用户名: 密码: 验证码:
体外Ponatinib耐药细胞模型建立及耐药机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性粒细胞白血病(Chronic myeloid leukemia, CML)是一种起源于造血干细胞恶性克隆性疾病,费城染色体(Ph)是其特征的细胞遗传学标志,其衍生的BCR-ABL融合基因编码210KD融合蛋白,后者可通过持续激活的酪氨酸激酶活化下游多条信号转导通路,促进白血病细胞增殖和凋亡耐受,从而导致慢粒的发生发展。因此,BCR-ABL酪氨酸激酶成为治疗慢粒最理想的分子靶点。伊马替尼(Imatinib)作为首个被批准用于肿瘤治疗的靶向性药物,因其治疗的安全性及有效性成为慢粒患者的一线药物。然而,仍有部分患者存在原发或是获得性耐药,其中BCR-ABL激酶结构域点突变是获得性耐药的主要原因。随后发展设计的第二代新药,尼洛替尼(Nilotinib)和达沙替尼(Dasatinib)是用于治疗Imatinib耐药或是不能耐受的慢粒患者,可抑制除T315I突变以外其它大多数的BCR-ABL激酶结构域突变所致的酪氨酸激酶活性。
     Ponatinib作为治疗慢粒的第三代酪氨酸激酶抑制剂,是Ariad制药公司开发的一种可以抑制包括T315I在内的所有BCR-ABL激酶结构域突变的药物,由BCR-ABL酪氨酸激酶结构域点突变引起的Ponatinib耐药已有相关实验研究报导。目前该药已经进入Ⅱ期临床试验,该实验招募的94%CML耐药患者均为至少2种获准的酪氨酸激酶抑制剂治疗失败后,虽然经过Poantinib治疗一半的患者达到了主要细胞遗传学缓解,但仍有部分患者出现了耐药。
     针对这一现象,本研究建立了体外Ponatinib耐药模型,并揭示其可能的耐药分子机制,为进一步筛选和开发新的酪氨酸激酶抑制剂,逆转Ponatinib耐药提供实验依据。
     本研究使用32D (BCR-ABL)和K562两种BCR-ABL+CML细胞株,通过逐步递增Ponatinib浓度的方法建立耐药细胞株模型。以敏感细胞株为对照,PCR测序未发现其BCR-ABL激酶结构域存在点突变。用伊马替尼,尼洛替尼和达沙替尼分别处理耐药及敏感细胞株,MTS实验检测细胞增殖活性证实Ponatinib耐药的32D (BCR-ABL) ponR和K562ponR细胞,同时也存在对伊马替尼,尼洛替尼和达沙替尼耐药。Westem blot检测发现较低浓度Poantinib即可抑制耐药细胞磷酸化BCR-ABL蛋白表达。以上结果均提示耐药细胞呈现出一种非BCR-ABL酪氨酸激酶依赖的耐药分子机制。
     对32D (BCR-ABL) ponR细胞进一步研究发现,在BCR-ABL活性受到抑制时,其下游底物STAT5仍保持活性。以小分子抑制剂为基础的合成性致死筛选试验结果显示只有某些JAK家族的抑制剂协同Ponatinib才会对32D (BCR-ABL) ponR耐药细胞产生合成性致死作用。shRNA敲除32D (BCR-ABL) ponR耐药细胞BCR-ABL基因模拟Ponatinib药理作用,MTS实验显示,单一JAK家族的抑制剂即可抑制耐药细胞的增殖,说明该细胞耐药与活化的JAK/STAT辅助信号转导通路有关。基因芯片技术分析耐药及敏感细胞基因表达情况,并用实时荧光定量PCR对其进行验证,发现耐药细胞中细胞因子IL-3表达明显上调(P<0.01),且IL-3中和抗体可以减弱耐药细胞对Ponatinib的耐受。而K562ponR细胞也同样存在着辅助信号转导通路MEK/ERK的活化,联合使用Ponatinib和MEK/ERK抑制剂可以抑制K562ponR细胞的生长。
     我们也分析了1例经Ponatinib治疗失败的患者标本,该患者存在BCR-ABLT315I突变,但BCR-ABLT315I活性在体外可被低浓度Ponatinib抑制,合成性致死筛选试验siRNA实验发现,敲除CSF1R可协同Ponatinib显著降低白血病细胞的生长,提示其可能是通过激活CSF1R辅助信号转导通路产生的耐药。
     通过这些研究说明Ponatinib耐药呈现一种非BCR-ABL依赖的耐药分子机制,针对这类患者同时采取抑制BCR-ABL及辅助信号通路抑制剂可以达到理想的治疗效果。
Chronic myeloid leukemia (CML) arises from the neoplastic transformation of a hematopoietic stem cell, which is characterized by the Philadelphia chromosome. A P210BCR-ABL protein is generated by the BCR-ABL fusion gene, which is a constitutively active tyrosine kinase that drives cell proliferation and apoptosis through multiple downstream signal pathways. Since the BCR-ABL is considered essential for the disease progression, targeting the tyrosine kinase activity of BCR-ABL shows an attractive therapeutic strategy. The BCR-ABL kinase inhibitor imatinib, because of the safety and effectivity, has become the first line therapy of CML. But still some patients show primary or acquired resistant to imatinib therapy, the most frequently described mechanism of acquired resistance to imatinb is the occurrence of point mutations in the kinase domain of BCR-ABL. Patients who are intolerant or resistant to imatinib have the effective salvage therapy of the second line ABL kinase inhibitors nilotinib and dasatinib. Both of them target most mutants except the cross resistant BCR-ABLY3151mutation.
