用户名: 密码: 验证码:
空心硅纳米粒子光敏剂在光动力治疗胆管癌中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1、制备负载光敏剂Photosan的空心氧化硅纳米粒子(以下简称纳米化Photosan),并初步探讨纳米化Photosan的药物安全性。
     2、探索并比较Photosan及纳米化Photosan介导的光动力疗法(Photodynamic Therapy, PDT)在体外试验中对胆管癌的疗效。
     3、探索并比较Photosan及纳米化Photosan介导的PDT在体内试验中对胆管癌的疗效。
     4、探索并比较Photosan及纳米化Photosan介导的PDT抑制胆管癌生长的可能途径。
     方法:
     1、采用一步湿化学方法制备负载Photosan的空心氧化硅纳米粒子。
     2、体外实验中,用MTT法检测Photosan及纳米化Photosan介导的PDT对人胆管癌QBC939细胞的杀伤作用。观察不同的光敏剂孵育时间、光敏剂浓度,及光照剂量对PDT效果的影响,并了解这两种光敏剂的暗毒性,比较其药效差异。用流式细胞计数实验进一步观察两种光敏剂应用于PDT的效果,并比较它们之间的差异。光学显微镜下观察PDT前后细胞的形态学改变。
     3、建立裸鼠人胆管癌移植瘤模型,观察Photosan及纳米化Photosan介导的PDT对肿瘤的抑制作用及它们之间的差异。观察光敏剂对动物有无毒副作用。病理切片下观察PDT后肿瘤组织细胞的形态学改变。
     4、检测裸鼠肿瘤PDT治疗后对其血管生成、侵袭能力及细胞凋亡的影响,并对比两种光敏剂间的区别。所用方法为用PCR、 western-blot、免疫组化等检测相关基因在mRNA和蛋白表达的水平的区别。
     结果:
     1、成功制备了负载Photosan的空心氧化硅纳米粒子,实现了光敏剂Photosan的纳米化。
     2、MTT法结果显示Photosan及纳米化Photosan介导的PDT均对胆管癌细胞有明显的杀伤作用(P<0.05),而后者的杀伤作用更强(P<0.05)。光动力作用在一定范围内与光敏剂的孵育时间、光敏剂的浓度及光照剂量均呈正相关的关系。两种光敏剂均无明显的暗毒性,但两者具有不同的最佳作用参数。纳米化Photosan的最佳作用参数中,其所需的光敏剂浓度更低,孵育时间更短。Photosan及纳米化Photosan的流式细胞计数实验显示,使用各自的最佳作用参数时,后者的细胞杀伤效果明显强于前者(P<0.05)。两者对细胞杀伤的途径均以诱导凋亡为主,而后者中细胞坏死的比例高于前者。光学显微镜下亦可观察到纳米化Photosan对肿瘤细胞的杀伤作用更强,且坏死细胞的比例更高。
     3、动物实验结果显示,在使用各自的最佳作用参数时,Photosan与纳米化Photosan介导的PDT均对胆管癌有明显的抑制作用(P<0.05),而后者作用更强(P<0.05)。病理切片结果亦显示,后者对肿瘤的杀伤效果更为明显。
     4、Photosan及纳米化Photosan介导的PDT作用于胆管癌后,与肿瘤血管生成、侵袭能力相关的基因在mRNA及蛋白水平的表达均下调(P<0.05),与细胞凋亡相关的基因表达上调(P<0.05)。且后者相较于前者,对肿瘤侵袭能力及细胞凋亡的影响更为强烈(P<0.05)。
     结论:
     1、采用一步湿化学方法可制备出负载Photosan的空心氧化硅纳米粒子,实现光敏剂Photosan的纳米化,且纳米化Photosan无明显毒性。
     2、Photosan及纳米化Photosan介导的PDT均对胆管癌细胞具有明显的杀伤作用,而后者的杀伤作用更强。光动力作用在一定范围内与光敏剂的孵育时间、光敏剂的浓度及光照剂量均呈正相关的关系。纳米化Photosan较之于普通Photosan,带来的光动力效应更强,达到有效治疗浓度的速率更快。
     3、Photosan及纳米化photosan介导的PDT均在裸鼠人胆管癌移植瘤模型上证实具有明显的治疗作用,且Photosan纳米化后可缩短给药——光照时间间隔,增强光动力效应。
     4、Photosan及纳米化Photosan介导的PDT治疗肿瘤的机制至少包括了三个方面,即抑制肿瘤的血管生成、降低肿瘤的侵袭能力以及诱发肿瘤细胞的凋亡。且纳米化Photosan减轻肿瘤的侵袭性以及诱发肿瘤细胞凋亡的能力均明显强于Photosan。
Aims:
     1. Preparation Photosan-loaded hollow silica nanoparticles (Photosan-loaded HSNPs), and study the drug safety of Photosan-loaded HSNPs.
