用户名: 密码: 验证码:
非线性滤波算法及在神经网络与金融市场建模中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的迅速发展,非线性滤波方法在信号处理、目标识别、系统状态与参数估计以及金融工程等领域获得了广泛的研究与应用。传统的非线性滤波方法大都是在线性化和高斯噪声的条件下实施的,这有可能降低滤波的精度。粒子滤波作为处理非线性、非高斯时变系统状态滤波和参数估计的一般方法,具有独特的优势。但粒子退化、样本枯竭等问题一直都困扰着粒子滤波的发展与应用。本文围绕重要性密度函数的选择,对粒子滤波展开了深入的研究与讨论。
     本文主要研究了非线性滤波方法在神经网络学习和金融市场微结构模型估计中的应用。在神经网络的参数估计中,噪声统计特性的确定直接影响着估计精度和收敛速度。对此,本文基于非线性滤波方法,对一般神经网络训练算法的主要缺陷进行了改进和完善。此外,针对金融时间序列的非线性、非高斯、时变波动等特征,建立了一些扩展的金融市场微结构模型,并采用非线性滤波方法解决这些金融市场微结构模型的状态估计问题。本论文的主要研究成果如下:
     首先,在贝叶斯理论框架下对非线性滤波方法进行了系统性研究。针对粒子滤波中粒子退化问题,提出了一种改进的粒子滤波算法—APF-IEKF(Auxiliary particle filter with iterated extended Kalman filter),即在辅助粒子滤波的基础上融合了迭代扩展卡尔曼滤波。该算法在选取重要密度函数时,由于充分考虑了当前时刻的量测,使得粒子的分布更加接近状态后验概率分布。仿真结果显示,该方法在估计精度上要优于其它非线性滤波方法,运行时间比PF-UKF(particle filter with unscented Kalman filter)要短。同时,对各种非线性滤波算法改进的原因及适应的范围进行了深入分析。
     然后,针对扩展卡尔曼滤波算法在神经网络参数估计中的应用,从两方面探讨了其中的主要问题。一方面,考虑到系统噪声统计特性(噪声协方差阵)对参数估计精度的影响,并结合粒子滤波,提出了在线估计噪声协方差阵的自适应过程噪声协方差粒子滤波(adaptive process noise covariance particle filter, APNCPF)的神经网络训练算法。另一方面,从神经网络的空间模型入手,在原有状态变量(参数)基础上,将网络输出量扩展为系统状态的一部分,得到了神经网络的自组织状态空间模型。该组合状态变量不仅反映了内部状态与外部输入和输出变量之间的关系,而且能真正代表系统的内部动态特征。并将上述两改进方法应用到多层感知器(MLP)网络和径向基函数(RBF)网络的学习中,仿真结果表明了这两项改进措施的有效性。
     其次,结构化的非线性参数优化方法(SNPOM)是针对RBF-AR(基于RBF网络的自回归)模型的一种优异的优化算法。为了进一步提高学习精度,特别是解决对含较大噪声数据的样本学习问题,本文从RBF-AR模型的网络结构(看作一种广义的RBF网络)出发,将其转换成状态空间模型,结合EKF(Extended Kalman filter)(滤波和平滑过程)和EM(Expectation-Maximization)算法实现了对RBF-AR模型参数和噪声协方差矩阵的估计。仿真结果显示,该方法用在基于状态空间模型的RBF-AR模型结构中是有效的,特别在低信噪比情况下,估计效果比SNPOM方法好。
     最后,针对金融市场动态特性建模问题,考虑到不确定性因素引起资产价格的巨大波动、股市中波动的非对称性以及资产收益的尖峰厚尾特性,分别提出了非齐次泊松跳跃市场微结构模型、杠杆效应市场微结构模型以及厚尾市场微结构模型。并从理论上解释了市场微结构模型的杠杆性和厚尾性。在模型参数未知的情况下,为检测出时变跳跃强度,借鉴Lee所提出的非参数方法进行检测。在此基础上,利用无忌卡尔曼滤波(UKF, Unscented Kalman filter)和极大似然法来估计跳跃市场微结构模型的参数。针对杠杆效应市场微结构模型资产价格和波动之间的同时域相关性和厚尾市场微结构模型资产价格的非高斯性,开发了相应的MCMC(Markov chain Monte Carlo)参数估计方法。模拟仿真分析证实了上述方法的有效性。通过对我国和美国股市的实证研究发现,两股票市场均存在明显的尖峰厚尾性和非对称性,而且我国股市跳跃发生的频率明显高于美国股市。最后,采用DIC(Deviance Information Criterion)准则对正态分布市场微结构模型和学生t分布市场微结构模型进行了绩效优劣比较,研究结果表明学生t分布市场微结构模型更优,更适合股票市场的描述。
With the rapid development of science and technology, nonlinear filtering methods have gained extensive research and application in signal processing, target recognition, system identification, parameter estimation and economic statistics, and so on. Traditional nonlinear filtering methods are implemented based on linearization and Gaussian noise condtions, which may reduce the filtering precision. Particle filter, which is formulated as a common state filtering and parameter estimation method for nonlinear non-Gaussian time-varying system, has some unique advantages. But the particle degeneracy, sample depletion and other issues have been plaguing its the development and applications. The thesis focuses on a further study on particle filter with the choice of importance density function.