     Ponatinib, from the Ariad pharmacy company, is a multitargeted kinase inhibitor that can even inhibit BCR-ABLT3151, which is the third line therapy for patients with CML. BCR-ABL kinase domain mutation-mediated ponatinib resistance has been investigated in vitro. A pivotal phase II trial is underway, almost94%CML patients have previously failed at least2tyrosine kinase inhibitors, after ponatinib treatment half of the patients achieved major cytogenetic response, but there are still some patients resistant to ponatinib therapy.
     Here, we developed ponatinib resistant, BCR-ABL positive cell lines lacking a kinase domain mutation and investigated mechanisms of resistance, trying to possibly in advance of full mechanistic understanding in the clinic, to search and investigate new tyrosine kinase inhibitor, and to restore ponatinib resistant paitent's response.
     Two BCR-ABL+cell lines,32D(BCR-ABL) and K562, were exposed to escalating concentrations of ponatinib to generate ponatinib-resistant cells. BCR-ABL kinase domain sequencing of resistant cells confirmed BCR-ABL to be unmutated. MTS cell proliferation assay of sensitive and resistant cells showed that ponatinib resistant cell also exhibited resistance to imatinib, nilotinib and dasatinib. In each of the ponatinib-resistant cell lines, BCR-ABL tyrosine kinase activity was pharmacologically silenced by low concentrations of ponatinib and yet the cells survived. All data indicated a BCR-ABL kinase independent mechanism of resistance.
     Based on western blot, tyrosine phosphorylation of the BCR-ABL downstream target STAT5was substantially maintained despite ponatinib-mediated inhibition of BCR-ABL1catalytic activity in32D (BCR-ABL)ponR cells. A small molecule inhibitors screen was applied to the32D(BCR-ABL)ponR resistant cell in the presence or absence of ponatinib to assess synthetic lethality. Only dual combinations of ponatinib and certain JAK inhibitors are lethal to resistant cell. Knocking down the BCR-ABL by shRNA mimicked the ponatinib effect, resistant cell exhibited single agent sensitivity to some JAK inhibitors, which suggested that JAK/STAT co-critical signaling pathway may be involved in this BCR-ABL independent mechanism of resistance. Sensitive and resistant cells were used for gene microarray analysis, and validated by the real time PCR. IL-3expression is up-regulated in resistant cell (p<0.01), and the IL-3neutralizing antibody could reduce the tolerance of resistant cell to ponatinib. Synthetic lethality screening identified MEK/ERK co-critical signaling pathway in K562ponR cells, only ponatinib synergizes with MEK/ERK inhibition to induce synthetic lethality in ponatinib resistant K562ponR cells.
