy, S Prache, A Thomas, et al. Prediction of lamb meat fatty acid composition using near-infraredreflectance spectroscopy (NIRS)[J].Food Chemistry,2011,127:1280-1286.
    21Hartnett D C, Bazzaz FA. The genet and ramet population dynamics of Solidago canadensisin anabandoned field [J]. J of Ecol,1985,73,407-413.
    22Hartnett D C, Bazzaz F A. The regulation of leaf, ramet and genet desities in experimental population ofthe rhi-zomatous perennial olidago Canadensis [J]. J of Ecol,1985,73,429-443.
    23Hartnett D C. Size-dependent allocation to sexual and vegetative reproduction in four clonal composites[J]. Oecologia,1990,84:254-259.
    24Harberd D.J. Observations on natural clones of Holcas molli[J]. New phytologist,1967,66:401-408.
    25Harberd D.J. Observations on natural clones of Trifolium repuns[J]. New phytologist,1963,62:198-204.
    26Harberd D.J.Some experimental observations on the clone structure of a natural population of Festucarubra [J].New phytologist.1969,68:93-99.
    27Harberd D J. Some observations on natural clones of Festucaocina.[J].Newphytologist,1962,61:85-100.37Harper J.L. Plant demography and ecological theory. Oikos,1980,35:244-253.
    28Harper J.L. Population Biology of Plant. Academic Press, London and New York,1977.
    29Harper J.L., Bell A.D. The population dynamics of growth form in organisms with modular construction.In: Population dynamics(Anderson R.M. et al. ed). Oxford: Blackwell.1979,29-52.
    30Harper J.L. The concept of population in modular organisms.In:Theoretical Ecology: Principles andApplications(Ed by R.M.May). Oxford: Blackwell,1981,53-77.
    31Jackson R B, Caldwell M M. The scale of nutrient heterogeneity around individual plants and itsquantification with geostatistics [J].Ecology,1993a,74:612-614.
    32Jackson R B, Caldwell M M. Geostatistical pattern of soil heterogeneity around individualPerennial plants [J].Journal of Ecology,1993b,81:683-692.
    33Johansson T. Sprouting ability and biomass production of downy and silver birch stumps of differentdiameters [J]. Biomass and Bioenergy,2008,32(10):944-951.
    34Kelly C K. Plant foraging: marginal value model and coiling response in Cuscuta subinclusa [J]. Ecol,1990,71:1916-1925.
    35Liu X H, Skidmore A K, Wang T J, et al. Giant panda movements in Foping Nature Reserve, China [J].Journal of Wildlife Management,2002,66(4):1179-1188.
    36Matthysse A G, Thomas D O L, White A L. Mechanism of cellulose synthesis in Agrobacteriumtumefactions [J]. J Bacteriol,1995,177:1076-1081.
    37Maillette L. Effects of bud demography and elongation patterns on Betula cordifolia near the tree line.Ecology,1987,68(5):1251-1261.
    38Maillette L. Modular demography and growth patterns of two annual weeds(Chenopodium album L. andSpergula arvensis L.) in relation to flowering. In: Studies on plant demography: an festschrift for JohnL.Harper(White J. ed.). London: Academic press.1985,239-255.
    39Maillette L. Plasticity of modular teiteration in Potentilla anserine. J. Ecol.,1992,80:231-239.
    40Maillette L. Seasonal model of modular growth in plants. J. Ecol.,1992,80:123-130.
    41Maillette L. Structural dynamics ofsilver birch Ⅰ. Thefates of buds.Journal of Applied Eclolgy,1982,19:203-218.
    42Maillette L. Structural dynamics ofsilver birch. Ⅱ.Amatrix of model of thebud population. J. Appl.Ecol.,1982,19:219-238.
    43Maillette L.Seasonal model of modular growth in plants. Journal of Ecology,1992,80:123-130.
    44Manuela Z, Michael P, Craig K, et al. NIRS as a tool for precision horticulture in the citrus industry [J].B-iosystems engineering,2008,99:455-459.
    45Mellette L. Seasonal model of modular grow thin plants [J]. Journal of Ecology,1992,80:123-130.
