用户名: 密码: 验证码:
两轮自平衡移动机器人建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮式倒立摆是一类欠驱动结构,它被广泛地应用在自主移动机器人和智能小型交通工具上,其动力学模型具有不稳定、多变量、强耦合、非线性等特点,是检验控制方法有效性的重要平台。由于其结构简单、体积小,可以在狭小、危险以及人无法到达的环境运动,因此基于轮式倒立摆的移动机器人在民用、工业、军事、航天航空中都有广泛的应用前景。
     本文研究了轮式倒立摆的结构,在非完整约束情况下建立其在平坦地面上运动时的动力学模型,并实现轮式倒立摆的平衡点控制和速度控制。在此基础上,提出一种基于轮式倒立摆的新型座椅自平衡两轮机器人,它本质上是一类两轮自平衡移动机器人。它的下体部分是由两个同轴、左右平行分布的车轮的传统轮式倒立摆构成;上体由直线电机驱动的可移动座椅组成。主体结构类似于轮式倒立摆系统,但它优于轮式倒立摆系统,具有更多的运动自由度。车体的重心在两个车轮的上方,通过可移动座椅运动实现自平衡。该移动机器人作为个人交通工具,具有体积小、质量轻、结构简单、能够与其他座椅自平衡两轮机器人共用一个车道或车位、低排放等特点,特别适合狭小空间的运载操作。与已有的基于轮式倒立摆的个人交通工具等相比,座椅自平衡两轮机器人增加的可移动座椅,解决了驾驶者在行驶过程中的疲劳问题。
     本文在分析新型座椅自平衡两轮机器人的发展和特点的基础上,根据该机器人的机械结构,计算得到机器人各部分的动能、势能和耗散能,再采用拉格朗日运动方程的方法建立了座椅自平衡两轮机器人在平坦路面和不平坦路面上运动的二维动力学模型,进一步得到了其在平坦地面上运动的三维动力学模型。在这些模型的基础上,计算得到该机器人在运动过程中的平衡点,通过设计LQR控制器和滑模控制器,实现了其在直线运动和拐弯运动时的速度控制。为了改进速度控制的性能,进一步提出了一种改进的滑模控制方法,使座椅自平衡两轮机器人在速度控制过程中收敛到期望值的速度更快。
     为了验证理论分析,本文分别在MATLAB和动态物理引擎ODE仿真环境中实现了轮式倒立摆和座椅自平衡两轮机器人的控制。ODE是一个典型的三维多物体动态仿真引擎,它通过在虚拟环境中搭建实物结构来仿真物体运动,模拟空间物体之间的动态关系,反映物体的动态特性,提供三维动态虚拟环境。通过两个仿真结果的比较,一定程度上证明了该动力学模型的正确性,仿真结果验证了所提控制器控制器的有效性。
Mobile Wheeled Inversed Pendulum (MWIP) system is a kind of underactuated mechanical system, which is widely used in the fired of autonomous robots and intelligent narrow vehicles. The dynamic model of MWIP is unstable, multivariable, strong coupling, and nonlinear. Therefore, an MWIP system is an important platform used to verify the effectiveness of various control methods. Because the robot is simple in mechanics and small in volume, it is applicable in narrow, dangerous places and in that where the people cannot arrive. Thus, the MWIP based mobile robots are widely used in civilian, industrial, military and aerospace fields.
     In this dissertation, we studied the structure of an MWIP system and the dynamic model of MWIP running on the flat ground is derived considering nonoholonomic constraint. Based on the dynamic model, the equilibrium control and velocity control are discussed. Inspired by the MWIP system, we introduce a novel mobile robot, which is a kind of intelligent robot in essence and similar to MWIP. It has more degrees of freedom than the MWIP and is much superior to it. The novel structure includes a conventional MWIP system which is composed of two coaxial, parallel wheels driven by motors and a movable seat which can be driven by a linear motor along the straight moving direction. The centre of gravity of new robot system is above the two wheels. By adjusting the movement of the seat, the vehicle can be self-balanced. As the personal transportation, the character of the new mobile robot includes small volume, light quality, simple structure, low emission and can share a same lane and garage with other robots et al. It is especially suitable for working and moving in narrow space. Compare to the existed MWIP-based personal transport, such as Segway, the proposed new robot uses a moveable seat which can reduce the problem of driver fatigue while operation. But it is difficult to design control law to control the new robot system because of the inherent nonlinear and uncertain features.