     We analyzed one ponatinib treatment failure patient sample recently, only BCR-ABLT3151mutation was found in this patient and BCR-ABLT3151activity was inhibited ex vivo by low concentration of ponatinib. Synthetic lethality siRNA screening showed that combination of ponatinib and knockdown CSFlR drastically reduces CML cell viability, which suggested that CSFlR co-critical signaling pathway was involved in this BCR-ABL independent mechanism of resistance.
     Our findings indicate a BCR-ABL independent mechanism of ponatinib resistance, some relapsed CML patients may benefit from targeting both BCR-ABL and co-critical signaling pathways.
引文
[1]Faderl S, Talpaz M, Estrov Z, et al. Chronic myelogenous leukemia:biology and therapy. Ann Intern Med,1999,131(3):207-219
    [2]Faderl S, Talpaz M, Estrov Z, et al. The biology of chronic myeloid leukemia. N Engl J Med,1999,341(3):164-172
    [3]NOWELL PC. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut,1962,8:65-66
    [4]Rowley JD. Letter:A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature,1973,243(5405):290-293
    [5]Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood,2000,96(10):3343-3356
    [6]Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer,2005,5(3):172-183
    [7]Quintas-Cardama A, Cortes J. Molecular biology of bcr-abll-positive chronic myeloid leukemia. Blood,2009,113(8):1619-1630
    [8]Cowan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia:molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem, 2004,4(3):285-299
    [9]Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med, 2006,355(23):2408-2417
    [10]Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med,2001,344(14):1031-1037
    [11]Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med, 1996,2(5):561-566
    [12]O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med,2003,348(11):994-1004
    [13]Hochhaus A, O'Brien SG, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia,2009,23 (6):1054-1061
    [14]Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res,2002,62(15):4236-4243
    [15]Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science,2000,289 (5486): 1938-1942
    [16]Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005,7(2):129-141
    [17]Press RD, Willis SG, Laudadio J, et al. Determining the rise in BCR-ABL RNA that optimally predicts a kinase domain mutation in patients with chronic myeloid leukemia on imatinib. Blood,2009,114(13):2598-2605
    [18]O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN 107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res,2005,65 (11): 4500-4505
    [19]Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med,2010,362(24):2251-2259
    [20]de Lavallade H, Apperley JF, Khorashad JS, et al. Imatinib for newly diagnosed patients with chronic myeloid leukemia:incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol,2008, 26(20):3358-3363
    [21]Quintas-Cardama A, Kantarjian H, Jones D, et al. Delayed achievement of cytogenetic and molecular response is associated with increased risk of progression among patients with chronic myeloid leukemia in early chronic phase receiving high-dose or standard-dose imatinib therapy. Blood,2009, 113(25):6315-6321
    [22]Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science,2004,305(5682):399-401
    [23]Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med,2010,362 (24):2260-2270
    [24]Huang WS, Metcalf CA, Sundaramoorthi R, et al. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyI]-4-methyl-N-{4-[(4-methylpiperaz in-1-y 1)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem,2010,53 (12): 4701-4719
    [25]Zhou T, Commodore L, Huang WS, et al. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534):lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des,2011,77(1):1-11
    [26]O'Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell,2009,16(5):401-412
    [27]Talpaz M, Cortes KE, Deininger MW, et al. Phase I trial of AP24534 in patients with refractory chronic myeloid leukemia (CML) and hematologic malignancies. ASCO Meeting Abstracts,2010 28 (15):6511.
    [28]Cortes JE, Kim DW, Pinilla-Ibarz J. Initial Findings From the PACE Trial:A Pivotal Phase 2 Study of Ponatinib in Patients with CML and Ph+ ALL Resistant or Intolerant to Dasatinib or Nilotinib, or with the T315I Mutation. ASH Meeting Abstracts,2011.