     This paper mainly studied nonlinear filtering methods and their applications in neural network and financial microstructure modeling. Because the statistical characteristics of the process noise directly affects the parameter estimation precision and the convergence speed, some improvements have been done for overcoming these shortages of the traditional neural network training algorithms based on nonlinear filtering methods. Also, to correctly and thoroughly capture the typical nonlinear, non-Gaussian and volatility characteristics in financial market, some extended market microstructure models were introduced. And nonlinear filtering methods were used to estimate states and parameters of the extended models by empirical research. The main research works and achievements are summarized as follows.
     Firstly, nonlinear filtering algorithms are systematically investigated under a unified framework of Bayesian sequential estimation theory. To relieve the degradation problem of the particle filter, an improved particle filter, APF-IEKF (auxiliary particle filter with iterated extended Kalman filter), is proposed, which consists of an auxiliary particle filter that uses an iterated extended Kalman filter to generate the importance proposal distribution. When the new algorithm calculates the proposed probability density distribution, the sampling particles can utilize the system current measures. So that gets the particles distribution more approach to the station posterior distribution. The experimental results also illustrate the improved particle filter is superior to the standard particle filter and the other filters such as PF-EKF (particle filter with extend Kalman filter), PF-UKF (particle filter with unscented Kalman filter) and APF-EKF (auxiliary particle filter with extended Kalman filter), and it has less running time. Additionally, the performance on these algorithms is compared and reasons for the improvement of various nonlinear filtering methods and application range are analyzed.
     Secondly, the thesis solves the difficulties in expanding the nonlinear filtering algorithms into neural network parameter estimation from two aspects. On the one hand, because of low filtering accuracy and divergence caused by unknown system noise statistics in neural network state space model, an adaptive process noise covariance particle filter (APNCPF) is proposed. Combining the particle filter, the novel algorithm can estimate sequentially the covariance of unknown system noise online. On the other hand, a self-organizing state space (SOSS) model is built, which involves forming augmented state vectors consisting of all the unknown parameters and the outputs. The single, joint state vector not only reveals all the relevant information on the future output contained within the past input, but also completely characterize the system dynamic characteristics. Moreover, the two methods are applied to multi-layer perceptron (MLP) and RBF training. Experimental results verified their effectiveness.
     Thirdly, SNPOM (structured nonlinear parameter optimization method), as a gradient-based algorithm, is a remarkable algorithm to RBF-AR model that can greatly accelerate the computational convergence of the parameter optimization process. To further enhance its learning precision and especially process sample data with great noise, RBF-AR model, as an extended radial basis function neural network, is transformed into the state space model. Compared with the traditional three-layer RBF network, the novel extended RBF network has an additional linear output weight layer. The EM (expectation maxmization) algorithm, incorporated with EKF, is used to estimate the parameters and the unknown noise covariances of stochastic dynamic system. It is shown by the simulation tests that our method for the reconstructive RBF-AR network provides better results than SNPOM, especially in low SNR (signal noise ratio).
     Finally, aiming at modeling the dynamic characteristics of financial market, and considering the huge price fluctuations caused by the market uncertainty, the existence of leverage and the characteristics of higher kurtosis and thicker tail, some extended market microstructure models were proposed, such as jump market microstructure model with nonhomogeneous possion process, market microstructure model with leverage effect and market microstructure model with heavy-tailed t distribution. Some theoretical explanations to leverage effect and heavey tail are provided. A new nonparametric method proposed by Lee was used to detect time-vary ing jump intensity. Based on the detection of jump, its parameters are estimated by a method combined UKF (unscented Kalman filter) with maximum likelihood method. Because of inter-emporal negative correlation and non-Gauss, Markov chain Monte Carlo (MCMC) algorithm procedures are designed for parameters estimation of leverage effect market microstructure model and heavy-tailed market microstructure model. Simulation results show the effectiveness of the above methods. The empirical results in Chinese stock market and the United States stock market show that the two stock markets have higher kurtosis, thicker tail and leverage effects. The jump frequency of stock market in China is obviously higher than that in the United States. DIC (deviance information criterion) is used to compare the heavy-tailed market microstructure model with the market microstructure model based on a normal distribution and it is proved that the former is superior to characterizing the leptokurtic of stock returns in stock market.
引文
[1]Wan E A, van der Merwe R. The Unscented Kalman filter for nonlinear estimation[C]. Proceedings of the IEEE Conference on Adaptive Systems for Signal Processing, Communications, and Control Symposium. Lake Louise, Alberta, Canada,2000:153-158.
    [2]van der Merwe R, Wan E A. The square-root unscented Kalman filter for state and parameter-estimation[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, UT, USA,2001,6: 3461-3464.
    [3]Wan E A, van der Merwe R, Nelson A T. Dual estimation and the Unscented transformation[C]. Advances in Neural Information Processing Systems. MIT Press,2000,12:666-672.
    [4]Kitagawa G. A self-organizing state-space model [J]. Journal of the American Statistical Association,1998,93(443):1203-1215.
    [5]Higuchi T. Monte Carlo filter using the genetic algorithm operators[J]. Journal of Statistical Computation and Simulation,1997,59(1):1-23.
    [6]Liu J, West M. Combined parameter and state estimation in simulation-based filtering[M]. In:Sequential Monte Carlo Methods in Practice (de Freitas J F G, Gordon N J, Eds), Springer, Heidelberg,2001:197-223.
    [7]甘敏,彭辉,黄云志等.自组织状态空间模型参数初始分布搜索算法[J].自动化学报,2012,38(9):1538-1543.
    [8]Bouchaud J P. Economics needs a scientific revolution[J]. Nature,2008, 455:1181.
    [9]Lux T, Westerhoff F. Economics crisis[J]. Nature Physics,2009,5:2-3.
