用户名: 密码: 验证码:
先天性外中耳畸形的CT影像学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察分析先天性外中耳畸形患者颞骨CT影像,明确中耳标志性解剖结构如面神经、鼓室窦、圆窗、听骨链等的畸形发育情况,提出中耳结构间位置分布关系和畸形发育规律,为术前评估提供依据。
     方法
     1.选取颞骨CT影像学明确诊断的外耳道闭锁(CAA)患者25例,50耳。均为术前病例且排除内耳畸形。
     2.CAA耳进行Jahrsdoerfer评分并统计各目标结构畸形形态的发生率。
     3.以经过圆窗和后半规管下脚的斜轴位MPR平面为测量的基准平面,以该平面上圆窗的中点为测量基准点,分别测量面神经乳突段至圆窗水平线的距离(Q1),面神经垂线至圆窗的距离(N2),面神经距圆窗的直线距离(Z3),鼓室窦横截面积(A5CM2),鼓室窦横截面深处最后缘即鼓室窦横截面距圆窗最远端(S点)至圆窗的距离(WRW2),S点距面神经的距离(WFN1),面神经乳突段与后半规管或后半规管的延长线的垂直距离(FNSSC)。将测量数据按CAA侧和正常侧分组,分析组间统计学差异,并进行各组数据间相关性分析。
     4.调整MPR平面以最佳显示目标结构为准,于各重建平面上测量圆窗至面神经的距禺(r_fp/r_fm),圆窗至砧镫关节的距离(r_isj),圆窗至镫骨前脚的距离(r_sa),圆窗至砧骨短脚尖的距离(r_isp),卵圆窗横径(ow)。选取单侧外中耳畸形患者数据,正常侧为CAA侧的自身对照,进行配对t检验比较组间差异,将差异具有显著性的组别数据进行线性相关分析。
     结果
     1. Jahrsdoerfer评分CAA耳为0分至9分,平均6.06分,≥6分的占67.7%。中耳各畸形分布为:听骨链畸形67.7%,包括锤砧融合45.2%,砧镫关节不连续29%,镫骨畸形32.3%,其中镫骨发育不全19.4%,镫骨缺如12.9%;卵圆窗闭锁6.5%;圆窗狭窄3.2%;面神经畸形77.4%;中耳腔减小48.4%;乳突气化不良16.1%;耳廓畸形100%。
     2.CAA耳面神经乳突段距圆窗水平线距离均数小于正常耳,即发生了面神经前移,且数据分布显示CAA耳距离整体位于2mm以下,而正常耳距离整体位于2mm以上。研究取基准平面上面神经乳突段距圆窗水平线2mm处为判定面神经前移的标准。
     3.CT影像显示鼓室窦横截面形态分为3类:杯型、梨型和靴型,杯型、梨型为小鼓室窦,靴型为大鼓室窦,按形态分组测量后鼓室截面积靴型与杯型、梨型组间差异有显著性。靴型鼓室窦深部向后外侧延伸,且仅出现于伴有面神经前移的CAA耳。
     4.面神经前移距离(Q1)与鼓室窦面积(A5CM2)、鼓室窦延伸距离(WRW2)均呈线性负相关。即面神经越前移,鼓室窦面积越大,越向后外延伸。
     5.听骨链相关测量中,圆窗距砧骨短脚尖的距离(r_isp)单侧CAA病例双耳配对t检验CAA耳距离大于正常耳,差异有显著性。与圆窗至面神经的距离(r_fp)进行线性相关分析,发现二者呈负相关,即面神经锥曲段距圆窗距离近则砧骨短脚距圆窗距离远。
     结论
     CT影像学显示先天性外中耳畸形患者鼓室窦呈现杯型、梨型和靴型3种形态,靴型为延伸型大鼓室窦,易出现于伴面神经前移的中耳畸形病例。鼓室窦先天性外中耳畸形患者面神经乳突段前移程度与鼓室窦横截面积及延伸距离具有相关性。面神经越前移,鼓室窦面积越大,越向后外延伸,即表现为靴型鼓室窦。面神经乳突段前移与延伸型鼓室窦具有紧密的发育学联系,可能同为第二咽弓Reichert软骨骨化不全导致间充质吸收鼓室窦过度气化的结果。靴型鼓室窦提示面神经前移,可作为鼓室手术时选择面下入路的参考。颞骨高分辨率CT MPR影像辅以VR重建有利于清晰显示CAA患者的中耳畸形情况。
Objective
     To describe and analyze the temporal bone high-resolution computed tomography (HRCT) images in congenital aural atresia (CAA) patients, in order to1) clarify the abnormal developments of the middle ear anatomical landmarks such as facial nerve, sinus tympani, round window and ossicular chain;2) establish the distributional relationship of abnormal structures;3) clarify the development trends of middle ear malformations, which facilitate the assorting surgical candidates of CAAs and provide the basis for preoperative evaluation.