    [29]Bi S, Lanza F, Goldman JM. The abnormal p53 proteins expressed in CML cell lines are non-functional. Leukemia,1993,7(11):1840-1845
    [30]Gozgit JM, Wong MJ, Wardwell S, et al. Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther,2011,10(6):1028-1035
    [31]Eide CA, Adrian LT, Tyner JW, et al. The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR-ABLT315I and exhibits a narrow resistance profile. Cancer Res,2011, 71(9):3189-3195
    [32]Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance. Blood, 2000,96(3):1070-1079
    [33]Mahon FX, Hayette S, Lagarde V, et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res, 2008,68(23):9809-9816
    [1]Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia:recommendations from an expert panel on behalf of the European LeukemiaNet. Blood,2006,108(6):1809-1820
    [2]Floyd MD, Gervasini G, Masica AL, et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics,2003,13(10):595-606
    [3]Gambacorti-Passerini C, Barni R, le CP, et al. Role of alphal acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst,2000,92(20):1641-1650
    [4]Gambacorti-Passerini C, Zucchetti M, Russo D, et al. Alphal acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res, 2003,9(2):625-632
    [5]Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells:implications for drug resistance. Blood,2004,104(12):3739-3745
    [6]Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance. Blood, 2000,96(3):1070-1079
    [7]Illmer T, Schaich M, Platzbecker U, et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia,2004,18(3):401-408
    [8]Sakata T, Anzai N, Shin HJ, et al. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem Biophys Res Commun,2004,313(3):789-793
    [9]Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood, 2000,95(11):3498-3505
    [10]Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001,293(5531):876-880
    [11]Apperley JF. Part I:mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol,2007,8(11):1018-1029
    [12]Burchert A, Wang Y, Cai D, et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia,2005,19 (10):1774-1782
    [13]Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood,2003,101(2):690-698
    [14]Esposito N, Colavita I, Quintarelli C, et al. SHP-1 expression accounts for resistance to imatinib treatment in Philadelphia chromosome-positive cells derived from patients with chronic myeloid leukemia. Blood,2011,118 (13):3634-3644
    [15]Gioia R, Leroy C, Drullion C, et al. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood,2011,118(8):2211-2221
    [16]Dai Y, Rahmani M, Corey SJ, et al. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem,2004,279(33):34227-34239
    [17]Mahon FX, Hayette S, Lagarde V, et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res, 2008,68(23):9809-9816
    [18]Mirabella F, Baxter EW, Boissinot M, et al. The human IL-3/granulocyte-macrophage colony-stimulating factor locus is epigenetically silent in immature thymocytes and is progressively activated during T cell development. J Immunol,2010,184(6):3043-3054
    [19]Fujii T, Fuchs BC, Yamada S, et al. Mouse model of carbon tetrachloride induced liver fibrosis:Histopathological changes and expression of CD 133 and epidermal growth factor. BMC Gastroenterol,2010,10:79
    [20]持云碧,张广森. BCR/ABL癌基因启动JAK/STAT信号传导途径的机制后果及意义.国外医学:输血及血液学分册,2001,24(6):473-476
    [21]Ilaria RL Jr, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem,1996,271(49):31704-31710
    [22]Packer LM, Rana S, Hayward R, et al. Nilotinib and MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell,2011,20(6):715-727
    [23]Gregory MA, Phang TL, Neviani P, et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell, 2010,18(1):74-87
    [24]Donato NJ, Wu JY, Stapley J, et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res, 2004,64(2):672-677
    [25]Flanagan ME, Blumenkopf TA, Brissette WH, et al. Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J Med Chem, 2010,53(24):8468-8484
    [26]Ostojic A, Vrhovac R, Verstovsek S. Ruxolitinib:a new JAK 1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol, 2011,7(9):1035-1043
    [27]Mascarenhas J, Hoffman R. Ruxolitinib:the first FDA approved therapy for the treatment of myelofibrosis. Clin Cancer Res,2012,18(11):3008-3014