    46Michael L. Cain. Models of clonal growth in Solidago altissima. Journal of Ecology,1990,78:27-46
    47Michaell L C, Hans Damman. Cclonal growth and ramet performance in the woodland herd Asarumcanadense. J. of Ecol.,1997,85:883-897.
    48Mikio Watanabe, et al. Chloroplast DNA phylogeny of Asian bamboos (Bambusoideae, Poaceae) and itssystematic implication. J. Plant Res.1994,107:253-261
    49Rachel L. Hansen, Meghan M. C, et.al. Shifts in Giant Panda Feeding Behavior: Relationships toBamboo Plant Part Consumption [J]. Zoo Biology,2010,29:470–483.
    50Schmid B. Clonal growths in grassland perennials. Ⅰ.genetic variation and plasticity between andwithin populations of Bellis perennis and Prunella vulgaris. J. of Ecol,1985,73:819-830.
    51Schmid B. Someecological and evolutionary consequences of modular orgamization and clonal growthin plants. Evolutionary trends in plants,1990,4(1):25-34.
    52Schmid, F. A. Bazzaz. Clonal integration and population structure in perennials: effects of severingrhizome connections[J]. Ecology,1987,68(6):2016-2022.
    53Slade A J, Hutchings M J. The effects of nutrient availability on foraging in the clonal herb Glechomahederacea [J]. J of Ecol,1987a,75:95-112.
    54Slade A J, Hutchings M J. The effects of light intensity on foraging in the clonal herb Glechomahederacea [J]. J of Ecol,1987b,75:639-650.
    55Slade A J.,Hutchings M J.The effects of nutrient availability on foraging in the clonal herb Glechomahederacea.J Ecol.1987,75:95-112.
    56Slade A J. Hutchings M J.Clonal integration and plasticity in foraging behavior in Glechomaheadrace [J].J. of Ecol.,1987c,75:1023-1036.
    57Taylor A H, Qin Z S, Liu J. Structure and dynamics of subalpine forests in the Wang Lang NaturalReserve, China [J]. Vegetatio,1996,134:125-138.
    58Taml L S, Ann C K, Ann-Marie F. Using NIRS to predict fiber and nutrient content of dryland cerealcultivars[J]. J. Agric. Food Chem.,2010,58(1):398-403.
    59Urbas P, Zobel K. Adaptive and inevitable morphological plasticity of three herbaceous species in amultispecies community: field experiment with manipulated nutrients and light [J]. Acta Oecol,2000,21(2):139-147.
    60Walter Liese. Advances in Bamboo Research.南京林业大学学报(自然科学版),2001,25(4)
    61Weiner J.et al. Competition and growth form in a woodland annual. Journal of Ecology,1990,78:459-469.
    62White J. The plant as a met population. Ann. Rev. Ecol. Syst.,1979,10:109-145
    63Wei F W, Hu J C,Xu G Z, et al. A study on the life table of wild giant pandas[J]. Acta TheriologicaSinica,1989.
    64Wei F W, Feng Z J, Wang Z W, et al. Habitat use and separation between the giant panda and redpanda[J]. J Mamm,2000,81(2):448-455.
    65Wei F W, Feng Z J, Wang Z W, Zhou A, Hu JC [J]. Use of nutrients in bamboo by red panda (Ailurusfulgens).Journal of Zoology, London,1999,248:535-541.
    66White J. The plant as a metpopulation [J]. Annual Review of Ecology and Systematics,1979,10:109-145.
    67Zhan X J, Li M, ZhangZ J,et al. Molecular censuring doubles giant panda population estimate in a keynature reserve. Current Biology16(12),451-452.
    68Zhang Z J, Wei F W, Li M, et al. Microhabitat separation during winter among sympatric giant pandas,red pandas and tufted deer: the effects of diet, body size and energy metabolism[J]. Canadian Journal ofZoology,2004,82(9):1451-1458.
    69卞萌,汪铁军,刘艳芳等.用间接遥感方法探测大熊猫栖息地竹林分布.生态学报[J],2007,27(11):4825-4831
    70白琪林,陈绍江,严衍禄等.近红外漫反射光谱法测定青贮玉米品质性状的研究[J].中国农业科学,2006,39(7):1346-1351
    71白雁,王星,龚海燕等.NIRS结合PLS快速分析银黄颗粒中有效成分含量[J].计算机与应用化学,2010,27(12):1703-1706.
