用户名: 密码: 验证码:
“已实现”跳跃检验与跳跃风险测度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,由于信息技术的快速发展,获取日内交易数据变得越来越容易,利用高频数据研究资产收益率的日内特征成为金融领域的一个新的热点话题。为了使资产收益率的建模既不违背市场无套利假定,又在数学上容易处理,一般假定收益率服从某个半鞅过程。学者们利用日内高频数据,采用非参数方法估计潜在波动,研究发现,已实现波动与已实现极差波动都是积分波动的无偏、一致的估计。
     在低频环境中,市场微结构噪声可以忽略不计,但在高频环境下,由于买卖价差、非连续交易、最小报价单位等微结构因素的影响,使得已实现波动一致高估积分波动,因此,“降噪”方法的研究成为金融计量研究的热点话题。除了微结构噪声外,资产价格跳跃也会导致已实现波动一致高估积分波动。因此,学者们构造了许多已实现估计量,例如二幂次变差和拉普拉斯已实现波动,既对跳跃稳健,又是积分波动无偏、一致的估计。为了甄别资产价格中跳跃成分,学者们提出了许多跳检验统计量,有些跳检验对微结构噪声很稳健,例如ABD检验和LM检验,有些跳检验的检验功效很高,例如CPR检验和PZ检验。本文沿用CPR检验的思想,利用已实现极差估计,构造新的跳检验,并启发性地给出了它的大样本性质。
     有些资产价格跳跃只受本公司或者本行业消息的影响(定义为异质跳跃),而有些资产价格跳跃只受整个市场消息的影响(定义为系统性跳跃)。依据资产组合理论,只受本公司或者本行业消息影响的异质跳跃风险可以被一个足够大的资产组合所分散,而那些系统性跳跃风险则是不可分散的。如果资产价格跳跃存在不可分散的成分,那么现有的资产定价与风险管理理论将受到巨大挑战。A股市场存在系统性跳跃吗?这是一个值得研究的问题。本文分别利用指数-个股法和mcp方法检验A股市场的系统性跳跃,研究结果表明,A股市场的系统性跳跃是显著存在的,且两种检验方法的检验结果差异很小。本文通过理论推导证明了指数-个股法的严谨性,通过引入阈值改进了等权二幂次变差的小样本性质。
     本文将系统性跳跃和异质跳跃视为极端事件,从极值理论的视角探讨股票收益率分布的尾部特征,利用TOD方法消除高频数据的日内效应,运用指数-个股法分解系统性跳跃和异质跳跃,并采用POT方法分别估计它们的左尾和右尾参数。实证研究表明,A股市场日内效应具有明显的“L”型特征,每支股票的系统性跳跃与异质跳跃都是显著存在的,且两类跳跃都具有非常明显的厚尾特征,所有股票的右尾跳跃次数和贡献都大于左尾。这表明,频繁出现的资产价格跳跃及其尾部特征是导致股票收益率非正态分布的一个重要原因。为了从系统性跳跃风险这一微观层面探讨贝塔系数的时变特征,本文利用“已实现”方法分解连续性贝塔和跳跃性贝塔,并分别检验连续性贝塔和跳跃性贝塔的稳定性。研究结果表明,短期连续性贝塔稳定性较差,中期和长期连续性贝塔比较稳定,而短期、中期和长期跳跃性贝塔的稳定性都很差。因此,短期贝塔系数的不稳定主要来自于连续性贝塔,而中期和长期贝塔系数的不稳定则来自于跳跃性贝塔。
     资产价格跳跃不仅是系统性的,还可能是自激励的。本文在新的]3AR-CJ-M模型框架下研究了沪深300指数隔夜风险的动态特征、影响因素以及可预测性,利用BN-S方法将日内波动分解为连续性波动和跳跃性波动,并运用ACH模型估计发生跳跃的意外性程度,进而采用最小二乘和分位数回归方法估计日内波动率指标和跳跃的意外性程度对隔夜风险的影响。研究结果表明,日内连续性波动、跳跃性波动和隔夜风险的滞后项都会显著地影响隔夜风险,且存在不对称效应;日内跳跃对大的隔夜风险的影响非常显著,且可以利用HAR-CJ-M模型很好地预测大的隔夜风险。这表明,日内跳跃会向前传导至隔夜跳跃,跳跃的自激式影响是显著存在的。
In the21st century, the rapid development of IT is making the acquisition of intraday trading data much easier. The study of intraday features of asset returns by using high-frequency data becomes a new hot topic in financial field. Motivated both by mathematical tractability and the need to avoid introducing arbitrage opportunities in the model, some semi-martingale is employed. Some scholars using intraday high-frequency data and adopting non-parametric method to estimate the potential volatility, found that realized variance and range-based variance are unbiased and consistent estimation of integrated volatility.