     Based on the research of the technology and development of the new robot and the analysis of the mechanism structure, the dynamic model of the underactuated system running on the flat ground is derived using Lagrange's motion equation in the 2-dimensional space on both flat ground and rough terrain ground. We also obtained the3-dimensional model of the new robot running on the flat ground by using Lagrange motion equations. Based on the models, equilibriums are derived. The LQR control and SMC (Sliding mode control) scheme are chosen to realize equilibrium control and velocity control of the new robot both in straightforward running and turning motion. In order to achieve better performance in velocity control, we proposed an improved sliding mode control strategy. As a result, the rate of convergence in velocity control becomes faster.
     In order to verify the theoretical results, we realize the velocity control both in MATLAB and ODE (Open Dynamic Engine). ODE is a typical3-dimensional muti-body dynamic simulation engine, which builts physical structure in the virtual environment and simulates the dynamic relationship. The numerical simulations are provided to verify and illustrate the correctness of the dynamic model of our proposed new robot. The effectiveness of proposed approaches is also verified through the simulation results.
引文
[1]Yamafuji K., Miyakawa Y., Kawamura T. Synchronous Steering Control of a Parallel Bicycle [in Japanese]. Transactions of the Japan Society of Mechanical Engineers. C.,1985,55(513):1229-1234
    [2]Grasser F., Arrigo A. D,Colombi S., et al. JOE:a Mobile Inverted Pendulum. IEEE Transactions on Industrial Electronics,2002,49(1):107-114
    [3]Salerno A., Angeles J. A New Family of Two-Wheeled Mobile Robots:Modeling and Controlability. IEEE Trans on Robotics,2007,23(1):169-173
    [4]Arling A. W., Chang S.-T., Field J. D., et al. Personal Transporter. United States Design Patent. US D528468S,2006-9-19
    [5]Ooi R. C. Balancing a Two-Wheeled Autonomous Robot:[硕士学位论文].澳大利亚:西澳大利亚大学,2003
    [6]Tirmant H., Baloh M., Vermeiren L., et al. B2, An Alternative Two Wheeled Vehicle for an Automated Urban Transportation System, in:Proceedings of the 2002 IEEE International Conference on Intelligent Vehicle Symposium. Univ. de Valenciennes et du Hainaut-Cambresis, France:IEEE Press,2002:594-603
    [7]Kun L., Ming B., Yuhua N. Two-wheel self-balanced car based on Kalman filtering and PID algorithm, in Proc.2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management (IE&EM), Changchun, China:IEEE Press,2011:281-285
    [8]Sasaki M., Yanagihara N., Matsumoto O., et al. Forward and back motion control o personal riding-type wheeled mobile platform, in:Proceedings of the 2004 IEEE Int. Conf. on Robotics & Automation, Fac. of Eng., Tamagawa Univ., Tokyo, Japan: IEEE Press,2004:3331-3336
    [9]Ojeda L., Raju M., Borenstein Johann. Flexnav:A Fuzzy Logic Expert Dead-Reckoning System for the Segway RMP. in:Proceedings of the SPIE Defense and Security Symposium, Unamanned Ground Vehicle Technology VI(OR54), Orlando FL,12-16
    [10]Miasa S, Mohammad A.-M., Ibrahim A. H., et al. Fuzzy control of a two-wheel balancing robot using DSPIC. in Proc.2010 7th International Multi-Conference on Systems Signals and Devices (SSD), Amman, Jordan:IEEE Press,2010:1-6
    [11]Larson T. W., Allen R. Balancing Device. United States Patent. US7506545B1, 2009-3-24