    72曹碧凤.不同经营措施对毛竹材用林竹材生物量的影响[J].安徽农学通报,2011,17(19):105-107
    73褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542.
    74陈玉福,董鸣.毛乌素沙地群落动态中无性系和非无性系植物作用的比较[J].植物生态学报,2002,26(3):377-380.
    75董鸣.资源异质性环境中的植物无性系生长:觅食行为.植物学报,1996a,38(10):828-835
    76董鸣.异质性生境中的植物无性系生长:风险分摊[J].植物生态学报,1996b,20(6):543-548.
    77董文渊.滇东北竹类资源现状及其可持续发展对策研究.生态经济,1999,(1):32-36.
    78董文渊.筇竹无性系生长及栽培机制的研究[D].南京:南京林业大学森林资源与环境学院,2000.
    79董文渊,黄宝龙,谢泽轩等.密度调节与轮闲制采笋对筇竹林竹笋-幼竹生长的影响.林业科学,2002,38(5):78-82.
    80董文渊,黄宝龙,谢泽轩等.不同水分条件下筇竹无性系的生态适应性研究[J].南京林业大学学报(自然科学版),2002,26(6):21-24
    81董文渊.竹类无性系种群生态学研究现状及其应用前景[J].林业科学研究,2002,15(2):235-241.
    82董文渊.筇竹无性系种群退化及恢复机制的研究[D].北京:中国林业科学院博士后研究工作报告,2006,7.
    83付建生.撑绿杂交竹无性系生长规律及纸浆林培育技术研究[D].昆明:西南林学院,2006,5.
    84范琦.傅里叶变换近红外漫反射光谱法结合多元分析技术判别麻黄植物的方法学研究[D].重庆大学博士学位论文,2009.
    85方盛国,冯文和,张安居等.佛坪三官庙地区大熊猫种群数量的DNA指纹分析[J].应用与环境生物学报,1996,2(3):289-293.
    86冯声静,王勇,王刚等.四川盆地梁山慈竹地上部分生物量的研究[J].四川林业科技,2012,33(1):53-55.
    87冯新泸,史永刚.近红外光谱及其在石油产品分析中的应用[M].北京:中国石化出版社,2002.
    88冯永辉.佛坪、长青保护区箭竹属大熊猫主食竹的分布及生物量研究[D].西北大学硕士学位论文,2006
    89封银曼,张威,白杨等.黄芩提取物有效成分的近红外光谱定量分析[J].中国实验方剂学杂志,2012,18(7):84-87.
    90耿伯介,王正平.中国植物志第九卷第一分册[M].北京:科学出版社,1996.
    91郭建林.白水江大熊猫食用竹引种初报[J].竹子研究汇刊,1990,9(4):95-96
    92郭伟,邓巍,孙备.不同供氮水平下野慈菇生物量分配及形态可塑性的研究[J].江西农业大学学报2011,33(3):452-457.
    93高新宇,刘阳,刘定震,等.秦岭大熊猫冬春季对巴山木竹竹林生长指标的选择[J].动物学研究,2006,27(2):157-162.
    94贺斌,郭芝成,李根前等.无性系植物生长特征对土壤养分的响应研究概述[J].安徽农业科学,2009,37(31):15342-15344.
    95何池全,赵魁义,余国营.湿地无性系植物的繁殖对策与生态适应性[J].生态学杂志,1999,18(6):38-46
    96胡锦矗,韦毅,周昂.马边大风顶自然保护区大熊猫觅食行为与营养对策[J].四川师范学院学报(自然科学版),1994,15(1):44-51.
    97和秋菊,易传辉,庄辉,张正旺.四川茂县土地岭大熊猫走廊带昆虫考察初报[J].四川林业科技,2007,28(5):80-84
    98郝勇,孙旭东,高荣杰等.基于可见/近红外光谱与SIMCA和PLS-DA的脐橙品种识别[J].农业工程学报,2010,26(12):373-377.