     Design/Patients
     1. Fifty CT scans from25patients (6bilateral cases) with CAA were selected, and postoperative cases and inner ear malformation were excluded.
     2. Thirty-one CAA ears were graded in Jahrsdoerfer score system and the middle ear target structures were described of abnormal morphology.
     3. Oblique axial multiplanar reconstruction (MPR) located along the long axis of Posterior semicircular Canal ampulla provides the best depiction of the round window and of the mastoid segment of facial nerve. Measure and compare target distances in atretic ears and nonatretic ears in CAAs. These included mastoid segment of facial nerve to round window horizontal line distance (Q1), mastoid segment of facial nerve vertical line to round window midpoint distance (N2), mastoid segment of facial nerve directly to round window midpoint distance (Z3), sinus tympani cross-sectional area (A5CM2), the deepest and/or farthest point of sinus tympani cross-sectional bottom (S point) to round window midpoint distance (WRW2), S point to mastoid segment of facial nerve distance (WFN1), mastoid segment of facial nerve to posterior semicircular canal or its extended line vertical distance (FNSSC). Determine correlations between the degree of anterior dislocation of the facial nerve and the shape of sinus tympani.
     4. Oblique planes of section were adjusted to optimally depict the given structures. Measure and compare ossicular distances at each MPR plane in atretic ears and nonatretic ears in unilateral CAA, including the distance from facial nerve to round window (r_fp/r_fm), distance from round window to incudostapedial joint (r_isj), the distance from round window to the stapes front crus (r_sa), distance from round window to the short process of the incus (r_isp), oval window diameter (ow). Paired-t test was used to compare differences between groups. Differences with significant was got linear correlations between groups of data.
     Results
     1. Jahrsdoerfer scoring CAA ears were graded from0point to9points, averaging6.06points,67.7%lies to≥6points. Prevalence of anatomic variants was as follows:ossicular chain malformation67.7%, including Incudo-malleolar fusion45.2%, incudostapedial joint disconnect29%, stapes malformation32.3%(rudimentary stapes19.4%and absent stapes12.9%); oval window atresia6.5%; round window stenosis3.2%; facial nerve malformation77.4%; middle ear space reduced48.4%; mastoid poorly pneumatized16.1%; microtia100%.
     2. Mastoid segment of facial nerve to round window horizontal line distances in atresia ears decreased when compared to non-atresia ear, which meant the mastoid segment of facial nerve tended to anteriorly dislocate in atresia ears of CAAs. The distribution of the data presented that atresia group lay below the2mm line while non-atresia group lay above the2mm line. Therefore the anterior dislocation of the mastoid segment of facial nerve was defined to Q1<2mm in this study.
     3. The sinus tympani cross-section shapes were classified into three categories:cup-shaped, pear-shaped and boot-shaped. Area measurement indicated that cup-shaped and pear-shaped sinus tympani were small size, but boot-shaped sinus tympani were large size. There were significant differences of the sinus tympani cross-sectional areas between the boot-shaped group and cup-shaped group, as well as the boot-shaped group and pear-shaped group. Boot-shaped sinus tympani characterized by varying degrees of spacial enlargement and deep lateral extension, which were only seen in the CAA ears with anteriorly dislocated mastoid segment of facial nerve.
     4. Facial nerve anterior displacement distance (Q1) had a significant negative correlation with both the sinus tympani area (A5CM2) and sinus tympani extension distance (WRW2). That is, when mastoid segment of facial nerve located anteriorly, the sinus tympani extend laterally and backwards.5. The distances from round window to the short process of the incus (r_isp) in atretic ears differed significantly with those in control ears. The r_isp length correlated significantly with the r_fp length (i.e. the distance from facial nerve to round window).