    [10]周炜星.金融市场的宏观建模和微观建模-从金融海啸与市场风险谈起[J].物理,2010,39(1):22-27.
    [11]Demsetz H. The cost of transcacting[J]. Quarterly Journal of Economics.1968, 82(1):33-53.
    [12]Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for the nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Transactions on Automatic Control,2000,45(3):477-482.
    [13]Julier S J. The scaled unscented transformation[C]. Proceedings of the American Control Conference. Jefferson, USA,2002,6:4555-4559.
    [14]Norgaard M, Poulsen N K, Ravn O. Advances in derivative-free state estimation for nonlinear systems[R]. Department of Mathematical Modeling, Technical University of Denmark,2000.
    [15]Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems[J]. Automatica,2000,36(11):1627-1638.
    [16]Ito K, Xiong K Q. Gaussian filter for nonlinear filtering problem[J]. IEEE Transactions on Automatic Control,2000,45(5):910-927.
    [17]Lefebvre T, Bruyninckx H, De Schutter J. Kalman filters for nonlinear systems:a comparison of performance[J]. International Journal of Control,2004, 77(7):639-653.
    [18]Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear and non-gaussian bayesian state estimation[J]. IEE Proceedings F Radar & Signal Processing,1993,140(2):107-113.
    [19]Doucet A. On sequential Monte Carlo methods for Bayesian filtering[R]. University of Cambridge, UK, Department of Engineering,1998.
    [20]Doucet A, de Fteitas J F G, Gordon N J. An introduction to sequential Monte Carlo methods[M]. In:Sequential Monte Carlo Methods in Practice(Doucet A, de Freitas J F G, Gordon N J, Eds.), Springer-Verlag:New York,2001.
    [21]Liu J S, Chen R. Sequential Monte Carlo methods for dynamical systems[J]. Journal of the American Statistical Association,1998,93(443):1032-1044.
    [22]Zhou S K, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance adaptive models in particle filters [J]. IEEE Transactions On Image Processing,2004,13(11):1491-1506.
    [23]Chang C, Rashid A. Kernel particle for visual tracing[J]. IEEE Signal Processing Letters,2005,12(3):242-245.
    [24]Bimbo A D, Dini F. Particle filter-based visual tracking with a first order dynamic model and uncertainty adaptation[J]. Computer Vision and Image Understanding,2011,115(6):771-786.
    [25]Garcia-Femandez A F, Grajal J. Asynchronous particle filter for tracking using non-synchronous sensor networks[J]. Signal Processing,2011,91(10): 2304-2313.
    [26]Doucet A, Godsill S, Abdrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing,2000,10(3):197-208.
    [27]Smith L, Aitken V. The auxiliary extended and auxiliary unscented kalman particle filters[C]. Canadian Conference on Electrical and Computer Engineering. Vancouver, Canada,2007:1626-1630.
    [28]Merwe R V, Doucet A, de Freitas J F G The unscented particle filters [DB/OL]. www.ece.ogi.edu/rvdmerwe Technical Report CUED/F-INFENF/TR 380,2000.
    [29]Arulampalam G, Bouzerdoum A. A generalized feedforward neural network architecture for classification and regression[J]. Neural Networks,2003,16(5-6): 561-568.
    [30]Ferentinos K P. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms[J]. Neural Networks, 2005,18(7):934-950.
    [31]Gao Y, Er M J. NARMAX time series model prediction:feedforward and recurrent fuzzy neural network approaches [J]. Fuzzy Sets and Systems,2005, 150(2):331-350.
    [32]Benardos P G, Vosniakos G C. Optimizing feedforward artificial neural network architecture[J]. Engineering Applications of Artificial Intelligence,2007,20(3): 365-382.
    [33]Zhang J R, Zhang J, Lok T M, et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation,2007,185(2):1026-1037.
    [34]Carcano E C, Bartolini P, Muselli M. Jordan recurrent neural network versus IHACRES in modeling daily streamflows[J]. Journal of Hydrology,2008, 362(3-4):291-307.
    [35]Rankovic V, Savic S. Application of feedforward neural network in the study of dissociated gas flow along the porous wall[J]. Expert Systems with Applications, 2011,38(10):12531-12536.
    [36]Wu X D, Wang Y N. Extended and Unscented Kalman filtering based feedforward neural networks for time series prediction[J]. Applied Mathematical Modelling,2012,36(3):1123-1131.
    [37]An N, Zhao W G, Wang J Z, et al. Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting[J]. Energy 2013,49(1):279-288.
    [38]Han H G, Qiao J F. A structure optimization algorithm for feedforward neural network construction J]. Neurocomputing,2013,99(1):347-357.
    [39]Wedding Ⅱ D K, Cios K J. Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model[J]. Neurocomputing,1996,10 (2): 149-168.
    [40]Luxhoj J T, Riis J O, Stensballe B. A hybrid econometric-neural network modeling approach for sales forecasting[J]. International Journal of Production Economics,1996,43 (2-3):175-192.
    [41]Vesin J. An amplitude-dependent autoregressive signal model based on a radial basis function expansion[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Singnal Processing. Minnesota, USA,1993, 3:129-132.
    [42]Shi Z, Tamura Y, Ozaki T. Nonlinear time series modeling with the radial basis function-based state-dependent autoregressive model[J], International Journal of System Science,1999,30(7):717-727.
    [43]Tseng F M, Yu H C, Tzeng G H. Combining neural network model with seasonal time series ARIMA model [J]. Technological Forecasting and Social Change, 2002,69(1):71-87.