    99何勇,李晓丽,邵咏妮.基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究[J].光谱学与光谱分析,2006,26(5):850-853.
    100姜汉桥,段昌群,杨树华等.植物生态学[M].北京:高等教育出版社,2005,9.
    101李博,董慧琴,陆建忠等译.简明植物种群生物学[M].北京:高等教育出版社,2003,3.
    102刘冰,樊金拴,胡桃等.秦岭大熊猫主食竹氨基酸含量的测定及营养评价[J].安徽农业科学,2008,36(21):9024-9026,9051.
    103李东华,纪淑娟.南果梨果实硬度近红外无损检测模型的建立[J].食品工业科技,2012,21:312-314
    104李定明,朱海巧,王玲等.水溶液中硝酸的近红外光谱定量分析[J].原子能科学技术,2010,44:69-74.
    105李根前.无性系植物种群生态学研究进展.西南林学院学报[J].2000,20(4):243-246
    106李红.低山平坝大熊猫的五种主食竹四种微量元素含量[J].西南农业学报,1997,10(2):90-93
    107李君,毛凯.不同光照条件下假俭草生长格局的分形研究[J].亚热带植物科学,2005,34(4):28-31.
    108李君,毛凯.不同密度条件下假俭草生长格局的分形研究[J].四川农业大学学报,2005,23(2):214-216.
    109林开文,苏光荣,郭永杰等.锡金龙竹竹笋的营养成分分析与评价[J].西部林业科学,2009,38(1):48-54.
    110刘力,林新春,孙培金等.苦竹笋、叶营养成分分析[J].竹子研究汇刊,2005,24(2):15-18.
    111李玲,张光富,王锐等.天目山自然保护区银杏天然种群生命表[J].生态学杂志2011,30(1):53-58.
    112李民赞.光谱分析技术及其应用[M].北京:科学出版社,2006.
    113刘庆,钟章成.斑苦竹无性系种群的数量统计[J].西南师范大学学报(自然科学版),1995,20(2):177-182.
    114刘庆,钟章成.无性系植物种群生态学研究进展及有关概念.生态学杂志,1995,14(3):40-45
    115刘庆,钟章成.斑苦竹无性系种群无性系繁殖的动态与调节研究[J].植物研究,16(2),1996.
    116刘庆,钟章成.斑苦竹无性系种群生物量结构与动态研究[J].竹类研究,1996,(1):51-56.
    117刘庆,钟章成.斑苦竹无性系种群无性系生长格局动态的研究[J].应用生态学报,1996,7(3):240-244
    118刘庆,钟章成.斑苦竹无性系种群的数量和年龄结构动态.生态学报,1997,17(1).
    119刘庆,钟章成.斑苦竹无性系种群生长发育规律的研究[J].竹类研究,1997,(1):71-76.
    120刘庆.斑苦竹无性系种群生态学研究[M].成都:成都科技大学出版社,1999.
    121李睿,钟章成,M.J.A维尔格.毛竹种群的更新与立竹密度和年龄的关系.植物生态学研究进展[M].重庆:西南师范大学出版社,1997,9.
    122李睿,钟章成,M.J.A维尔格.中国亚热带高大竹类植物毛竹竹笋无性系生长的密度调节[J].植物生态学报,1997,21(1):8-9.
    123李睿,钟章成,M.J.A维尔格.毛竹的无性系生长与立竹密度和叶龄结构的关系[J].植物生态学报,1997,21(6):545-550.
    124李睿等.毛竹的无性系生长与立竹密度和叶龄结构的关系.植物生态学报,1997,21(6).
    125李睿等.施肥对毛竹竹笋生长的影响.植物生态学报,1997,21(1):19-26.
    126李天文,马俊杰,李易桥等.基于GIS的大熊猫栖息地质量研究[J].西北大学学报(自然科学版),2004,34(2):228
    127陆婉珍,袁洪福,徐广通,张冬梅.现代近红外光谱分析技术[M].中国石化出版社,2000.
    128陆婉珍主编.现代近红外光谱分析技术[M].2版.北京:中国石化出版社,2006:59-86.
    129林新.绿茶主要成分近红外光谱分析方法研究.华中农业大学硕士学位论文[D].2008.6.