    [12]Kusuda Y. Toyota's violin-playing robot. Industrial Robot:An International Journal, 2008,35(6):504-506
    [13]段旭东,魏衡华,陈星.基于DSP的二轮小车-倒立摆系统.控制工程,2004,11(6):521-524
    [14]陈星,魏衡华,张玉斌.二轮行走倒立摆系统建模与鲁棒方差控制.计算机仿真,2006,23(3):263-266
    [15]郑钧元.两轮自我平衡机器人之平衡控制:[硕士学位论文].台湾:国立中央大学,2003
    [16]王祯祥.两轮自我平衡机器人之前后行走控制:[硕士学位论文].台湾:国立中央大学,2003
    [17]蔡侨伦.DSP主控之两轮机器人平衡与两轮同步控制:[硕士学位论文].台湾:国立中央大学,2004
    [18]刘斌.两轮自平衡小车软硬件研发与基于模糊线性化模型的变结构控制研究:[硕士学位论文].西安:西安电子科技大学,2009
    [19]王效杰.基于变结构控制的两轮自平衡小车系统的设计与实现:[硕士学位论文].西安:西安电子科技大学,2006
    [20]叶聪红.本质不稳定两轮辅助平衡装置的智能控制:[硕士学位论文].西安:西安电子科技大学,2006
    [21]Li J., Gao X. S., Huang Q., et al. Mechanical design and dynamic modeling of a two-wheeled inverted pendulum mobile robot, in Proc.2007 IEEE International Conference on Automation and Logistics. Jinan, China:IEEE Press,2007: 1614-1619
    [22]李京涛,高学山,黄强等.双模式非稳定结构移动机器人.机械工程学报,2009,45(5):147-152
    [23]Li C. Q., Gao X. S., Huang Q., et al. A Coaxial Couple Wheeled Robot with T-S Fuzzy Equilibrium Control. Industrial Robot,2011,38(3):292-300
    [24]Pathak K., Franch J., Agrawal S. K. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans. Robotics,2005, 21(3):505-513
    [25]Salerno A., Angeles J. On the nonlinear controllability of a quasiholonomic mobile robot, in Proc. IEEE 2003 Int. Conf. Robotics and Automation (ICRA 2003), Dept. of Mech. Eng., McGill Univ., Montreal, Que., Canada:IEEE Press,2003: 3379-3384
    [26]Marino R. On the largest feedback linearizable subsystem. Syst. Control Lett.,1986, 6:345-351
    [27]周凤歧.两轮车的稳定性分析与控制研究:[博士学位论文].西安:西北工业大学,2003
    [28]李凡红.两轮自平衡小车系统:[硕士学位论文].北京:北京交通大学,2010
    [29]傅继奋,孙汉旭,王亮清等.自平衡两轮机器人的控制系统设计.机电产品开发与创新,2004,17(6):75-77
    [30]赵丽.单级倒立摆的模糊控制及仿真.山东师范大学学报,2004,19(3):1-3
    [31]孙亮,孙启兵.神经元PID控制器在两轮机器人控制中的应用.控制工程,2011,18(1):113-115
    [32]Vander Linden G. W., Lambrcchts P. F. H-oo control of an experimental inverted pendulum with dry friction. IEEE control system magazine,1993,13(4):44-5
    [33]Yamakita M., Nanaka K., Sugahara Y, et al. Robust state transfer control of double pendulum, in Proc. IFAC symposium advances in control education, Tokyo, Japan: International Federation of Automatic Control,1995:205-208
    [34]Lozano R., Fantoni I., Block D. J. Stablization of the inverted pendulum around its homoclinic orbit. System & Control Leters,2000,40:197-204
    [35]Wang W., Yi J., Zhao D., et al. Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc. Control Theory Appl.,2004, 151(6):683-690
    [36]Huang J., Wang H., Matsuno T., et al. Robust velocity sliding mode control of mobile wheeled inverted pendulum systems. in:Proc. IEEE 2009 International Conference on Robotics and Automation (ICRA 2009), Kobe, Japan:IEEE Press, 2009:2983-2988
    [37]Ding F., Huang J., Wang Y., et al. Optimal braking control for UW-Car using sliding mode. in:Proc. IEEE 2009 International Conference on Robotics and Biomimetics (Robio 2009). Guilin, China:IEEE Press,2009:117-122
    [38]Ashrafiuon H., Erwin R S. Sliding control approach to underactuated multibody systems. in:Proc. American Control Conference. Boston, U. S. A.:IEEE Press, 2004:1283-1288
    [39]Anderson C. W. Learning to control an inverted pendulum using neural networks. IEEE control system magazine,1989,9(3):31-37
    [40]王晓宇.两轮自平衡机器人的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [41]张德喜,赵磊生.MATLAB语言程序设计教程(第二版).北京:中国铁道出版社,2010
    [42]陈晓平,毛彦欣.MATLAB在电路与信号及控制理论中的应用(第一版).合肥:中国科技大学出版社,2008
    [43]刘金琨.机器人控制系统的设计与MATLAB仿真(第一版).北京:清华大学出版社,2008