    [44]Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing,2003,50:159-175.
    [45]Diaz-Robles L A, Ortega J C, Fu J S, et al. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas:The case of Temuco, Chile[J]. Atmospheric Environment,2008,42(35):8331-8340.
    [46]Khashei M, Hejazi S R, Bijari M. A new hybrid artificial neural networks and fuzzy regression model for time series forecasting[J]. Fuzzy Sets and Systems, 2008,159(7):769-786.
    [47]Faruk D O. A hybrid neural network and ARIMA model for water quality time series prediction[J]. Engineering Application of Artificial Intelligence,2010, 23(4):586-594.
    [48]Nguyen H T, Nabney I T. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models[J]. Energy,2010,35(9): 3674-3685.
    [49]Pawlus W, Karimi H R, Robbersmyr K G. Data-based modeling of vehicle collisions by nonlinear autoregressive model and feedforward neural network[J]. Information Science, In Press, Corrected Proof,2012.
    [50]Peng H, Ozaki T, Haggan-Ozaki V, et al. A parameter optimization method for the radial basis function type models[J]. IEEE Transactions on Neural Networks, 2003,14(2):432-438.
    [51]Gan M, Peng H, Peng X Y, et al. A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling and predicting[J]. Information Sciences,2010,180(22):4370-4383.
    [52]Inoussa G, Peng H, Wu J. Nonlinear time series modeling and prediction using functional weights wavelet neural network-based state-dependent AR model[J]. Neurocomputing,2012,86:59-74.
    [53]Rumelhart D E, Hinton C E, Williams R J. Learning internal representations by error propagation[M]. In Parallel Distributed Processing:Explorations in the Microstructures of Cognition,1, Cambridge, MA:MIT Press,1986.
    [54]Singhal S, Wu L. Training multilayer perceptions with the extended Kalman algorithm[C]. Advance in Neural Information Processing Systems, California: Morgan Kaufmann Publishers Inc.,1989,1:133-140.
    [55]Iiguni Y, Sakai H, Tokumaru H. A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter [J]. IEEE Transactions on signal processing,1992,40(4):959-966.
    [56]Simon D. Training radial basis neural networks with the extended Kalman filter[J]. Neurocomputing,2002,48(1-4):455-475.
    [57]Ciocoiu I B. RBF networks training using a dual extended Kalman filter[J]. Neurocomputing,2002,48(1-4):609-622.
    [58]Harter F P, de Campos Velho H F. New approach to applying neural network in nonlinear dynamic model[J]. Applied Mathematical Modeling,2008,32(12): 2621-2633.
    [59]Meau Y P, Ibrahim F, Narainasamy S A, et al. Intelligent classification of electrocardiogram (ECG) signal using extended Kalman filter (EKF) based neuro fuzzy system[J]. Computer Methods and Programs in Biomedicine,2006,82(2): 157-168.
    [60]Yang H Z, Li J, Ding F. A neural network learning algorithm of chemical process modeling based on the extended Kalman filter[J]. Neurocomputing,2007, 70(4-6):625-632.
    [61]Tellez F O, Loukianov A G, Sanchez E N, et al. Decentralized neural identification and control for uncertain nonlinear systems:Application to planar robot[J]. Journal of the Franklin Institute,2010,347(6):1015-1034.
    [62]Bambang R T. Adjoint EKF learning in recurrent neural networks for nonlinear active noise control[J]. Applied Soft Computing,2008,8(4):1498-1504.
    [63]Zhan R H, Wan J W. Neural network-aided adaptive unscented Kalman filter for nonlinear state estimation[J]. IEEE Signal Processing Letters,2006,13(7): 445-448.
    [64]de Freitas J F G, Niranjan M, Gee A H. Hierarchichal Bayesian-Kalman models for regularisation and ARD in sequential learning[J]. Neural Computation,2000, 12(4),933-953.
    [65]de Freitas J F G, Niranjan M, Gee A H, et al. Sequential monte carlo methods to train neural network models[J]. Neural Computation,2000,12(4):955-993.
    [66]de Freitas J F G, Niranjan M, Gee A H, et al. Sequential monte carlo methods for optimisation of neural network models[R]. England:Cambridge University, 1998.
    [67]de Freitas J F G, Niranjan M, Gee A H. Regularisation in sequential learning algorithms[C]. Advances in Neural Information Processing Systems 10. Massachusetts:Massachusetts Instituite of Technology Press,1998.
    [68]de Freitas J F G, Niranjan M, Gee A H. Hybrid sequential monte carlo/Kalman methods to training neural networks in non-stationary environments[C]. IEEE International Conference on Acoustics and Signal Processing. Arizona, USA, 1999,2:1057-1060.
    [69]Rajesh M V, Archana R, Unnikrishnan A, et al. Particle filter based neural network modeling of nonlinear systems for state space estimation[C]. Chinese Control and Decision Conference. Guilin, China,2009:1477-1482.
    [70]Deng X L, Zhou P F. A new training algorithm for diagonal recurrent neural network based on particle filter[C]. International Conference on Computational Intelligence and Natural Computing. Wuhan, China,2009,1:30-33.
    [71]Nguyen H T, Nabney L T. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models[J]. Energy,2010,35(9): 3674-3685.
    [72]马野,王孝,戴耀.基于UKF的神经网络自适应全局信息融合方法[J].电子学报,2005,33(10):1914-1916.
    [73]张海涛,李大宇,靳其兵等.基于无先导卡尔曼滤波的RBFN训练算法研究[J].北京化工大学学报,2007,34(2):221-224.