     Conclusion
     The part of pictorial review describes the application of high-resolution computed tomography, especially the use of MPR and VR technology, to the investigation and pre-operative grading of the congenital aural atresia. The part of middle ear measurements presents the three anatomic variants of the sinus tympani encountered in CAA patients with congenital malformation of the middle ear. Malformations of the boot-shaped sinus tympani are often found in association with facial nerve anterior dislocation anomalies. The position of the mastoid segment of facial nerve in relation to the extension and volume of the sinus tympani will determine the method of surgical approach. There may be some developmental associations between mastoid segment of facial nerve location and sinus tympani extension. Since the two structures share a common origin as the Reichert cartilage of the second pharyngeal arch, lack of ossification and excessive absorption of mesenchymal were presumed to be the cause of the extension type of sinus tympani found in the CAA patients.
引文
1. Kosling S, Omenzetter M, Bartel-Friedrich S. Congenital malformations of the external and middle ear. Eur J Radiol 2009;69:269-79.
    2. Zhu J, Wang Y, Liang J, Zhou G. [An epidemiological investigation of anotia and microtia in China during 1988-1992]. Zhonghua Er Bi Yan Hou Ke Za Zhi 2000;35:62-5.
    3. Alasti F, Van Camp G. Genetics of microtia and associated syndromes. J Med Genet 2009;46:361-9.
    4. Shaw GM, Carmichael SL, Kaidarova Z, Harris JA. Epidemiologic characteristics of anotia and microtia in California,1989-1997. Birth Defects Res A Clin Mol Teratol 2004;70:472-5.
    5. Mastroiacovo P, Corchia C, Botto LD, Lanni R, Zampino G, Fusco D. Epidemiology and genetics of microtia-anotia:a registry based study on over one million births. J Med Genet 1995;32:453-7.
    6. Harris J, Kallen B, Robert E. The epidemiology of anotia and microtia. J Med Genet 1996;33:809-13.
    7. Forrester MB, Merz RD. Descriptive epidemiology of anotia and microtia, Hawaii, 1986-2002. Congenit Anom (Kyoto) 2005;45:119-24.
    8. Mallo M. Formation of the middle ear:recent progress on the developmental and molecular mechanisms. Dev Biol 2001;231:410-9.
    9. Whyte J, Cisneros A, Yus C, Fraile J, Obon J, Vera A. Tympanic ossicles and pharyngeal arches. Anat Histol Embryol 2009;38:31-3.
    10. Rodriguez-Vazquez JF, Merida-Velasco JR, Verdugo-Lopez S, Sanchez-Montesinos I, Merida-Velasco JA. Morphogenesis of the second pharyngeal arch cartilage (Reichert's cartilage) in human embryos. J Anat 2006;208:179-89.
    11. Rodriguez-Vazquez JF. Development of the stapes and associated structures in human embryos. J Anat 2005;207:165-73.
    12. Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM. Determination of the identity of the derivatives of the cephalic neural crest:incompatibility between Hox gene expression and lower jaw development. Development 1998; 125:3445-59.
    13. O'Gorman S. Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Dev Dyn 2005;234:124-31.
    14. Tan DP, Ferrante J, Nazarali A, et al. Murine Hox-1.11 homeobox gene structure and expression. Proc Natl Acad Sci U S A 1992;89:6280-4.
    15. Patel CV, Gorski DH, LePage DF, Lincecum J, Walsh K. Molecular cloning of a homeobox transcription factor from adult aortic smooth muscle. J Biol Chem 1992;267:26085-90.
    16. Jahrsdoerfer RA, Yeakley JW, Aguilar EA, Cole RR, Gray LC. Grading system for the selection of patients with congenital aural atresia. Am J Otol 1992;13:6-12.
    17. El-Begermy MA, Mansour OI, El-Makhzangy AM, El-Gindy TS. Congenital auditory meatal atresia:a numerical review. Eur Arch Otorhinolaryngol 2009;266:501-6.
    18. Frenzel H, Hanke F, Beltrame M, Steffen A, Schonweiler R, Wollenberg B. Application of the Vibrant Soundbridge to unilateral osseous atresia cases. The Laryngoscope 2009; 119:67-74.
    19. Christensen L, Dornhoffer JL. Bone-anchored hearing aids for unilateral hearing loss in teenagers. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2008;29:1120-2.