     In the low-frequency environment, market micro structure noise is negligible. But at high frequencies, due to trading spreads, non-continuous trading, tick units and other microstructure factors, realized volatility consistently overestimated integrated volatility. Therefore,"noise reduction" research becomes a hot topic in financial econometrics. In addition to the micro-structure noise, jumps in asset price will result realized variance a consistent overestimation of the integrated volatility. So, some realized estimations, such as bi-power variation and Laplace transform of realized volatility, are robust for jumps, also unbiased and consistent for integrated volatility. For testing jumps in asset price, many scholars have put forward many statistics. Some jump tests are very robust to microstructure noise, such as ABD test and LM test, and some other jump tests get high test power, such as CPR test and PZ test. Following the idea of CPR test, we construct a new jump test by using realized estimation, and give the large sample properties constructively.
     Some jumps in fmancial asset prices, which are defined as heterogeneous jumps, are only impacted by the news of the company or industry. But some jumps in financial asset prices, which are defined as systematic jumps, are impacted by the news of whole market. Based on portfolio theory, the risks of those heterogeneous jumps only impacted by the news of the company or industry can be eliminated with a large enough portfolio. But the risks of those systematic jumps only impacted by the news of whole market can not be eliminated. If there exists jumps that can not be diversified in asset prices, then, existing asset pricing and risk management theories will suffer a huge challenge. Are there significant systematic jumps in capital markets, such as stock market in China? using index-stocks method and mcp method to test systematic jumps in A-share market, the results show that, the systematic jumps of the A-share market are significant, and the results of the two tests has little difference. We prove index-stocks test is rigorous, also, improve the equal weighted bi-power variation modified by threshold has better small sample properties.
     Considering systematic and heterogeneity jumps as tail events, we investigate the tail characteristics of distribution of stock return from the perspective of the extreme value theory. We use TOD method to eliminate intraday effect of high-frequency data, apply index-stock method to decompose systematic jumps and heterogeneity jumps, and adopt the POT method to estimate the left tail and right tail parameters. Empirical studies have shown that the intraday effect of A-share market possess apparent "L" type feature. There are significant systematic and heterogeneity jumps in each stock. And the tails of two types of jumps are obvious thick. The times and contributions of right tail jumps are larger than left in all stocks. This suggests that the frequent appearance of jumps and jump tail characteristics are an important reason for non-normal distribution of stock return. In order to investigate the features of time-varying betas in terms of systematic jumping risk, we apply realized method to decompose daily betas into continuous betas and jumping betas, and then, specifically test their stability. The results indicate that, the continuous betas are generally stable in medium and long term, but unstable in short term. But jumping betas are relatively poor in short, medium and long term. These results reflect that the main reason of time-varying betas in short term is continuous betas'instability. But the instability of betas in medium and long term is from systematic jumping risk.
     The jump in asset price is not only systematic, but also self-exciting. This paper investigates the dynamic characteristics, influencing factors and predictability of overnight risk in a new HAR-CJ-M framework. Specifically, BN-S method is used in order for decomposing intraday volatility into continuous and jumping components respectively, and ACH model is adopted to estimate jump's unexpected degree. Furthermore, OLS and Quantile Regression approaches are applied to estimate the effects of intraday volatility and jump's accidental degree on overnight risk. Our results show that continuous intraday volatility, jumping component of volatility and the lags of overnight risk have significant and asymmetric impacts on overnight risk. Moreover, the paper finds that intraday jumps have great effects on substantial overnight risk, which suggests the extended HAR-CJ-M model have good performance in forecasting such risk. This result reflects that intraday jumps forward conduct to overnight jumps. Therefore, self-exciting jumps are significant in A-share market.