    [74]陈养平,王来雄,黄士坦.基于粒子滤波的神经网络学习算法[J].武汉大学学报,2006,39(6):86-88.
    [75]张应博.神经网络训练中的迭代扩展卡尔曼粒子滤波算法[J].微电子学与计算机,2010,27(8):103-107.
    [76]王法胜,郭权.基于扩展卡尔曼粒子滤波算法的神经网络训练[J].计算机工程与科学,2010,32(5):48-50.
    [77]Hong Y S T. Dynamic nonlinear state-space model with a neural network via improved sequential learning algorithm for an online real-time hydrological modeling[J]. Journal of Hydrology,2012,468-469:11-21.
    [78]Jazwinski A H. Adaptive filtering[J]. Automatica,1969,5(4):475-485.
    [79]Sage A P, Husa G W. Adaptive filtering with unknown prior statistic[J]. Joint Automatic Control Conference,1969,3:760-769.
    [80]周卫东,乔相伟,吉宇人.基于新息和残差的自适应UKF算法[J].宇航学报,2010,31(7):1798-1804.
    [81]郝钢,叶秀芬.多传感器加权观测融合自适应UKF滤波器[J].宇航学报,2011,32(6):1400-1408.
    [82]石勇,韩崇昭.自适应UKF算法在目标跟踪中的应用[J].自动化学报,2011,37(6):755-759.
    [83]Kitagawa G, Gersch, W. A smoothness priors-state space modeling of time series with trend and seasonality[J]. Journal of the American Statistical Association, 1984,79(386):378-389.
    [84]Williams R J. Some observations on the use of the extended Kalman filter as a recurrent network learning algorithm[R]. Boston:Northeastern Unimersity, College of Computer Science,1992.
    [85]O'Hara M. Market microstructure theory[M]. Oxford:Basil Blackwell Publisher, 1995.
    [86]Madhavan, A. Market microstructure:a survey[J]. Journal of Financial Markets, 2000,3(3):205-258.
    [87]Biais B, Glosten L, Spatt C. Market microstructure:a survey of microstructures, empirical results, and policy implications[J]. Journal of Financial Markets,2005, 8(2):217-264.
    [88]刘海龙,吴冲锋.金融市场微观结构理论综述[J].金融研究,2003,15(1):38-40.
    [89]郑波.金融市场的微观动力学及其数值模拟研究[J].管理学报,2009,6(12):1608-1613.
    [90]张海亮,吴冲锋,邹平.基于产业需求的外汇储备实物资产配置[J].财经研究,2009,35(4):4-14.
    [91]Barro R J, Grossman H J. A general disequilibrium model of income and employmen[J]. The American Economic Review,1971,61(1):82-93.
    [92]Zhang, Y C. Toward a theory of marginally efficient market[J]. Physica A,1999, 269(1):30-44.
    [93]王雪坤,邓述慧.对中国货币需求与货币供给的非均衡分析[J].系统工程理论与实践,1997,(9):9-14.
    [94]孙礼照,章泽生,李元生.农产品供求非均衡蛛网模型[J].数量经济技术经济研究,1994,(3):42-50.
    [95]程红梅.超额需求:对上海房价波动的探讨[J].世界经济情况,2010,(2):77-81.
    [96]谭术魁,张红霞.城市土地市场调控的实证分析-以武汉市为例[J].资源科学,2011,33(3):549-555.
    [97]Pagano M, Roell A. Transparency and liquidity:a comparison of auction and dealer markets with informed trading[J]. Journal of Finance,1996, 51(2):579-612.
    [98]Chowdhry B, Nanda V. Multimarket trading and market liquidity[J]. The Review of Financial Studies,1991,4(3):483-511.
    [99]张维,韦立坚,熊熊等.从波动性和流动性判别股指期货跨市场价格操纵行为[J].管理评论,2011,23(7):163-171.
    [100]许香存,李平,曾勇.集合竞价透明度提高对市场流动性的影响[J].管理学报,2010,7(1):123-130.
    [101]Keynes J M. A treatise on money[M]. Second Edition, Published by Macmillan, 1930.
    [102]Kyle A S. Continuous auctions and insider trading[J]. Econometrica,1985,53(6): 1315-1335.
    [103]Amihud Y. Asset pricing and the bid-ask spread[J]. Journal of Financial Economics,1986,17(2):223-249.
    [104]Glosten L R, Harris L E. Estimating the components of the bid-ask spread[J]. Journal of Financial Economics,1988,21(1):123-142.
    [105]王春峰,韩冬,蒋祥林.流动性与股票回报:基于上海股市的实证研究[J].经济管理,2002,(24):58-67.
    [106]吴文锋,芮萌,陈工孟.中国股票收益的非流动性补偿[J].世界经济,2003,(7):54-60.
    [107]谢赤,张太原,曾志坚.中国股票市场存在流动性溢价吗?—股票市场流动性对预期收益率影响的实证研究[J].管理世界,2007,(11):36-47.
    [108]于栋华,吴冲锋.经济时间资产定价模型[J].管理科学学报,2011,14(8):65-74.
    [109]Lam K S K, Tam L H K. Liquidity and asset pricing:Evidence from the Hong Kong stock market[J]. Journal of Banking & Finance,2011,35(9):2217-2230.
    [110]Bouchaud J P, Cont R. A langevin approach to stock market fluctuations and crashes[J]. The European Physical Journal B,1998,6(4):543-550.
    [111]Iino M, Ozaki T. A nonlinear model for financial dynamics[C]. Proceeding of the International Symposium on Frontiers of Time Series Modeling. Tokyo, Japan, 2000,334-335.