    [28]Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science,1994,264(5164):1415-1421
    [29]Traer E, MacKenzie R, Snead J, et al. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia,2012,26(5):1140-1143
    [30]Dorsey JF, Cunnick JM, Lanehart R, et al. Interleukin-3 protects Bcr-Abl-transformed hematopoietic progenitor cells from apoptosis induced by Bcr-Abl tyrosine kinase inhibitors. Leukemia,2002,16(9):1589-1595
    [31]Jiang X, Lopez A, Holyoake T, et al. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci U S A,1999,96(22):12804-12809
    [32]Donato NJ, Wu JY, Zhang L, et al. Down-regulation of interleukin-3/ granulocyte-macrophage colony-stimulating factor receptor beta-chain in BCR-ABL(+) human leukemic cells:association with loss of cytokine-mediated Stat-5 activation and protection from apoptosis after BCR-ABL inhibition. Blood,2001,97(9):2846-2853
    [33]Schindler C, Strehlow I. Cytokines and STAT signaling. Adv Pharmacol, 2000,47:113-174
    [34]Dumon S, Santos SC, Debierre-Grockiego F, et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene,1999,18(29):4191-4199
    [1]Cortes JE, Kim DW, Pinilla-Ibarz J. Initial Findings From the PACE Trial:A Pivotal Phase 2 Study of Ponatinib in Patients with CML and Ph+ ALL Resistant or Intolerant to Dasatinib or Nilotinib, or with the T315I Mutation. ASH Meeting Abstracts,2011.
    [2]Burchert A, Wang Y, Cai D, et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia,2005,19 (10):1774-1782
    [3]Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood,2003,101(2):690-698
    [4]Esposito N, Colavita I, Quintarelli C, et al. SHP-1 expression accounts for resistance to imatinib treatment in Philadelphia chromosome-positive cells derived from patients with chronic myeloid leukemia. Blood,2011,118 (13):3634-3644
    [5]Gioia R, Leroy C, Drullion C, et al. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood,2011,118(8):2211-2221
    [6]Chu S, Holtz M, Gupta M, et al. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+cells. Blood,2004,103(8):3167-3174
    [7]Packer LM, Rana S, Hayward R, et al. Nilotinib and MEK inhibitors induce synthetic lethality through paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell,2011,20(6):715-727
    [8]Hunter M, Wang Y, Eubank T, et al. Survival of monocytes and macrophages and their role in health and disease. Front Biosci,2009,14:4079-4102
    [9]Rohrschneider LR, Bourette RP, Lioubin MN, et al. Growth and differentiation signals regulated by the M-CSF receptor. Mol Reprod Dev,1997,46(1):96-103
    [10]Lee J, Kim Y, Lim J, et al. G-CSF and GM-CSF concentrations and receptor expression in peripheral blood leukemic cells from patients with chronic myelogenous leukemia. Ann Clin Lab Sci,2008,38(4):331-337
    [1]Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood,2000,96(10):3343-3356
    [2]Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer,2005,5(3):172-183
    [3]Quintas-Cardama A, Cortes J. Molecular biology of bcr-abll-positive chronic myeloid leukemia. Blood,2009,113(8):1619-1630
    [4]Co wan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia:molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem,2004, 4 (3):285-299
    [5]Marin D, Kaeda J, Szydlo R, et al. Monitoring patients in complete cytogenetic remission after treatment of CML in chronic phase with imatinib: patterns of residual leukaemia and prognostic factors for cytogenetic relapse. Leukemia,2005,19(4):507-512
    [6]Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med,2003,349(15):1423-1432
    [7]Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia:recommendations from an expert panel on behalf of the European LeukemiaNet. Blood,2006,108(6):1809-1820
    [8]Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance. Blood, 2000,96(3):1070-1079
    [9]Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001,293(5531):876-880
    [10]Campbell LJ, Patsouris C, Rayeroux KC, et al. BCR/ABL amplification in chronic myelocytic leukemia blast crisis following imatinib mesylate administration. Cancer Genet Cytogenet,2002,139(1):30-33