    130刘兴良,杨秀南,向性明.大熊猫主食竹人工栽培技术试验研究[J].竹类研究,1996,1:36-42;1997,2:7-15
    131李晓丽,唐月明,何勇等.基于可见/近红外光谱的水稻品种快速鉴别研究[J].光谱学与光谱分析,2008,28(3):578-581.
    132李晓丽,胡兴越,何勇.基于主成分和多类判别分析的可见-近红外光谱水蜜桃品种鉴别新方法[J].红外与毫米波学报,2006,25(6):417-420.
    133刘选珍,李明喜,余建秋等.圈养大熊猫主食低山竹类营养特点的初步研究[J].兽类学报,2001,21(4):314-317.
    134刘选珍,李明喜,余建秋等.圈养大熊猫主食竹的氨基酸分析[J].经济动物学报,2005,9(1):30-34.
    135李云.秦岭大熊猫主食竹的分类、分布及巴山木竹生物量研究[D].西安:西北大学,2002.
    136刘桦,叶晓岚,杨光等.近红外光谱技术在线监测积雪草药材活性成分的大孔树脂分离纯化过程[J].光谱学与光谱分析,2013,33(1):98-101.
    137刘燕德,施宇,蔡丽君.基于近红外漫反射光谱的丁香蓼叶片重金属铜含量快速检测研究[J].光谱学与光谱分析,2012,32(12):3220-3224.
    138刘颖颖,傅金和.大熊猫栖息地竹子及开花现象综述[J].世界竹藤通讯,2007,5(1):1-4
    139卢志军,王巍,张文辉等.巴山木竹发笋和大熊猫取食的时空格局及相关性分析[J].生物多样性,2009,17(1):1–9.
    140芦永军,陈华才,吕进,陈星旦.茶多酚中咖啡因的近红外光谱分析[J].光谱学与光谱分析,2005,25(8):1243-1245.
    141芦永军,陈华才,吕进,陈星旦.茶多酚中总儿茶素的近红外光谱分析[J].分析化学,2005,33(6):835-837.
    142芦永军.近红外光谱分析技术及其在人参成份分析中的应用研究[D].中国科学院博士学位论文,2005.
    143廖志琴,杨小蓉.大熊猫的几种主食竹叶绿素含量研究[J].竹子研究会刊,1991,10(3):31-37
    144莫晓燕,冯冶,冯宁,雷艳霞,金超.圈养秦岭大熊猫两种主食竹中元素含量初探[J].西北农林科技大学学报(自然科学版),2004,32(6):95-98
    145潘文石,吕植,朱小健等.继续生存的机会[M].北京:北京大学出版社,2001.
    146钱永强.异质性水分胁迫下野草无性系分株问生理整合及其调控机理[D].北京:中国林业科学研究院林业研究所,2009.
    147秦自生,张炎,马恒银.拐棍竹笋子生长发育规律研究[J].四川师范学院学报,1991,12(3):211-215
    148秦自生,艾伦·泰勒.大熊猫主食竹类的种群动态和生物量研究[J].四川师范学院学报(自然科学版),1992,13(4):268-275
    149秦自生,艾伦·泰勒,蔡绪慎.卧龙大熊猫生态环境的竹子与森林动态演替[J].中国林业出版社,1993,58-59
    150秦自生,艾伦·泰勒,刘捷.大熊猫栖息地主食竹类种群结构和动态变化[J].竹子研究汇刊,1994,13(3):4-15
    151芮玉奎,辛术贞,李军会.应用近红外光谱技术测试温室黄瓜叶片全氮含量[J].光谱学与光谱分析,2011,31(8):2114-2116.
    152盛丽娟,李德志等.无性系植物的碳素生理整合及其生态学效应.应用与环境生物学报,2007,13(6):888-894
    153苏文会.大木竹秆形结构研究[J].林业科学研究,2006,19(1):98-101.
    154孙宜然,张泽钧,李林辉等.巴山木竹微量元素及营养成分的分析[J].兽类学报,2010,30(2):223-228.
    155苏智先,钟章成.缙云山慈竹种群生物量结构研究[J].植物生态学与地植物学学报,1991,15(3):240-52.