     2. Study and compare the effect of photodynamic therapy (PDT) with Photosan and Photosan-loaded HSNPs on cholangiocarcinoma in vitro.
     3. Study and compare the effect of PDT with Photosan and Photosan-loaded HSNPs on cholangiocarcinoma in vivo.
     4. Study and compare the possible ways of PDT with Photosan and Photosan-laoded HSNPs inhibiting the growth of cholangiocarcinoma.
     Methods:
     1. Prepare the Photosan-loaded hollow silica nanoparticles.
     2. In vitro experiments, test the killing effect of PDT with Photosan or Photosan-loaded HSNPs for human cholangiocarcinoma QBC939cells using MTT assay. Observe the influence of PDT effects with different photosensitizer incubation times, different concentrations of photosensitizers and different light dose, and study the dark toxicity of the2photosensitizers as well as compare the differences of their effects. Flow cytometry analysis further investigate the PDT effect of2photosensitizers, and compare the difference between them. Using an optical microscope to observe the morphological changes of the cells before and after PDT.
     3. Establish the human cholangiocarcinoma in nude mice xenograft model, and observe the differences of inhibiting effect of PDT with Photosan of Photosan-loaded HSNPs. Observe whether the photosensitizers have toxic or side effects on animals. Observe the morphological changes of tumor cells before and after PDT by biopsy.
     4. Detect the impacts of PDT for mice's tumors on vascular generation, invasion capacity and cell apoptosis, and compare the differences between the two photosensitizers. The methods were detecting the differences in the level of mRNA and protein expression of related genes using PCR, Western-blot, and immunohistochemistry.
     Results:
     1. Prepare the Photosan-loaded hollow silica nanoparticles successfully.
     2. MTT assay shows that the PDT both with Photosan and Photosan-loaded HSNPs have obvious killing effect on cholangiocarcinoma cells (P<0.05), and the latter one has even better killing effect (P<0.05). Within a certain range, the effect of PDT shows a positive relationship with the photosensitizer incubation time, the concentration of photosensitizer and light dose. There is no obvious dark toxicity on both two kinds of photosensitizers. But these two kinds of photosensitizers have different optimal interaction parameters. The optimal interaction parameter of Photosan-loaded HSNPs has lower photosensitizer concentration and shorter incubation time. Flow cytometry assay with Photosan or Photosan-loaded HSNPs shows that the latter has obviously stronger cell killing effect to the former in the condition of they both using their own optimal interaction parameters (P<0.05). Both of them kill the cells through the way of apoptosis. But the latter has higher proportion of cell necrosis to the former. With an optical microscope we can also find that the killing effect on tumor cells of Photosan-loaded HSNPs is stronger, and the percentage of necrotic cells is higher.
     3. Animal experiments show that PDT with Photosan or Photosan-loaded HSNPs both have significantly inhibition effect to cholangiocarcinoma by using their own optimal interaction parameters (P<0.05), and the latter one is even stronger than the former (P<0.05). Biopsy findings also show that the latter has more obvious anti-tumor effect.