引文
[1]Ahoniemi K., M. Lanne. Realized Volatility and Overnight Returns.2011, Working Paper.
    [2]Ait-Sahalia Y, J. Cacho-Diaz, J. A. Laeven. Modeling Financial Contagion Using Mutually Exciting Jump Processes.2012, Working Paper.
    [3]Ait-Sahalia Y. Disentangling Diffusion from Jumps. Journal of Financial Economics,2004,74,487-528.
    [4]Ait-Sahalia Y, J. Jacod. Testing for Jumps in a Discretely Observed Process. Annals of Statistics,2008,37,184-222.
    [5]Ait-Sahalia Y, J. Jacod. Testing Whether Jumps Have Finite or Infinite Activity. Annals of Statistics 2011,39,1689-1719.
    [6]Andersen G. T., T. Bollerselev. Answering the Skeptics:Yes, Standard Volatility Models Do Provide Accurate Forecasts. International Finance Review,1998,39, 885-905.
    [7]Andersen T. G., T. Bollerslev, F. X. Diebold et al. Realized Beta:Persistence and Predictability. Advances in Econometircs,2006,20,1-40.
    [8]Andersen T. G., T. Bollerslev, F. X. Diebold. Roughing It Up:Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility. Review of Economics and Statistics,2007,89,701-720.
    [9]Andersen, T.G., T. Bollerselev, F.X. Diebold et al. The Distribution of Realized Exchange Rate Volatility. Journal of the American Statistical Association,2001,96, 42-55.
    [10]Andersen, T.G., T. Bollerselev, F.X. Diebold et al. The Distribution of Realized Exchange Stock Return Volatility. Journal of the Financial Economics,2001,61, 43-76.
    [11]Andersen T. G., T. Bollerslev, F. X. Diebold, et al. Modeling and Forecasting Realized Volatility. Econometrica,2003,71,579-625.
    [12]Andersen G. T., T. Bollerselev, F. X. Dielbold. Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility. Review of Economics and Statistics,2007,4,701-720.
    [13]Andersen T. G., T. Bollerslev, X. Huang. A Reduced Form Framework for Modeling Volatility of Speculative Prices Based on Realized Variation Measures. Journal of Economic,2011,160,176-189.
    [14]Andersen T. G., T. Bollerslev, N. Meddahi. Realized Volatility Forecasting and Market Microstructure Noise. Journal of Econometrics,2011,160,220-234.
    [15]Andersen T. G., D. Dobrev, E. Schaumburg. Jump-Robust Volatility Estimation using Nearest Neighbour Truncation, NBER Working Paper,2009.
    [16]Bandi F. M., J. R. Russell. Micro-Structure Noise, Realized Volatility, and Optimal Sampling. Review of Economics Studies,2008,75,339-369.
    [17]Barndorff-Nielsen O. E., S. E. Graversen, J. Jacod, M. Podolskij and N. Shephard. A Central Limit Theorem for Realized Power and Bi-power Variations of Continuous Semi-Martingales. In From Stochastic Analysis to Mathematical Finance, Festschrift for Albert Shiryaev,2006, Springer.
    [18]Barndorff-Nielsen O. E. Power and Bipower Variation with Stochastic Volatility and Jumps. Journal of Financial Econometrics,2004,2,1-48.
    [19]Barndroff-Neilsen O.E., N. Shephard. Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation. Journal of Financial Econometrics, 2006,4,1-30.
    [20]Barndorff-Neilsen O. E., N. Shephard, M. Winkel. Limit Theorems for Multipower Variation in the Presence of Jumps. Stochastic Processes and their Applications, 2006,116,796-806.
    [21]Baur D. G. Financial Contagion and the Real Economy. Journal of Banking and Finance,2012,36,2680-2692.
    [22]Bollen B., Inder B. Estimating Daily Volatility in Financial Markets Utilizing Intraday Data. Journal of Empirical Finance,2002,9,551-562.
    [23]Bollerslev T., R. Y. Chou, K. F. Kroner. ARCH Modeling in Finance:A Review of the Theory and Empirical Evidence. Journal of Econometrics,1992.52,5-59.