    156苏智先,钟章成.慈竹无性系种群生长发育规律初探[J].应用生态学报,1992,3(3):289-291.
    157汤丹明,孙斌,刘辉军.近红外漫反射光谱鉴别鸡蛋种类[J].光谱实验室2012,29(5):2699-2702.
    158田海清.西瓜品质可见/近红外光谱无损检测技术研究[D].浙江大学博士学位论文.2006.8
    159田星群,刘其建.巴山木竹在秦岭南坡的分布[J].竹类研究,1985,4(1)
    160田星群.巴山木竹开花习性的观察[J].竹类研究,1986,5(2):53-57.
    161田星群.巴山木竹发笋生长规律观察[J].竹子研究汇刊,1989,8(2):45-53.
    162唐忠厚,李洪民,陆国权.基于近红外光谱的甘薯抗性淀粉含量的快速测定方法[J].江苏农业学报,2011,27(6):1426-1429.
    163唐建文,魏德明.巴山木竹采伐试验.竹子研究汇刊,1984,3(2).
    164唐建文,魏德明.巴山木竹地下茎的生长规律.竹类研究,1984,3(1).
    165唐建文,魏德明.巴山木竹林林分类型及其经营方向的探讨.竹子研究汇刊,1983,2(2).
    166唐建文等.巴山木竹生物学特性和采伐更新.竹类研究,1982,1(1).
    167徐宁,魏萱,任冰.发酵冬虫夏草茵粉水分腺苷的近红外光谱定量分析及波段选择光[J].谱学与光谱分析,2012,32(7):1762-1765.
    168王长爱.无性系植物结缕草的生长格局与氮素整合特征[D].华东师范大学,2006,5.
    169王冬,熊艳梅,黄蓉等.温度对复配乳油的近红外光谱定量分析模型的影响[J].分析化学2010,38(9):1311-1315.
    170吴迪,吴洪喜,蔡景波等.基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究[J].红外与毫米波学报,2009,28(6):423-427.
    171王电杰,温国胜,童在康等.浙江省大鹿岛木麻黄种群静态生命表分析[J].内蒙古农业大学学报,2011,32(4):145-149.
    172王东丹.近红外光谱技术检测烤烟主要化学成分的研究[D].湖南农业大学农业推广硕士学位论文,2008.
    173万婕,刘成梅,刘伟等.电感耦合等离子体原子发射光谱法分析不同产地大豆中的矿物元素含量[J].光谱学与光谱分析,2010,30(2):543-545.
    174王金锡,马志贵.大熊猫主食竹生态学研究[J].四川科学技术出版社,1993,30-41
    175王昱生.关于无性系植物种群整合作用(Integration)研究的现状及其应用前景[J].生态学杂志,1994,13(2):57-60
    176王昱生,李景信.羊草种群无性系生长格局的研究[J].植物生态学与地植物学学报,1992,16(3):234-242.
    177王曙光,普晓兰,丁雨龙,等.云南箭竹不同地理种源竹笋营养成分之比较[J].竹子研究汇刊,2009,28(1):35-38.
    178王太鑫.巴山木竹种群生态学研究[D].南京林业大学,2005,5.
    179王太鑫,丁雨龙,刘永建,等.巴山木竹无性系种群的分布格局[J].南京林业大学学报(自然科学版),2005,29(3):37-40.
    180王太鑫,丁雨龙,李继清,等.巴山木竹种群生物量结构研究[J].竹子研究汇刊,2005:24(1):20-24.
    181王卫东,谷运红,秦广雍等.近红外漫反射光谱法测定整粒小麦单株蛋白质含量[J].光谱学与光谱分析,2007,27(4):697-710.
    182王幸幸,徐坤,史岩,周学秋等.基于近红外光谱技术的大麻哈鱼品种快速鉴别研究[J].食品工业,2012,33(6):132-134.
    183魏勇.龙王山鹅掌楸种群的静态生命表[J].南京林业大学学报(自然科学版),2004,28(6):61-63.