    [11]Morel F, Bris MJ, Herry A, et al. Double minutes containing amplified bcr-abl fusion gene in a case of chronic myeloid leukemia treated by imatinib. Eur J Haematol,2003,70(4):235-239
    [12]Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia, 2002,16(11):2190-2196
    [13]Barnes DJ, Palaiologou D, Panousopoulou E, et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res,2005,65(19):8912-8919
    [14]Mahon FX, Hayette S, Lagarde V, et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res, 2008,68(23):9809-9816
    [15]Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood,2003,102(1):276-283
    [16]Soverini S, Colarossi S, Gnani A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients:by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res,2006,12(24):7374-7379
    [17]Cortes J, Jabbour E, Kantarjian H, et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood,2007,110(12):4005-4011
    [18]Apperley JF. Part I:mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol,2007,8(11):1018-1029
    [19]Milojkovic D, Apperley J. State-of-the-art in the treatment of chronic myeloid leukaemia. Curr Opin Oncol,2008,20(1):112-121
    [20]Milojkovic D, Apperley J. Mechanisms of Resistance to Imatinib and Second-Generation Tyrosine Inhibitors in Chronic Myeloid Leukemia. Clin Cancer Res,2009,15(24):7519-7527
    [21]Soverini S, Martinelli G, Rosti G, et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival:a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol,2005,23(18):4100-4109
    [22]Khorashad JS, de Lavallade H, Apperley JF, et al. Finding of kinase domain mutations in patients with chronic phase chronic myeloid leukemia responding to imatinib may identify those at high risk of disease progression. J Clin Oncol, 2008,26(29):4806-4813
    [23]Floyd MD, Gervasini G, Masica AL, et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics,2003,13(10):595-606
    [24]Larson RA, Druker BJ, Guilhot F, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia:a subanalysis of the IRIS study. Blood,2008,111(8):4022-4028
    [25]Li X, He Y, Ruiz CH, et al. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos,2009,37(6):1242-1250
    [26]Deremer DL, Ustun C, Natarajan K. Nilotinib:a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Clin Ther, 2008,30(11):1956-1975
    [27]Gambacorti-Passerini C, Barni R, le CP, et al. Role of alpha 1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst,2000,92(20):1641-1650
    [28]Gambacorti-Passerini C, Zucchetti M, Russo D, et al. Alphal acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res, 2003,9(2):625-632
    [29]Jorgensen HG, Elliott MA, Allan EK, et al. Alphal-acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. Blood,2002,99(2):713-715
    [30]Lagas JS, van WRA, van TVA, et al. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res, 2009,15(7):2344-2351
    [31]Arceci RJ. Clinical significance of P-glycoprotein in multidrug resistance malignancies. Blood,1993,81(9):2215-2222
    [32]Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene,2003,22(47):7340-7358
    [33]Galimberti S, Cervetti G, Guerrini F, et al. Quantitative molecular monitoring of BCR-ABL and MDR1 transcripts in patients with chronic myeloid leukemia during Imatinib treatment. Cancer Genet Cytogenet,2005,162 (1):57-62
    [34]Zong Y, Zhou S, Sorrentino BP. Loss of P-glycoprotein expression in hematopoietic stem cells does not improve responses to imatinib in a murine model of chronic myelogenous leukemia. Leukemia,2005,19(9):1590-1596
    [35]Ferrao PT, Frost MJ, Siah SP, et al. Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro. Blood,2003,102(13):4499-4503
    [36]Jordanides NE, Jorgensen HG, Holyoake TL, et al. Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood,2006,108(4):1370-1373
    [37]Hiwase DK, Saunders V, Hewett D, et al. Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells:therapeutic implications. Clin Cancer Res, 2008,14(12):3881-3888
    [38]Kamath AV, Wang J, Lee FY, et al. Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825):a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol, 2008,61(3):365-376
    [39]Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells:implications for drug resistance. Blood,2004,104(12):3739-3745