    [44]张志涌,杨祖樱.MATLAB教程(第一版).北京:北京航空航天大学出版社,2008
    [45]Oliver M. WebotsTM:Professional Mobile Robot Simulation. International Journal of Advanced Robotic Systems,2004,1(1):39-42
    [46]Koenig N., Howard A. Design and use paradigms for gazebo, an open-source multi-robot simulator. in Proc.2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004). Sendai, Japan:IEEE Press,2004,3: 2149-2154
    [47]Drumwright E., Hsu J., Koenig N., et al. Extending open dynamics engine for robotics simulation. Lecture Notes in Computer Science,2010,6472:38-50
    [48]曹洋,项龙江,徐心和.基于全局视觉的轮式移动机器人轨迹跟踪控制.机器 人,2004,26(1):78-82
    [49]徐俊艳,张培仁.非完整轮式移动机器人轨迹跟踪控制研究.中国科学技术大学学报,2004,34(3):376-380
    [50]Huang J., Guan Z. H., Matsuno T., et al. Sliding-mode velocity control of mobile-wheeled inverted-pendulum systems. IEEE Transaction on Robotics,2010, 26(4):750-758
    [51]Utkin V. Variable structure systems with sliding modes. IEEE Transactions Automatic Control,1997,22(2):212-222
    [52]冯纯伯,费树岷.非线性控制系统分析与设计(第二版).北京:电子工业出版社,1998
    [53]Hung J. Y., Gao W., Hung J. C. Variable structure control:a survey. IEEE Transactions on Industrial Electronics,1993,40(1):1-21
    [54]高为炳.变结构控制的理论及设计方法(第一版).北京:科学出版社,1996
    [55]Slotine J. J. E., Li W. Applied nonlinear control. Englewood Cliffs:prentice Hall, 1991
    [56]Levant A. Principles of 2-sliding mode design. Automatica,2007,43(4):576-586
    [57]Levant A. Construction principles of output-feedback 2-sliding mode design, in: Proceedings of the 41st IEEE conference on decision and control (CDC 2002). Las Vegas, NV, USA:IEEE Press,2002:10-13
    [58]Levant A. Higher-order sliding modes, differentiation and output feedback control. International Journal of Control,20003,76(9/10):924-941
    [59]Levant A. Homogeneity approach to high-order sliding mode design. Automatica, 2005,41(5):823-830
    [60]Bartolini G., Pisano A., Usai E. Digital second-order sliding mode control for uncertain nonlinear systems. Automatica,2001,37(9):1371-1377
    [61]Bartolini G., Pisano A., Punta E., et al. A survey of applications of second-order sliding mode control to mechanical systems. International Journal of Control,2003, 76(9/10):875-892
    [62]Boiko I. Analysis of sliding modes in the frequency domain. International Journal of Control,2005,78(10):969-981
    [63]Boiko I., Fridman L. Analysis of chattering in continuous sliding-mode controllers. IEEE Transactions on Automatic Control,2005,50(9):1442-1446
    [64]Shtessel Y. B., Shkolnikov I. A. Aeronautical and space vehicle control in dynamic sliding manifolds. International Journal of Control,2003,76(9/10):1000-1017
    [65]Shtessel Y. B., Shkolnikov. I. A., Brown, M. D. J. An asymptotic second-order smooth sliding mode control. Asian Journal of Control,2004,5(4):498-504
    [66]Nollet F., Floquet T., Perruquetti W. Observer-based second order sliding mode control laws for stepper motors. Control Engineering Practice,2008,16:429-443
    [67]Boiko I., Fridman L., Iriarte R., et al. Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators. Automatica,2006,42(5): 833-839
    [68]Ferrara A., Vecchio C. Second order sliding mode control of vehicles with distributed collision avoidance capabilities. Mechatronics,2009,19(4):471-477
    [69]Kachroop P., Tomizukam M. Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Trans on Automatic Control,1996,41(7):1063-1068
    [70]罗小元,朱志浩,关新平.非线性时滞系统的抖振削弱自适应模糊控制.控制与决策,2009,24(9):1429-1432
    [71]陈玉宏.滑模控制抖振抑振新方法.电子科技大学学报,1997,26(5):520-524