    [24]Bollerslev, T., T. H. Law, G. Tauchen. Risk, Jumps, and Diversification. Journal of Econometrics,2008,144,234-256.
    [25]Bollerslev T., V. Todorov. Jumps and Betas:A New Framework for Disentangling and Estimating Systematic Risks. Journal of Econometrics,2010,157(2):pp. 220-235.
    [26]Bollerslev, T., V. Todorov, S. Li. Jump Tails, Extreme Dependencies and the Distribution of Stock Returns. Journal of Econometrics,2013,172,307-324.
    [27]Borovkova S., R. Burton, H. Dehling. Limit Theorems for Functionals of Mixing Process with Applications to U-Statistics and Dimension Estimation. Transactions of the American Mathematical Society,2001,353,4261-4318.
    [28]Brenner M., S. Smidt. A Simple Model of Non-stationary of Systematic Risk. Journal of finance,1977,32,1287-1294.
    [29]Brooks R.D., R.W. Faff, M. D. Mckenzie. Time-Varying Beta Risk of Australian Industry Portfolios:A Comparison of Modeling Techniques. Australian Journal of Management,1998,23,1-23.
    [30]Carr P. L. R. Wu. Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions.2011, Working Paper.
    [31]Chernov M., A. R. Gallant, R. Ghysels, et al. Alternative Models for Stock Price Dynamics. Journal of Econometics,2003,116,225-288.
    [32]Chou R. Y. Forecasting Financial Volatilities with Extreme Values:the Conditional Autoregressive Range (CARR) Model. Journal of Money Credit and Banking, 2005,37,561-582.
    [33]Christensen K., S. Kinnebrock, M. Podolskij. Pre-averaging Estimators of the Ex-post Covariance Matrix in Noisy Diffusion Models with Non-synchronous Data. Journal of Econometrics,2010,159,116-133.
    [34]Christensen K., R. Oomen, M. Podolskij. Realized Quantile-Based Estimation of the Integrated Variance. Journal of Econometrics,2010,159,74-98.
    [35]Christensen K., M. Podolskij. Realized Range-Based Estimation of Integrated Variance. Journal of econometrics,2007,141,323-349.
    [36]Christensen K., M. Podolskij, M. Vetter. Bias-correcting the Realised Range-based Variance in the Presence of Market Microstructure Noise. Finance and Stochastics, 2009,13(2):pp.239-268.
    [37]Christensen K., M. Podolskij. Range-based Estimation of Quadratic Variation.2010, working paper.
    [38]Christensen K., M. Podolskij. Asymptotic Theory of Range-based Multipower Variation. Journal of Financial Econometrics, forthcoming.
    [39]Corsi F. A Simple Long Memory Model of Realized Volatility.2003, University of Southern Switzerland.
    [40]Corsi F. A Simple Approxiamte Long-Memory Model of Realized Volatility. Journal of Finance Econometrics,2009,2,174-196.
    [41]Corsi F, D. Pirino, R. Reno. Threshold Bipower Variation and the Impact of Jumps on Volatility Forcasting. Journal of Economic,2010,159,276-288.
    [42]Duffie D., J. Pan, K. Singleton. Trandform Analysis and Asset Pricing for Affine Jump-Diffussions. Econometrica,2000,68,1343-1376.
    [43]Dumitru A. M., G. Urga. Identifying Jumps in Financial Assets:a Comparison between Nonparameric Jump Tests. Journal of Business and Economic Statistics, 2012,30,242-255.
    [44]Ebens H. Realized stock volatility. Working Paper,1999.
    [45]Engel R. F. Financial Econometrics:A New Discipline with New Methods. Journal of Econometrics,2001,100(1):pp.53-56.
    [46]Engle R. F., J. R. Russell. Autoregressive Conditional Duration:A New Model for Irregularly Spaced Transaction Data. Econometrica,1998,66,1127-1162.
    [47]Estrada J. The Temporal Dimension of Risk. The Quarterly Review of Economics &Finance,2000,40,189-204.
    [48]Fabozzi F. J., C. K. Ma, W. T. Chittenden, et al. Predicting Intraday Price Reversals. Journal of Portfolio Management,1995,21,42-53.