    [40]Sakata T, Anzai N, Shin HJ, et al. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem Biophys Res Commun,2004,313(3):789-793
    [41]White DL, Saunders VA, Dang P, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity:higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood, 2007,110(12):4064-4072
    [42]White DL, Radich J, Soverini S, et al. Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica,2012,97(6):907-914
    [43]White DL, Saunders VA, Dang P, et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood,2006,108(2):697-704
    [44]Majlis A, Smith TL, Talpaz M, et al. Significance of cytogenetic clonal evolution in chronic myelogenous leukemia. J Clin Oncol,1996,14 (1): 196-203
    [45]O'Dwyer ME, Mauro MJ, Blasdel C, et al. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood, 2004,103(2):451-455
    [46]Cortes JE, Talpaz M, Giles F, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood,2003,101(10):3794-3800
    [47]Cortes J, O'Dwyer ME. Clonal evolution in chronic myelogenous leukemia. Hematol Oncol Clin North Am,2004,18(3):671-684, x
    [48]Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol,2002,107(2):76-94
    [49]Lahaye T, Riehm B, Berger U, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center:a 4.5-year follow-up. Cancer,2005,103(8):1659-1669
    [50]Jabbour E, Kantarjian H, Jones D, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia,2006,20(10):1767-1773
    [51]Copland M, Hamilton A, Elrick LJ, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood,2006,107(11):4532-4539
    [52]Jiang X, Zhao Y, Smith C, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia,2007,21(5):926-935
    [53]Konig H, Copland M, Chu S, et al. Effects of dasatinib on SRC kinase activity and downstream intracellular signaling in primitive chronic myelogenous leukemia hematopoietic cells. Cancer Res,2008,68(23):9624-9633
    [54]Burchert A, Wang Y, Cai D, et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia,2005,19(10): 1774-1782
    [55]Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood,2003,101(2):690-698
    [56]Esposito N, Colavita I, Quintarelli C, et al. SHP-1 expression accounts for resistance to imatinib treatment in Philadelphia chromosome-positive cells derived from patients with chronic myeloid leukemia. Blood,2011,118 (13): 3634-3644
    [57]Gioia R, Leroy C, Drullion C, et al. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood,2011,118(8):2211-2221
    [58]Dai Y, Rahmani M, Corey SJ, et al. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem,2004,279(33):34227-34239
    [59]Traer E, MacKenzie R, Snead J, et al. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia,2012,26(5):1140-1143
    [60]Nair RR, Tolentino JH, Argilagos RF, et al. Potentiation of Nilotinib-mediated cell death in the context of the bone marrow microenvironment requires a promiscuous JAK inhibitor in CML. Leuk Res,2012,36(6):756-763
    [61]Chu S, Holtz M, Gupta M, et al. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood,2004,103(8):3167-3174
    [62]Aceves-Luquero CI, Agarwal A, Callejas-Valera JL, et al. ERK2, but not ERK1, mediates acquired and "de novo" resistance to imatinib mesylate: implication for CML therapy. PLOS ONE,2009,4(7):e6124
    [63]Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med,2006,355 (23):2408-2417
    [64]Hochhaus A, O'Brien SG, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia,2009,23(6):1054-1061
    [65]O'Brien SG, Deininger MW. Imatinib in patients with newly diagnosed chronic-phase chronic myeloid leukemia. Semin Hematol,2003,40(2 Suppl 2):26-30
    [66]Kantarjian HM, Talpaz M, O'Brien S, et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood,2003,101 (2):473-475
    [67]O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res,2005,65 (11): 4500-4505
    [68]Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science,2004,305(5682):399-401
    [69]Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med,2010,362(24):2251-2259
    [70]Tanaka C, Yin OQ, Sethuraman V, et al. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther,2010,87 (2):197-203
    [71]Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med, 2010,362(24):2260-2270