    20. Ricci G, Volpe AD, Faralli M, et al. Bone-anchored hearing aids (Baha) in congenital aural atresia:personal experience. International journal of pediatric otorhinolaryngology 2011;75:342-6.
    21. Kiefer J, Arnold W, Staudenmaier R. Round window stimulation with an implantable hearing aid (Soundbridge) combined with autogenous reconstruction of the auricle-a new approach. ORL; journal for oto-rhino-laryngology and its related specialties 2006;68:378-85.
    22. Patel N, Shelton C. The surgical learning curve in aural atresia surgery. The Laryngoscope 2007;117:67-73.
    23. Fisch U, Cremers CW, Lenarz T, et al. Clinical experience with the Vibrant Soundbridge implant device. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2001;22:962-72.
    24. Sterkers O, Boucarra D, Labassi S, et al. A middle ear implant, the Symphonix Vibrant Soundbridge:retrospective study of the first 125 patients implanted in France. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2003;24:427-36.
    25. Baumgartner WD, Boheim K, Hagen R, et al. The vibrant soundbridge for conductive and mixed hearing losses:European multicenter study results. Adv Otorhinolaryngol 2010;69:38-50.
    26. Huttenbrink KB, Beutner D, Zahnert T. Clinical results with an active middle ear implant in the oval window. Adv Otorhinolaryngol 2010;69:27-31.
    27. Cremers CW, O'Connor AF, Helms J, et al. International consensus on Vibrant Soundbridge(R) implantation in children and adolescents. International journal of pediatric otorhinolaryngology 2010;74:1267-9.
    28. Mandala M, Colletti L, Colletti V. Treatment of the atretic ear with round window vibrant soundbridge implantation in infants and children:electrocochleography and audiologic outcomes. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2011;32:1250-5.
    29. Dumon T, Gratacap B, Firmin F, et al. Vibrant Soundbridge middle ear implant in mixed hearing loss. Indications, techniques, results. Revue de laryngologie-otologie-rhinologie 2009;130:75-81.
    30. Colletti V, Soli SD, Carner M, Colletti L. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int J Audiol 2006;45:600-8.
    31. Arnold A, Kompis M, Candreia C, Pfiffner F, Hausler R, Stieger C. The floating mass transducer at the round window:direct transmission or bone conduction? Hear Res 2010;263:120-7.
    32. Cesario de Abreu CE, Mendonca Cruz OL. Surgical anatomy of anterior and retrofacial approaches to sinus tympani. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2007;28:682-4.
    33. Abdel Baki F, El Dine MB, El Saiid I, Bakry M. Sinus tympani endoscopic anatomy. Otolaryngology--head and neck surgery:official journal of American Academy of Otolaryngology-Head and Neck Surgery 2002; 127:158-62.
    34. Marchioni D, Alicandri-Ciufelli M, Grammatica A, Mattioli F, Presutti L. Pyramidal eminence and subpyramidal space:an endoscopic anatomical study. The Laryngoscope 2010;120:557-64.
    35. Fatterpekar GM, Doshi AH, Dugar M, Delman BN, Naidich TP, Som PM. Role of 3D CT in the evaluation of the temporal bone. Radiographics 2006;26 Suppl 1:S117-32.
    36. Evans AK, Kazahaya K. Canal atresia:"surgery or implantable hearing devices? The expert's question is revisited". Int J Pediatr Otorhinolaryngol 2007;71:367-74.
    37. Lieu JE. Speech-language and educational consequences of unilateral hearing loss in children. Arch Otolaryngol Head Neck Surg 2004; 130:524-30.
    38. Yellon RF. Atresiaplasty versus BAH A for congenital aural atresia. The Laryngoscope 2011;121:2-3.
    39. Siegert R. Combined reconstruction of congenital auricular atresia and severe microtia. The Laryngoscope 2003;113:2021-7; discussion 8-9.
    40. Yellon RF, Branstetter BFt. Prospective blinded study of computed tomography in congenital aural atresia. Int J Pediatr Otorhinolaryngol 2010;74:1286-91.
    41. Colletti L, Carner M, Mandala M, Veronese S, Colletti V. The floating mass transducer for external auditory canal and middle ear malformations. Otol Neurotol 2010;32:108-15.
    42. Barillari M, Cerini R, Carner M, et al. Congenital aural atresia treated with floating mass transducer on the round window:5 years of imaging experience. Radiol Med 2011.