    [112]Peng H, Ozaki T, Haggan-Ozaki V. Modeling and asset allocation for financial markets based on a discrete time microstructure model[J]. The European Physical Journal B,2003,31(2):285-293.
    [113]Peng H, Ozaki T, Haggan-Ozaki V. A discrete microstructure model based modeling and control method for financial markets[C]. Proceedings of IEEE International Conference on Control Applications. Glasgow, Scotland, U. K., 2002,960-965.
    [114]Peng H, Kitagawa G, Tamura Y, et al. Detection of low-frequency large-amplitude jump in financial time series[C]. Proceedings of the 46 IEEE Conference on Decision and Control. New Orleans, LA, USA,2007:4944-4949.
    [115]Peng H, Tamura Y, Gui W H, et al. Modeling and asset allocation for financial markets based on a stochastic volatility microstructure model[J]. International Journal of Systems Science,2005,36(6):315-327.
    [116]汪寿阳,张维,李心丹,熊熊.复杂金融系统工程与风险管理研究的新进展[J].管理科学学报,2010,13(9):1-3.
    [117]汪寿阳,张维,刘星,熊熊.金融危机下金融系统工程研究的一些进展[J].系统工程学报,2009,24(5):513-514.
    [118]Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica,1982,50(4):987-1007.
    [119]Bali T G, Mo H, Tang Y. The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR[J]. Journal of Banking & Finance, 2008,132(12):269-2821.
    [120]李小平,冯芸,吴冲锋.远期汇率的异常波动与波动期限结构[J].系统工程理论与实践,2009,29(12):15-22.
    [121]Corsi F, Reno R. HAR volatility modeling with heterogeneity leverage and Jumps[DB/OL]. Available at SSRN:http://ssm.com/abstract=1316953.
    [122]Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics,1986,31(3):307-327.
    [123]Nelson D B. Conditional heteroskedasticity in asset returns:a new approach[J]. Econometrica,1991,59(2):347-370.
    [124]Cont R. Empirical properties of asset returns:stylized facts and statistical issues[J]. Quantitative Finance,2001,1(2):223-236.
    [125]Maheu J M, McCurdy T H. News arrival, jump dynamics, and volatility components for individual stock returns[J]. Journal of Finance,2004,59(2): 755-793.
    [126]周彦,张世英,张彤.跳跃连续时间SV模型建模及实证研究[J].系统管理学报,2007,16(5):531-535.
    [127]陈浪南,孙坚强.股票市场资产收益的跳跃行为研究[J].经济研究,2010,(4):54-66.
    [128]Taylor S J. Modeling financial time series[M]. New York:Wiley,1986.
    [129]Chib S, Nardari F, Shephard N. Markov chain Monte Carlo methods for stochastic volatility models[J]. Journal of Econometrics,2002,108(2):281-316.
    [130]Eraker B, Johanners M, Poison N G The impact of jumps in returns and volatility[J]. Journal of Finance,2003,53(3):1269-1330.
    [131]Nakajima J, Omori Y. Leverage, heavy-tails and correlated jumps in stochastic volatility models [J]. Computational Statistics and Data Analysis,2009,23(6): 2335-2353.
    [132]Kobayashi M. Testing for jumps in the stochastic volatility models[J]. Mathematics and Computers in Simulation,2009,79(8):2597-2608.
    [133]Wang P. Pricing currency options with support vector regression and stochastic volatility model with jumps[J]. Expert Systems with Applications,2011,38(1): 1-7.
    [134]Harvey A C, Shephard N. Estimation of an asymmetic stochastic volatility model for asset returns[J]. Journal of Business & Economic Statistica,1996,14(4): 429-434.
    [135]Jacquier E, Polson N G, Rossi P E. Bayesian analysis of stochastic volatility model with fat-tails and correlated errors[J]. Journal of Econometrics,2004,122 (1):185-212.
    [136]Yu J. On leverage in a stochastic volatility model[J]. Journal of Econometrics, 2005,127(2):165-178.
    [137]So M K P, Li W K, Lam K. A threshold stochastic volatility model[J]. Journal of Forecasting,2002,21(7):473-500
    [138]Huang S C. Threshold and leverage effects of major Asian stock markets based on stochastic volatility models[J]. International Research Journal of Finance and Economics,2009,27:106-116.
    [139]Asai M, McAleer M. Dynamic leverage and threshold effects in stochastic volatility models[DB/OL]. http://www.ims.nus.edu.sg/Programs/econometrics/ files/mm_paper.pdf,2003.
    [140]童汉飞,陈浪南.管理浮动机制下的人民币汇率行为分析-基于贝叶斯MCMC推断法与ESVDJ模型[J].数量经济技术经济研究,2007,(11):115-123.
    [141]方媛.中国股市波动问题研究-基于随机波动率模型[D].武汉:华中科技大学,2010.
    [142]Chen C W S, Gerlach R, Lin E M H. Volatility forecasting using threshold heteroskedastic models of the intra-day range[J]. Computational Statistics & Data Analysis,2008,52(6):2990-3010.
    [143]Nakajima J, Omori Y. Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew student's t-distribution (discussion papers)[DB/OL]. http://www.e.u-tokyo.ac.jp/ cirje/research/03research02dp.html,2010.
    [144]Lee S S, Mykland P A. Jumps in financial markets:A new nonparametric test and jump[J]. The Review of Financial Studies,2008,21(6):2535-2536.