    [49]Fama E., K. French. The Cross-section of Expected Stock Returns. Journal of finance,1992,47,427-465.
    [50]Fan J. Q., Q. W. Yao. Nonlinear Time Series. New York:Springer,2003,193-212.
    [51]Ferson W. E. Change in Expected Security Returns, Risk and the Level of Interest Rates. Journal of Finance,1989,44,1191-1214.
    [52]Ferson W. E., C. R. Harvey. The Variation of Economic Risk Premiums. Journal of political Economy,1991,99,385-425.
    [53]Ferson W. E., C. R. Harvey. The Risk and Predictability of International Equity Returns. Review of Financial Studies,1993,6,107-131.
    [54]Gallant R. A., G Tauchen. Efficient Method of Moments.2002, University of North Carolina, Duke University, Working Paper.
    [55]Gallo G. Modeling the Impact of Overnight Surprises on Intra-daily Volatility.2001, working paper.
    [56]Garman M. B., M. J. Klass. On the Estimation of Security Price Volatilities from Historical Data. Journal of Business,1980,53,67-78.
    [57]Ghysels E. On Stable Factor Structures in the Pricing of Risk:Do Time-Varying Betas Help or Hurt? Journal of Finance,1998,53,549-573.
    [58]Haan L., A. Ferreira. Extreme Value Theory:An Introduction. Berlin,2006, Springer Verlag.
    [59]Hamilton J. D., O. Jorda. A Model of the Federal Funds Rate Target. Journal of Political Economy,2002,110,1135-1167.
    [60]Hansen P.R., A. Lunde. A Comparison of Volatility Models:Does Anything Beat A GARCH(1,1)? 2001, working paper.
    [61]Hansen P. R., A. Lunda. A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data. Journal of Finance Econometrics,2005,3, 525-554.
    [62]Hansen P. R. A Test for Superior Predictive Ability. Journal of Business and Economic Statistics,2005,23,365-380.
    [63]Hawes A. G. Spectra of Some Self-Exciting and Mutually Exciting Point Processes. Biometrika,1971,58,83-90.
    [64]Heston S. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bonds and Currency Options. Review of Financial Studies,1993,6, 327-343.
    [65]Huang X., G Tauchen. The Relative Contribution of Jumps to Total Price Variance. Journal of Financial Econometrics,2005,3,456-499.
    [66]Jacod J. et al. Microstructure Noise in the Continuous Case:the Pre-averaging Approach. Stochastic Processes and Their Applications,2009,119,2249-2276.
    [67]Jagannathan R., Z. Y. Wang. The Conditional CAPM and the Cross Section of Expected Returns. Journal of Finance,1996,51,3-53.
    [68]Jiang G., R. Oomen. Testing for Jumps when Assets Prices Are Observed with Noise-a Swap Variance Approach. Journal of Econometrics,2008,144,352-370.
    [69]Jiang J. D. Angelos. A Bivariate Shot Noise Self-Exciting Process for Insurance. 2012 Working Paper.
    [70]Koenker R., G. Bassett. Regression Quantiles. Econometrica,1978,1,33-50.
    [71]Koopman S., B. Jungbacker, E. Hol. Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realized, and Implied Volatility Measurements. Journal of Empirical Finance,2005,12,445-475.
    [72]Lee S.S., PA. Mykland. Jumps in Financial Markets:a New Nonparametric Test and Jump Dynamics. Review of Financial Studies,2008,21,2535-2563.
    [73]Liu Q.Q. Estimating Betas from High-Frequency Data.2011, working paper.
    [74]Liao Y, H. M. Anderson. Testing for Co-jumps in High-frequency Financial Data: An Approach Based on Fist-high-low-last Prices.2012, working paper.
    [75]Mackinlay A. C. Event Studies in Economics and Finance. Journal of Economic Literature,1997,35,13-39.
    [76]Maheu J. M., MeCurdy T. H. Nonlinear Features of Realized FX Volatility. Review of Economics and Statistics,2002,84,668-681.
    [77]Mancini C. Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps. Scandinavian Journal of Statistics,2009,36, 270-296.
    [78]Martens M. Measuring and forecasting S&P 500 Index-Futures Volatility Using High-Frequency Data. Journal of Futures Markets,2002,22,497-518.