    43. Lumbroso C, Sebag G, Argyropoulou M, Manach Y, Lallemand D. [Preoperative X-ray computed tomographic evaluation of major aplasia of the ear in children]. J Radiol 1995;76:185-9.
    44. Mayer TE, Brueckmann H, Siegert R, Witt A, Weerda H. High-resolution CT of the temporal bone in dysplasia of the auricle and external auditory canal. AJNR Am J Neuroradiol 1997;18:53-65.
    45. Dedhia K, Yellon RF, Branstetter BF, Egloff AM. Anatomic Variants on Computed Tomography in Congenital Aural Atresia. Otolaryngology--head and neck surgery:official journal of American Academy of Otolaryngology-Head and Neck Surgery 2012.
    46. Yu Z, Han D, Gong S, et al. Facial nerve course in congenital aural atresia--identified by preoperative CT scanning and surgical findings. Acta Otolaryngol 2008;128:1375-80.
    47. Gassner EM, Mallouhi A, Jaschke WR. Preoperative evaluation of external auditory canal atresia on high-resolution CT. AJR American journal of roentgenology 2004;182:1305-12.
    48. Pickett BP, Cail WS, Lambert PR. Sinus tympani:anatomic considerations, computed tomography, and a discussion of the retrofacial approach for removal of disease. Am J Otol 1995;16:741-50.
    49. Cisneros A, Orozco JR, Nogues JA, et al. Development of the stapedius muscle canal and its possible clinical consequences. International journal of pediatric otorhinolaryngology 2011;15:211-81.
    50. Rodriguez-Vazquez JF, Merida-Velasco JR, Verdugo-Lopez S. Development of the stapedius muscle and unilateral agenesia of the tendon of the stapedius muscle in a human fetus. Anat Rec (Hoboken) 2010;293:25-31.
    51. Amin S, Matalova E, Simpson C, Yoshida H, Tucker AS. Incudomalleal joint formation: the roles of apoptosis, migration and downregulation. BMC Dev Biol 2007;7:134.
    52. Schick B, Prescher A, Brors D, Draf W. Unusual sinus of the styloid process. European archives of oto-rhino-laryngology:official journal of the European Federation of Oto-Rhino-Laryngological Societies 1998;255:478-81.
    53. Caldemeyer KS, Sandrasegaran K, Shinaver CN, Mathews VP, Smith RR, Kopecky KK. Temporal bone:comparison of isotropic helical CT and conventional direct axial and coronal CT. AJR American journal of roentgenology 1999; 172:1675-82.
    54. Fujii N, Inui Y, Katada K. Temporal bone anatomy:correlation of multiplanar reconstruction sections and three-dimensional computed tomography images. Jpn J Radiol 2010;28:637-48.
    55. NAOKO F, KAZUHIRO K, SATOSHI Y, KENJI T, AKIHIKO T, KENSEI N. Measurement of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner. Otol Jpn 2005; 15:625-32.
    56. Lane JI, Lindell EP, Witte RJ, DeLone DR, Driscoll CL. Middle and inner ear: improved depiction with multiplanar reconstruction of volumetric CT data. Radiographics 2006;26:115-24.
    57. Kountakis SE, Helidonis E, Jahrsdoerfer RA. Microtia grade as an indicator of middle ear development in aural atresia. Arch Otolaryngol Head Neck Surg 1995;121:885-6. 58. Chang SO, Min YG, Kim CS, Koh TY. Surgical management of congenital aural atresia. The Laryngoscope 1994; 104:606-11.
    59. Ishimoto S, Ito K, Karino S, Takegoshi H, Kaga K, Yamasoba T. Hearing levels in patients with microtia:correlation with temporal bone malformation. The Laryngoscope 2007;117:461-5.
    60. McLarnon CM, Davison T, Johnson IJ. Bone-anchored hearing aid:comparison of benefit by patient subgroups. The Laryngoscope 2004; 114:942-4.
    61. Yeakley JW, Jahrsdoerfer RA. CT evaluation of congenital aural atresia:what the radiologist and surgeon need to know. J Comput Assist Tomogr 1996;20:724-31.
    62. Siegert R. Combined reconstruction of congenital auricular atresia and severe microtia. Adv Otorhinolaryngol 2010;68:95-107.