    [145]Vaswani N. Particle filtering for large dimensional state spaces with multimodal observation likelihoods[J]. IEEE Transactions On Signal Processing,2008,56(2): 432-440.
    [146]Chen Z. Bayesian filtering:From Kalman filters to particle filters, and beyond[DB/OL].http://soma.crl.mcmaster.ca/zhechen/download/ieee_bayesian.ps, 2003.
    [147]Qi C, Bondon P. A new unscented particle filter[C]. IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA,2008: 3417-3420.
    [148]Pit M, Shephard N. Filtering via simulation:auxiliary particle filters [J]. Journal of the American Statistical Association,1999,94(446):590-599.
    [149]Smith L, Aitken V C. Analysis and comparison of the generic and auxiliary particle filtering frameworks [C]. IEEE Canadian Conference on Electrical and Computer Engineering. Ottawa, Canadian,2006:2124-2127.
    [150]Adam M J, Arnaud D. A note on auxiliary particle filters [J]. Statistical and Probability Letters,2008,78(12):1498-1504.
    [151]Lazaro M, Santamaria I, Pantaleon C. A new EM-based training algorithm for RBF networks[J]. Neural Networks,2003,16(1):69-77.
    [152]Deepa S N, Devi B A. Modified Radial Basis Function Network for Brain Tumor Classification[C] The second Swarm, Evolutionary and Memetic Computing Conference (SEMCCO). Visakhapatnam, Andhra Pradesh, India,2011, 7076:366-371.
    [153]樊国创,戴亚平,闫宁.基于RBF神经网络的高斯混合近似算法[J].系统工程与电子技术,2009,31(10):2489-2491.
    [154]Ma L, Wahab A, Quek C. A modified generalized RBF model with EM-based learning algorithm for medical applications [C]. Proceeding of the 19th IEEE Symposium on Computer-Based Medical Systems. Salt Lake City, Utah, USA, 2006:291-296.
    [155]Huang D L, Leung H. An expectation-maximization-based interacting multiple model approach for cooperative driving systems [J]. IEEE Transactions on Intelligent Transportation Systems,2005,6(2):206-228.
    [156]甘敏,彭辉.不同基函数对RBF-ARX模型的影响研究[J].中南大学学报,2010,41(6):2231-2235.
    [157]Dempster A P, Laird N M, Rudin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, Series B(Methodological),1977,39(1):1-38.
    [158]李平,曾勇,唐小我.市场微结构理论综述[J].管理科学学报,2003,6(5):87-98.
    [159]Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics,1976,3(1-2):125-144.
    [160]Duffie D, Pan J. Analytical value-at-risk with jumps and credit risk[J], Finance and Stochastics,2001,5(2):155-180.
    [161]Duan J C, Yeh C Y. Jump and volatility risk premiums implied by VIX[J]. Journal of Economic Dynamics & Control,2010,34(11):2232-2244.
    [162]Figueroa-Lopez J E, Gong R T, Houdre C. Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Levy jumps[J]. Stochastic Processes and their Applications,2012,122(4): 1808-1839.
    [163]孟利锋.随机波动模型及其建模方法研究[D].天津:天津大学,2004.
    [164]周彦,张世英,张彤.跳跃连续时间SV模型建模及实证研究[J].系统管理学报,2007,16(5):531-535.
    [165]高延巡,胡日东,苏桔芳.中国股市跳跃行为的随机波动模型分析[J].华侨大学学报:自然科学版,2010,31(5):580-585.
    [166]王平,王垣苏,黄运成.支持向量回归方法的跳跃扩散汇率期权定价[J].管理工程学报,2011,25(1):134-139.
    [167]吴文锋,吴冲锋,朱云.异常波动与资产定价模型[J].预测,2000,19(5):56-59.
    [168]Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics 2004,2(1):1-48.
    [169]Jiang G, Oomen R. Testing for jumps when asset prices are observed with noise-a "swap variance" approach[J]. Journal of Econometrics,2008,144 (2): 352-370.
    [170]Ait-SahaliaY, Jacod J. Testing for jumps in a discretely observed process[J]. Annals of Statistics,2009,37(1):184-222.
    [171]Ait-SahaliaY, Mancini L. Out of sample forecasts of quadratic variation[J]. Journal of Econometrics,2008,147(1):17-33.
    [172]Boudt K, Croux C, Laurent S. Outlyingness weighted quadratic covariation. Working Paper,2008.
    [173]Andersen T, Bollerslev T, Diebold F X. Roughing it up:Including jump components in the measurement, modeling and forecasting of return volatility [J]. The Review of Economics and Statistics,2007,89(4):701-720.
    [174]Todorov V, Tauchen G, Grynkiv I. Realized Laplace transforms for estimation of jump diffusive volatility models[J]. Journal of Econometrics,2011,164(2): 367-381.
    [175]Pirino D. Jump detection and long range dependence [J]. Physical A:Statistical Mechanics and its Applications,2009,388(7):1150-1156.
    [176]Bamdorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in finacial economics using bipower variation[J]. Journal of Financial Econometrics, 2006,4(1):1-30.
    [177]Jiang G J, Oomen R C A. Test for jumps when assert prices are oberserved with noise-a swap variation approach[J]. Jornal of Econmetrics,2008,144(2): 352-270.
    [178]ATt-Sahalia Y. Disentangling diffusion from jumps[J]. Journal of Financial Economics,2004,74(3):487-528.
    [179]Pirino D. Jump detection and long range dependence [J]. Physical A:Statistical Mechanics and its Applications,2009,388(7):1150-1156.