    184王艳红等.匍匐茎草本植物形态可塑性、整合作用与觅食行为研究进展[J].生态学杂志,2005,24(1):70-74
    185徐安传,胡巍耀,王超等.应用近红外技术直接检测烟丝常规化学成分的研究[J].激光与红外,2012,42(4):393-398.
    186徐德兵,赵粉侠,贺斌,李甜江,段宗亮.中国沙棘无性系生长格局对不同灌水强度的响应[J].东北林业大学学报,2008,36(9):31-32.
    187谢晋阳.森林植物立木种群静态生命表的一种编制方法[J].江西大学学报(自然科学版),1992,16(4):383-386.
    188徐坤,刘鹏起,张玉娜等.近红外光谱分析技术及应用[J].莱阳农学院学报,200l,18(3):237-240
    189熊壮.梁山慈无性系种群生长特性研究[D].昆明:西南林学院,2007,5.
    190谢新华,肖昕,李晓方等.近红外光谱技术在粮油检测中的应用[J].粮食与食品工业,2003,4:55-58.
    191谢新华,肖听,李晓方等.用近红外透射光谱技术测定精米直链淀粉含量研究[J].食品科学,004,25(l):118-121.
    192辛阳,杨重法,罗海伟等.近红外反射分析法测定水稻可能再转流物质的研究[J].光谱学与光谱分析,2012,32(9):2414-2417.
    193杨春花,周小平,王小明.卧龙自然保护区华西箭竹地上生物量回归模型[J].林业科学,2008,44(3):113-123.
    194岳春雷等.不同土壤水分条件下雷竹无性系的生长[J].浙江林业科技,2002,22(1):25-27
    195杨道贵,向永国.引种大熊猫主食竹种早期生物量的测定[J].四川林业科技,1990,11(4):35-40
    196袁洪福,陆婉珍.近红外光谱技术正在掀起一场分析效率革命[J].现代仪器,1999,5(1):19-24.
    197袁洪福,陆婉珍.现代光谱分析中常用的化学计量学方法[J].现代科学仪器,1998,5:6-9.
    198岳明,党高第,雍立军.陕西佛坪自然保护区植被的基本特征[J].武汉植物学研究1999,17(1):22~28
    199阎守和.用近红外光谱法检测茶纤维的研究[J].茶叶科学,1987,(l):45-50.
    200阎守和.评价茶品质的近红外光谱(NIRS)法[J].上海茶叶,2005,(3):19-21.
    201阎守和.应用近红外光谱(NIRS)评估茶的品质及其商品价[J].上海茶叶,2005,(2):20-22.
    202易同培,史军义,马丽莎等.中国竹类图志[M].北京:科学出版社,2008
    203雍严格,张坚,张陕宁.佛坪大熊猫的分布与数量[J].兽类学报,1993,23(4):245-50.
    204雍严格,魏辅文,叶新平等.佛坪自然保护区野生大熊猫交配行为的观察[J].兽类学报,2004,24(4):346-349.
    205严衍禄,赵龙莲,韩东海等.近红外光谱分析基础与应用[J].中国轻工业出版社,2005,1-9.
    206杨燕宇.油菜脂肪酸、硫昔、含油量近红外光谱分析模型的建立[D].湖南农业大学硕士学位论文,2007.
    207杨在娟等.光照强度对雷竹无性系生长的影响[J].浙江林业科技,2002,22(3):74-76
    208杨忠,江泽慧,费本华等.近红外光谱技术及其在木材科学中的应用[J].林业科学,2005,41(4):177-183.
    209杨忠,任海青,江泽慧.PLS-DA法判别分析木材生物腐朽的研究[J].光谱学与光谱分析,2008,28(4):793-796.
    210赵春章,刘庆.华西箭竹(Fargesia nitida)种子特征及其萌发特性[J].种子,2007,10(26):36-38
    211周本智.麻竹出笋和高长规律的研究[J].林业科学研究,1999,12(5):461-466.
    212张聪,曾涛,唐明坤等.九寨沟自然保护区华西箭竹生长研究[J].四川大学学报(自然科学版),2010,47(5):1137-1143.
    213赵德怀,赵纳勋.走近佛坪国家级自然保护区[J].野生动物杂志,1985.