    [72]Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med, 1996,2(5):561-566
    [73]de Lavallade H, Apperley JF, Khorashad JS, et al. Imatinib for newly diagnosed patients with chronic myeloid leukemia:incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol,2008,26 (20): 3358-3363
    [74]Quintas-Cardama A, Kantarjian H, Jones D, et al. Delayed achievement of cytogenetic and molecular response is associated with increased risk of progression among patients with chronic myeloid leukemia in early chronic phase receiving high-dose or standard-dose imatinib therapy. Blood,2009,113 (25):6315-6321
    [75]Puttini M, Coluccia AM, Boschelli F, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res,2006,66(23):11314-11322
    [76]Remsing RLL, Rix U, Colinge J, et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia, 2009,23(3):477-485
    [77]Cortes JE, Kantarjian HM, Brummendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood,2011,118(17):4567-4576
    [78]Huang WS, Metcalf CA, Sundaramoorthi R, et al. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperaz in-1-y 1)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem,2010,53 (12): 4701-4719
    [79]Zhou T, Commodore L, Huang WS, et al. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534):lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des,2011,77(1):1-11
    [80]O'Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell,2009,16(5):401-412
    [81]Talpaz M, Cortes KE, Deininger MW, et al. Phase I trial of AP24534 in patients with refractory chronic myeloid leukemia (CML) and hematologic malignancies. ASCO Meeting Abstracts,2010 28 (15):6511
    [82]Cortes JE, Kim DW, Pinilla-Ibarz J. Initial Findings From the PACE Trial:A Pivotal Phase 2 Study of Ponatinib in Patients with CML and Ph+ ALL Resistant or Intolerant to Dasatinib or Nilotinib, or with the T315I Mutation. ASH Meeting Abstracts,2011
    [83]Eide CA, Adrian LT, Tyner JW, et al. The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR-ABLT315I and exhibits a narrow resistance profile. Cancer Res,2011, 71 (9):3189-3195
    [84]Chan WW, Wise SC, Kaufman MD, et al. Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell,2011,19(4):556-568
    [85]Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer,2011,11(12):865-878
    [86]Weisberg E, Choi HG, Ray A, et al. Discovery of a small-molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRalpha, Kit, and Src kinases:novel type II inhibitor of gatekeeper mutants. Blood, 2010,115(21):4206-4216
    [87]Zhang J, Adrian FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature,2010,463(7280):501-506
    [88]Weisberg E, Deng X, Choi HG, et al. Beneficial effects of combining a type II ATP competitive inhibitor with an allosteric competitive inhibitor of BCR-ABL for the treatment of imatinib-sensitive and imatinib-resistant CML. Leukemia,2010,24(7):1375-1378
    [89]Wong S, McLaughlin J, Cheng D, et al. Sole BCR-ABL inhibition is insufficient to eliminate all myeloproliferative disorder cell populations. Proc Natl Acad Sci U S A,2004,101(50):17456-17461
    [90]Zhang B, Strauss AC, Chu S, et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell,2010,17(5):427-442
    [91]Holtz M, Forman SJ, Bhatia R. Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after imatinib treatment. Cancer Res,2007,67(3):1113-1120
    [92]Copland M, Pellicano F, Richmond L, et al. BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood,2008,111(5):2843-2853
    [93]Gregory MA, Phang TL, Neviani P, et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell, 2010,18(1):74-87
    [94]Albero MP, Vaquer JM, Andreu EJ, et al. Bortezomib decreases Rb phosphorylation and induces caspase-dependent apoptosis in Imatinib-sensitive and -resistant Bcr-Abl1-expressing cells. Oncogene,2010,29 (22):3276-3286
    [95]Heaney NB, Pellicano F, Zhang B, et al. Bortezomib induces apoptosis in primitive chronic myeloid leukemia cells including LTC-IC and NOD/SCID repopulating cells. Blood,2010,115(11):2241-2250
    [96]Preudhomme C, Guilhot J, Nicolini FE, et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med,2010,363(26):2511-2521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700