    [180]Black F. Studies of stock market volatility changes [C]. Proceedings of the American Statistical Association, Business and Economic Statistics Section. University of Michigan, USA,1976:177-181.
    [181]Christie A A. The stochastic behavior of common stock variances:Value, leverage and interest rate effects[J]. Journal of Financial Economics,1982,10(4): 407-432.
    [182]Zakoian J M. Threshold heteroskedasticity models[J]. Journal of Economic Dynamics and Control,1994,18(5):931-955.
    [183]Glosten L R, Jagannathan R, Runkle D. On the relation between the expected value and the volatility of nominal excess returns on stocks [J]. Journal of Finance, 1993,48(5):1779-1801.
    [184]Asai M, McAleer M. Dynamic asymmetric leverage in stochastic volatility models[J]. Econometric reviews,2005,24(3):317-332.
    [185]Asai M, Mcaleer M. Alternative asymmetric stochastic volatility models[J]. Econometric Reviews,2011,30(5):548-564.
    [186]Sandmann G, Koopman J. Estimation of stochastic volatility models via Monte Carlo maximum likelihood [J]. Journal of Econometrics,1998,87(2):271-301.
    [187]Tsay R S. Analysis of Financial Time Series[M]. John Wiley:New York,2002.
    [188]Omori Y, Chib S, Shephard N, et al. Stochastic volatility with leverage:Fast and efficient likelihood inference[J]. Journal of Econometrics,2007,140(2):425-449.
    [189]Mandelbrot B B. The variation of certain speculative prices [J]. Journal of Business,1963,36(4):394-419.
    [190]Fama E F. The behavior of stock market prices [J]. the Journal of Business,1965, 38(1):34-105.
    [191]Turner A L, Weigel E J. An analysis of stock market volatility. In:Russell Research Commentaries[M]. Tacoma, WA:Frank Russell Co.,1990.
    [192]Lux T. On moment condition failure in German stock returns:An application of recent advances in extreme value statistics [J]. Empirical Economics,2000,25(4): 641-652.
    [193]Beine M, Laurent S, Lecourt C. Accounting for conditional Leptokurtosis and closing days effects in FIGARCH models of daily exchange rates[J]. Applied Financial Economics,2008,12(8):589-600.
    [194]韩铁,张世英.非对称GARCH模型在VaR预测上的应用[J].沈阳理工大学学报,2006,25(5):91-94.
    [195]王吉培,张哲.基于GED-GARCH模型的沪深基金收益率波动性研究[J].现代经济,2008,7(10):12-14.
    [196]朱慧明,曾惠芳,郝立亚等.基于M-H抽样的贝叶斯非对称厚尾GARCH模型研究[J].数理统计与管理,2011,30(3):431-439.
    [197]王瑞庆,王宏福.基于t分布GARCH模型的电价波动时变性研究[J].电力系统保护与控制,2011,39(23):49-59.
    [198]Kim S S, Shephard N, Clib S. Stochastic volatility:Likelihood inference and comparison with ARCH models[J]. Review of Economic Studies,1998,65(3): 361-393.
    [199]Cappuccio N, Lubian D, Raggi D. MCMC Bayesian estimation of a skew-GED stochastic volatility model [J]. Studies in nonlinear dynamics & Econometrics, 2004,8(2):1558-3708.
    [200]Abraham B, Balakrishna N, Sivakumar R. Gamma stochastic volatility models [J]. Journal of Forecasting,2006,25 (3):153-171.
    [201]Abanto-Valle C A, Bandyopadhyay D, Lachos V H, et al. Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions [J]. Computational Statistics and Data Analysis,2010,54(12): 2883-2898.
    [202]Asai M. Autoregressive stochastic volatility models with heavy-tailed distributions:A comparison with multifactor volatility models[J]. Journal of Empirical Finance,2008,15(2):332-341.
    [203]Asai M. Bayesian analysis of stochastic volatility models with mixture-of-normal distributions[J]. Mathematics and Computers in Simulation,2009,79(8): 2579-2596.
    [204]王春峰,蒋祥林,吴晓霖.随机波动模型的比较分析[J].系统工程学报,2005,20(2):216-219.
    [205]朱慧明,李峰,杨锦明,虞克明.基于Gibbs抽样的厚尾SV模型贝叶斯分析及其应用[J].系统仿真学报,2008,20(9):2479-2482.
    [206]朱慧明,李峰,杨锦明.基于MCMC模拟的贝叶斯厚尾金融随机波动模型分析[J].运筹与管理,2007,16(4):111-115.
    [207]朱慧明,黄超,郝立亚等.基于状态空间模型的贝叶斯跳跃厚尾金融随机波动模型研究[J].中国管理科学,2010,18(6):17-25.
    [208]吴鑫育,马超群,汪寿阳.具有有偏厚尾的非对称SV模型及其实证研究[J].系统工程,2012,30(1):61-66.
    [209]张义强,李道叶.我国股票市场收益率序列分布尾部特征分析[J].南方金融,2008,(4):46-48.
    [210]Embrechts P, Kluppelberg C, Mikosch T. Modelling extremal events for insurance and fiance [M]. Berlin:Springer-Verlag,1997.
    [211]Thomas M, Daniel S. Whitttle estimation in a heavy-tailed GARCH(1,1) model[J]. Stochastic Processes and their Applications,2002,100(1-2):187-222.
    [212]韩旭里,谢永钦.概率论与数理统计[M].上海:复旦大学出版社,2006:53-54.
    [213]Spiegelhalter D J, Best N G, Carlin B P, et al. Bayesian measures of model complexity and fit[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2002,64(4):583-639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700