    [79]Merton R. Option Pricing When Underlying Asset Returns are Discontinuous. Journal of Financial Econometrics,1976,3,125-144.
    [80]Michael P. The Extreme Value for Estimating the Variance of the Rate of Return. Journal of Business,1980,53,61-65.
    [81]Mykland P. A., L. Zhang. ANOVA for Diffusion and Ito Processes Annals of Statistics,2006,34,1931-1963.
    [82]Owens J. P., D. G. Steigerwald. Noise Reduced Realized Volatility:A Kalman Filter Approach. Economics Working Paper Series,2009, University of California at Santa Barbara.
    [83]Pickands, J. Statistical Inference Using Extreme Order Statistics. Annals of Statistics,1975,3,119-131.
    [84]Podolskij M., M. Vetter. Estimation of Volatility Functionals in the Simultaneous Presence of Micro-Structure Noise and Jumps. Bernoulli,2009,15,634-658.
    [85]Podolskij M., D. Ziggel. New Tests for Jumps in Semi-Martingale Models. Statistical Inference for Stochastic Processes,2010,13,15-41.
    [86]R. Reno, F.Bandi. Price and Volatility Co-jumps.2011, working paper.
    [87]Reyes M., G. Size. Time-Varying Beta and Conditional Heterogeneity in UK Stock Returns. Review of Financial Economics,1999,8,1-10.
    [88]Ryu A. Beta Estimation Using High Frequency Dat.2011, working paper.
    [89]Simth R. Estimating Tails of Probability Distribution. Annals of Statistics,1987,15, 1174-1207.
    [90]Tauchen G. I, Grynkiv, V, Todorov. Realized Laplace Transforms for Estimation of Jump Diffusive Volatility Models. Journal of Econometrics,2011,160,367-381.
    [91]Tauchen G. I., G. V, Todorov. The Realized Laplace Transforms Volatility. Journal of Econometrics,2011,160,367-381.
    [92]Thomakos D. D., T. Wang. Realized Volatility in the Futures Markets. Journal of Empirical Finance,2003,10,321-353.
    [93]Todorov V, J. Jacod. Do Price and Volatility Jump Together? Annals of Applied Probability,2010,20,1425-1469.
    [94]Todorov V., G. Tauchen. Inverse realized Laplace Transforms for Nonparametric Volatility Dendity Estimation in Jump-diffusions. Journal of the American Statistical Association,2012,107,622-635.
    [95]Todorov V., G Tauchen. Realized Laplace Transforms for Pure-Jump Semimartingales, Annals of Statistics,2012,40,1233-1262.
    [96]Todorov V., G. Tauchen. The Realized Laplace Transform of Volatility. Econometrica,2012,80,1105-1127.
    [97]Todorov V., G Tauchen, I. Grynkiv. Realized Laplace Transforms for Estimation of Jump Diffusive Volatility Models. Journal of Econometrics,2011,164,367-381.
    [98]Wang K. Q. Asset Pricing with Conditioning Information:A New Test. Journal of Finance,2003,58,161-196.
    [99]Wu L. Variance Dynamics:Joint Evidence from Options and High-frequency Returns. Journal of Econometrics,2011,160,280-287.
    [100]Yu S., J. Rentzler, A. Wolf. NASDAQ-100 index futures-intraday:momentum or reversal. Journal of Investment Management,2005,3,55-81.
    [101]Zhang L., P. A. Mykland, Y. Ait-Sahalia. A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data. Journal of the American Statistical Association,2005,100,1394-1411.
    [102]Zhang L. Efficient Estimation of Stochastic Volatility using Noisy Observations:a Multi-Scale Approach. Bernoulli,2006,12,2019-2043.
    [103]Zhou B. High-frequency Data and Volatility in Foreign-Exchange Rates. Journal of Business and Economic Statistics,1996,14,45-52.
    [104]陈学华、韩兆洲.中国股票市场行业β系数时变性.系统工程,2006,2,62-67.
    [105]陈国进,王占海.我国股票市场连续性波动与跳跃性波动实证研究.系统工程理论与实践,2010,30,1554-1562.
    [106]高岳,朱宪辰.基于极值理论的沪综指尾部风险度量.财贸研究,2009,5,102-108.