    214赵鲁青,李德志,李立科等.基于复合节间组分关系的结缕草无性系植株形态可塑性特征分析[J].生态环境学报2010,19(11):2592-2599.
    215朱丽洁.王绍明.夏军等.羽毛针禾(Stipagrostis pennata)无性系构型及不同环境中的分株种群特征[J].干旱区研究,2012,29(5):770-775.
    216祝静,丁武.羊酸奶质构特性的近红外光谱定量分析[J].食品科学,2010,19:170-173.
    217张丽英.饲料分析及饲料质量检测技术(第二版)[M].北京:中国农业出版社,2003:49-59.
    218祝宁,王义弘,陈文斌译.植物种群生态学导论[M].东北林业大学出版社,1987,12.314
    219祝宁,藏润国.刺五加种群生态学的研究Ⅰ.刺五加的种群结构.应用生态学报,1993,4(21):113-119.
    220周健,成浩,王丽鸳等.基于杠杆率校正的PLS-DA法对正半岩武夷岩茶的识别研究[J].茶叶科学,2009,29(1):34-40.
    221郑金双.茶秆竹生物量模型研究[J].竹子研究汇刊.2001,20(4):67-71.
    222郑金双.茶秆竹林叶面积指数与生物量关系的研究[J].竹子研究汇刊.2001,20(1):53-57.
    223张金钟,陈素芬,林强.粘虫危害大熊猫主食竹的初步研究[J].四川林业科技,1993,14:64-67
    224郑进烜,董文渊,陈冲等.海子坪天然毛竹种群生长规律研究[J].竹子研究汇刊,2008,27(2):33-37.
    225郑进烜,董文渊,陈冲.天然毛竹无性系种群的结构动态与数量统计[J].南京林业大学学报(自然科学版),2009,33(5):135-138.
    226祝诗平.近红外光谱品质检测方法研究.中国农业大学博士学位论文[D].2003,5.
    227周世强.更新复壮技术对大熊猫主食竹竹笋密度及生长发育影响的初步研究[J].竹类研究,1995,1:27-30
    228周世强.冷箭竹更新幼龄芽种群的数量统计[J].四川林业科技,2000,21(2):24-27
    229周世强,杨建,王伦等.GIS在卧龙野生大熊猫种群动态及栖息地监测中的应用[J].四川动物,2004,23(2):133-136
    230曾涛,张聪,雷开明等.九寨沟大熊猫主食竹生物量模型初步研究[J].四川动物,2012,31(6):849-852.
    231赵文萃,窦英,汤真等.偏最小二乘—近红外反射光谱法快速分析西米替丁粉末药品[J]..生命科学仪器,2004,2(6):33-35.
    232赵文萃,窦英,汤真等偏最小二乘-近红外漫反射光谱法测定西米替丁药片[J].分析实验室,2004,23(10):85-88.
    233张文辉,许晓波,周建云等.濒危植物秦岭冷杉种群数量动态[J].应用生态学报,2005,16(10):1799-1804.
    234张文彤.SPSS11统计分析教程:高级篇[D].北京:北京希望出版社,2002.
    235张喜.光箨篌竹出笋成竹规律的研究[J].竹子研究汇刊,1995,14(4):54-56.
    236郑晓燕,何祥博,刘新玉.佛坪保护区大熊猫取笋区域内的巴山木竹林现状分析陕西林业科技[J].2010,2:25-27.
    237郑艳.金佛山方竹无性系种群生长规律研究[D].昆明:西南林学院,2007,5.
    238张颖溢,龙玉,王昊等.秦岭野生大熊猫(Ailuropoda melanoleuca)的觅食行为[J].北京大学学报(自然科学版),2002,38(4):478-485.
    239钟章成,李睿.慈竹的数量生态研究.植物生态学与地植物学学报,1990,14(1).
    240钟章成.我国植物种群生态研究的成就与展望[J].生态学杂志,1992,11(1):4-8
    241张遵强,何希诚,胡超宗等.紫竹生物学特性研究[J].竹子研究汇刊,1997,16(1):6-12.
    242朱志玲,李德志,王绪平等.无性系植物的水分生理整合及其生态效应.西北植物学报,2006,26(12):2602-2614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700