    63. Teufert KB, De la Cruz A. Advances in congenital aural atresia surgery:effects on outcome. Otolaryngology--head and neck surgery:official journal of American Academy of Otolaryngology-Head and Neck Surgery 2004; 131:263-70.
    64. Lambert PR. Congenital aural atresia:stability of surgical results. The Laryngoscope 1998;108:1801-5.
    65. Oliver ER, Hughley BB, Shonka DC, Kesser BW. Revision aural atresia surgery: indications and outcomes. Otol Neurotol 2011;32:252-8.
    66. Chang SO, Choi BY, Hur DG. Analysis of the long-term hearing results after the surgical repair of aural atresia. The Laryngoscope 2006; 116:1835-41.
    67. Tjellstrom A, Hakansson B, Granstrom G. Bone-anchored hearing aids:current status in adults and children. Otolaryngol Clin North Am 2001;34:337-64.
    68. Verhagen CV, Hol MK, Coppens-Schellekens W, Snik AF, Cremers CW. The Baha Softband. A new treatment for young children with bilateral congenital aural atresia. International journal of pediatric otorhinolaryngology 2008;72:1455-9.
    69. Romo T,3rd, Morris LG, Reitzen SD, Ghossaini SN, Wazen JJ, Kohan D. Reconstruction of congenital microtia-atresia:outcomes with the Medpor/bone-anchored hearing aid-approach. Ann Plast Surg 2009;62:384-9.
    70. Mazita A, Fazlina WH, Abdullah A, Goh BS, Saim L. Hearing rehabilitation in congenital canal atresia. Singapore Med J 2009;50:1072-6.
    71. Lloyd S, Almeyda J, Sirimanna KS, Albert DM, Bailey CM. Updated surgical experience with bone-anchored hearing aids in children. J Laryngol Otol 2007;121:826-31.
    72. Wazen JJ, Wycherly B, Daugherty J. Complications of bone-anchored hearing devices. Adv Otorhinolaryngol 2011;71:63-72.
    73. Pfiffner F, Kompis M, Stieger C. Bone-anchored Hearing Aids:correlation between pure-tone thresholds and outcome in three user groups. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2009;30:884-90.
    74. Todt I, Wagner J, Goetze R, Scholz S, Seidl R, Ernst A. MRI scanning in patients implanted with a Vibrant Soundbridge. The Laryngoscope 2011;121:1532-5.
    75. Oliver ER, Lambert PR, Rumboldt Z, Lee FS, Agarwal A. Middle ear dimensions in congenital aural atresia and hearing outcomes after atresiaplasty. Otol Neurotol 2010;31:946-53.
    76. Shonka DC, Jr., Livingston WJ,3rd, Kesser BW. The Jahrsdoerfer grading scale in surgery to repair congenital aural atresia. Arch Otolaryngol Head Neck Surg 2008; 134:873-7.
    77. Siegert R, Weerda H, Mayer T, Bruckmann H. [High resolution computerized tomography of middle ear abnormalities]. Laryngorhinootologie 1996;75:187-94.
    78. Fraysse B, Lavieille JP, Schmerber S, et al. A multicenter study of the Vibrant Soundbridge middle ear implant:early clinical results and experience. Otology & neurotology:official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 2001;22:952-61.
    79. Henrot P, Iochum S, Batch T, Coffinet L, Blum A, Roland J. Current multiplanar imaging of the stapes. AJNR Am J Neuroradiol 2005;26:2128-33.
    80. Tasar M, Yetiser S, Yildirim D, et al. Preoperative evaluation of the congenital aural atresia on computed tomography; an analysis of the severity of the deformity of the middle ear and mastoid. Eur J Radiol 2007;62:97-105.
    81. Veillon F, Riehm S, Emachescu B, et al. Imaging of the windows of the temporal bone. Semin Ultrasound CT MR 2001;22:271-80.
    82. Jahrsdoerfer RA. The facial nerve in congenital middle ear malformations. The Laryngoscope 1981;91:1217-25.
    83. Jahrsdoerfer RA. Transposition of the facial nerve in congenital aural atresia. Am J Otol 1995;16:290-4.
    84. Booth TN, Vezina LG, Karcher G, Dubovsky EC. Imaging and clinical evaluation of isolated atresia of the oval window. AJNR Am J Neuroradiol 2000;21:171-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700