     4. The genes expression at mRNA and protein levels relating to tumor angiogenesis, invasion in cholangiocarcinoma were reduced (P<0.05), and the apoptosis-related genes were up-regulated after PDT with Photosan or Photosan-loaded HSNPs (P<0.05). Compared to the former, the latter has more strongly influence on the tumor invasion ability and tumor cell apoptosis (P<0.05)
     Conclusions:
     1. Photosan-loaded HSNPs can be prepared by one-step wet chemical-based synthetic route. HSNPs have no significant toxicity.
     2. Photosan and Photosan-loaded HSNPs both have obvious killing effect on cholangiocarcinoma cells, while the latter's killing effect is stronger. In a certain range, the effect of PDT shows a positive relationship with the photosensitizer incubation time, the concentration of photosensitizer and light dose. Comparing to Photosan, Photosa-loaded HSNPs bring stronger PDT effect, faster rate to achieve effective therapeutic concentration.
     3. PDT with Photosan and Photosan-loaded HSNPs both proved to have a significant therapeutic effect on nude mice xenograft model of human cholangiocarcinoma.
     4. The possible approachs of PDT with Photosan and Photosan-loaded HSNPs in inhibiting the growth of cholangiocarcinoma are:inhibition of tumor angiogenesis, reduction of tumor invasion ability, as well as induction of tumor cells apoptosis, while the latter reduce tumor invasion ability and induce apoptosis of tumor cells more significantly.
引文
[1]Low K, Knobloch T, Wagner S, et al. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells [J]. Nanotechnology,2011,22 (24):245102.
    [2]Zeisser-Labouebe M, Lange N, Gurny R, et al. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer [J]. Int. J. Pharm.,2006,326 (1-2): 174-181.
    [3]Konan YN, Berton M, Gurny R, et al. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles [J]. Eur. J. Pharm. Sci.,2003,18(3-4):241-249.
    [4]Ricci-Junior E, Marchetti JM. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use [J]。Int. J. Pharm.,2006,310(1-2):187-195.
    [5]Saxena V, Sadoqi M, Shao J. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems [J]. J. Photochem. Photobiol. B,2004,74(1):29-38.
    [6]Oh EK, Jin SE, Kim JK, et al. Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy [J]. Eur. J. Pharm. Sci,2001,44 (1-2):149-157.
    [7]Peterson CM, Lu JM, Sun Y et al. Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl) methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice [J]. Cancer Res,1996,56 (17):3980-3985.
    [8]Soncin M, Polo L, Reddi E et al. Unusually high affinity of Zn(II)-tetradibenzobarrelenooctabutoxy-phthalocyanine for low-density lipoproteins in a tumor-bearing mouse [J]. Photochem Photobiol,1995,61(3): 310-312.
    [9]Tu HL, Lin YS, Lin HY et al. In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy [J]. Advanced materials,2009,21(2): 172-177.
    [10]Chen ZL, Sun Y, Huang P, et al. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy [J]. Nanoscale Res Lett,2009,4(5):400-408.
    [11]Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs:a novel drag-carrier system for photodynamic therapy [J]. J. Am. Chem. Soc.,2003,125(26): 7860-7865.
    [12]Wang SZ, Gao RM, Zhou FM, et al. Nanomaterials and signlet oxygen photosensitizers:potential applications in photodynamic therapy [J]. Journal of materials chemistry,2004,14(4):487-493.
    [13]Snyder JW, Skovsen E, Lambert JD, et al. Subcellular, time-resolved studies of singlet oxygen in single cells [J]. J. Am. Chem. Soc.,2005,127(42): 14558-14559.
    [14]Cho Y, Shi R, Borgens RB, et al. Functionalized mespporous silica nanopartical-based drug delivery system to rescue acrolein-mediated cell death [J]. Nanomedicine,2008,3(4):507-519.
    [15]Zhao Y, Trewyn BG, Slowing II, et al. Mesoporous Silica Nanoparticle-Based Double Drag Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP [J]. J. Am. Chem. Soc.,2009,131(24):8398-8400.
    [16]Slowing II, Trewyn BG, Giri S, et al. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications [J]. Adv. Funct. Mater.,2007,17(8): 1225-1236.