    [72]Chern T. L., Wu Y. C. Design of integral variable structure controller and application to electro hydraulic velocity servo systems. IEE Proceedings,1991, 138(5):439-444
    [73]Seshagiri S., Khalil H. K. On introducing integral action in sliding mode control, in: Proceedings of the 41st IEEE conference on decision and control (CDC 2002). Las Vegas, NV, USA:IEEE Press,2002:1473-1478
    [74]Seshagiri S., Khalil H. K. Robust output feedback regulation of mini-mum phase nonlinear systems using conditional integrators. Automatica,2005,41(1):43-54
    [75]李鹏,孙卫蒙,李文强等.一种改进积分滑模面在非空中的应用.控制工程,2010,17(3):269-289
    [76]李鹏,孙卫蒙,李文强等.一种不确定非线性系统的改进积分型滑模控制.控 制与决策,2009,24(10):1463-1472
    [77]Zak M. Terminal attractors in neural networks. Neural Networks,1989,2(4): 259-274
    [78]Man Z. H., Paplinski A. P., Wu H. R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans, on Automatic Control,1994, 39(12):2464-2470
    [79]Man Z. H., Yu X. Terminal sliding mode control of MIMO linear systems. IEEE Transactions on Circuits and Systems,1997,44(11):1065-1070
    [80]Yu S., Yu X., Man Z. H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems, in:Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, NSW:IEEE Press,2000:2198-2203
    [81]Park K.-B., Tsuji T. Terminal sliding mode control of second-order nonlinear uncertain systems. Int. J. Robust Nonlinear Control,1999,9:769-780
    [82]Sankaranaryanan V., Mahindrakar A. D. Control of a class of underactuated mechanical systems using sliding modes. IEEE Transaction on Robotics,2009, 25(2):459-467
    [83]Wang W, Yi J., Zhao D., et al. Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc. Control Theory Appl.,2004, 151(6):683-690
    [84]Tsai P. S., Wang L. S., Chang F. R. Modeling and hierarchical tracking control of tri-wheeled mobile robots. IEEE Transaction on Robotics,2006,22(5):1055-1062
    [85]C. H. Wang, K. Zhang, C. D. Yang, Terminal sliding mode control for singular systems with unmatched uncertainties, IEEE International conference on control and Automation,2008:2929-2933
    [86]Liu H., Li J. F. Terminal sliding mode control for spacecraft formation flying. IEEE Transaction on Aerospace and Electronic Systems,2009,45(3):835-846
    [87]Guo Y. S., Li C. Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance. Applied Mathematics and Mechanics, 2008,29(5):583-590
    [88]Tao C. W., Taur J. S., Chan M. L. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2003,34(1):1-8
    [89]Park K. B., Lee J. J. Comments on "A robust MIMO terminal sliding mode control scheme for rigid robot manipulators", IEEE Trans. Automat. Control,1996,41(5): 761-762
    [90]DeCarlo R. A., Zak S. H., Matthews G P. Variable structure control of nonlinear multivariable systems:a tutorial. Proc. IEEE,1988,76(3):212-232
    [91]丛爽,张冬军,魏衡华.单级倒立摆三种控制方法的对比研究.湖北大学学报(自然科学版),2004,26(1):16-19
    [92]张葛祥,李众立,毕效辉.倒立摆与自动控制技术研究.西南工学院学报,2001,16(3):12-16
    [93]严雪莉,江汉红.单级倒立摆控制方法的方针对比研究.测控技术,2005,24(7):37-39
    [94]Alasty A., Pendar H. Equations of motion of a single-wheel robot in a rough terrain. in:Proc.2005 IEEE International Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain:IEEE Press,2005:18-22
    [95]Ding F., Huang J., Wang Y., et al. Modeling and control of a novel narrow vehicle. in:Proc.2010 IEEE International Conference on Robotics and Biomimetics (Robio 2010), Tianjin, China:IEEE Press,2010:1130-1135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700