    [107]韩清,刘永刚.已实现波动率估计中不同降噪方法的比较分析及实证.数量经济技术经济研究,2009,8,148-161.
    [108]刘永涛.上海证券市场贝塔系数相关特性的实证研究.管理科学,2004,17,29-35.
    [109]刘勤,顾岚.股票日内交易数据特征和波幅的分析.统计研究,2001,4,36-42.
    [110]柳会珍,顾岚.股票收益率分布的尾部行为研究.系统工程,2005,2,74-77.
    [111]梁丽珍,孔东明.中国股市的日内特征:持续还是反转?管理评论,2008,6,9-16.
    [112]林宇,魏宇,黄登仕.基于GJR模型的EVT动态风险测度研究.系统工程学报,2008,1,45-51.
    [113]罗登跃,王春峰,房镇明.深圳股市时变Beta、条件CAPM实证研究.管理工程学报,2007,4,102-109.
    [114]吕长江,赵岩.中国证券市场中Beta系数的存在性及其相关特性研究.南开管理评论,2003,1,35-43.
    [115]欧丽莎,袁琛,李汉东.中国股票价格跳跃研究.管理科学学报,2011,9,60-66.
    [116]闰冀楠,张维,孙浩.利用MLPOM对上海股市时变CAPM的实证研究.预测,1998,17,60-62.
    [117]苏志,丁志国,方明.跨期β系数时变结构研究.数量经济技术经济研究,2008,5,135-145.
    [118]孙艳,何建敏,周伟.基于UHF-EGARCH模型的股指期货市场实证研究.管理科学,2011,6,113-120.
    [119]唐勇,张世英.高频数据的已实现极差波动及其实证分析.系统工程,2006,24,52-57.
    [120]王芳.基于市场微观结构噪声和跳跃的金融高频数据波动研究D.四川:西南财经大学,2011.
    [121]王鹏,魏宇.金融市场的多分形特征及与波动率测度的关系.管理工程学报,2009,23,166-169.
    [122]王春峰,姚宁,房振明等.中国股市已实现波动率的跳跃行为研究.系统工程,2008,26,1-6.
    [123]魏宇.沪深300股指期货的波动率预测模型研究.管理科学学报,2010,13,66-76.
    [124]魏宇,余怒涛.中国股票市场的波动率预测模型及其SPA检验.金融研究,2007,7,138-150.
    [125]肖智,傅肖肖,钟波.基于EVT-POT-FIGARCH的动态VaR风险测度.南开管理评论,2008,4,100-104.
    [126]徐正国,张世英.调整“已实现”波动率与GARCH及SV模型对波动的预测能力的比较研究.系统工程,2004,22,60-63.
    [127]杨科,陈浪南.我国股票市场连续性波动与跳跃性波动实证研究.系统工程理论与实践,2010,30,1554-1562.
    [128]杨科,陈浪南.基于C_TMPV的中国股市高频波动率的跳跃行为研究.管理科学,2011,24,103-112.
    [129]叶五一,缪柏其,谭常春.基于分位点回归模型变点检测的金融传染分析.数量经济技术经济研究,2007,24,151-161.
    [130]叶五一,缪柏其.基于Copula变点检测的美国次级债金融危机传染分析.中国管理科学,2009,3,1-7.
    [131]赵桂芹.股票收益波动与Beta系数的时变性.中国管理科学,2003,1,10-13.
    [132]祖垒,崔志伟,李自然等.上证指数波动持久性在牛熊市的差异.中国管理科学,2011,19,57-62.
    [133]朱钧钧,谢识予.中国股市波动率双重不对称性及其解释.金融研究,2011,369,134-148.
    [134]赵华,王一鸣.中国期货价格的时变跳跃性及对现货价格影响的研究.金融研究,2011,1,195-206.
    [135]张小斐,田金方.异质金融市场驱动的已实现波动率计量模型.数量经济技术经济研究,2011,9,140-153.
    [136]张颖,张富祥.分位数回归的金融风险度量理论及实证.数量经济技术经济研究,2012,4,95-109.
    [137]周舟,董坤,汪寿阳.基于欧洲主权债务危机背景下的金融传染分析.管理评论,2012,2,1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700