    [17]Tao X, Yang YJ, Liu S, et al. Poly(amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy [J]. Acta Biomater,2013,9(5):6431-8.
    [18]邵志坚,薛平.光动力疗法及其在胆管癌治疗中的应用[J].肝胆胰外科杂志,2009,21(03):247-249.
    [19]Bridgewater J. Photodynamic therapy for biliary tract cancer [J]. Br J Surg,2009 Mar,96(3):225-6.
    [20]Kiesslich T, Neureiter D, Wolkersdorfer GW, et al. Advances in photodynamic therapy for the treatment of hilar biliary tract cancer [J]. Future Oncol,2010 Dec, 6(12):1925-36.
    [21]Smith K, Malatesti N, Cauchon N, et al. Mono-and tri-cationic porphyrin-monoclonal antibody conjugates:photodynamic activity and mechanism of action [J]. Immunology,2011 Feb,132(2):256-65.
    [22]Lecleire S, Di Fiore F, Antonietti M, et al. Nonoperable patients with superficial esophageal cancer treated by photodynamic therapy after chemoradiotherapy have more severe complications than patients treated in primary intent [J]. Am J Gastroenterol,2008 Sep,103(9):2215-9.
    [23]Juarranz A, Jaen P, Sanz-Rodriguez F, et al. Photodynamic therapy of cancer. Basic principles and applications [J]. Clin Transl Oncol,2008 Mar,10(3):148-54.
    [24]Whitehurst C, Pantelides ML, Moore JV, et al. In vivo laser light distribution in human prostatic carcinoma [J]. J Urol,1994 May,151(5):1411-5.
    [25]Pereira SP, Aithal GP, Ragunath K, et al. Safety and long term efficacy of porfimer sodium photodynamic therapy in locally advanced biliary tract carcinoma [J]. Photodiagnosis Photodyn Ther,2012 Dec,9(4):287-92.
    [26]Lee TY, Cheon YK, Shim CS, et al. Photodynamic therapy prolongs metal stent patency in patients with unresectable hilar cholangiocarcinoma [J]. World J Gastroenterol,2012 Oct 21,18(39):5589-94.
    [27]Tomizawa Y, Tian J. Photodynamic therapy for unresectable cholangiocarcinoma [J]. Dig Dis Sci,2012 Feb,57(2):274-83.
    [28]Ana P. Castano, Tatiana N. Demidova, et al. Mechanisms in photodynamic therapy:part one-photosensitizers, photochemistry and cellular localization [J]. Photodiagnosis and Photodynamic Therapy,2004,1(4):279-293.
    [29]Wieder ME, Hone DC, Cook MJ, et al. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates:cancer therapy using a'Trojan horse' [J]. Photochem Photobiol Sci,2006,5(8):727-734.
    [30]叶松,黄蕾,向小东.光动力学疗法治疗胆管癌[J].中国激光医学杂志,2008,17(3):213-217.
    [31]Fritcher EG, Kipp BR, Halling KC, et al. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatobiliary strictures [J]. Gastroenterology,2009,136(7):2180-2186.
    [32]Khan SA, Davidson BR, Goldin R, et al, Guidelines for the diagnosis and treatment of cholangiocarcinoma:consensus document [J]. Gut,2002,51(6):1-9.
    [33]Paik WH, Park YS, Hwang JH, et al. Palliative treatment with self-expandable metallic stents in patients with advanced type Ⅲ or Ⅳ hilar cholangiocarcinoma: a percutaneous versus endoscopic approach [J]. Gastrointest endosc,2009,69(1): 55-62.
    [34]Baron TH. Photodynamic therapy:standard of care for palliation of cholangiocarcinoma [J]. Clin Gastroenterol Hepatol,2008,6(3):266-267.
    [35]Berr F, Wiedmann M, Tannapfel A, et al. Photodynamic therapy for advanced bile duct cancer:evidence for improved palliation and extended survival [J]. Hepatology,2000,31(2):291-298.
    [36]Ortner ME, Caca K, Berr F, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma:a randomized prospective study [J]. Gastroenterology,2003,125(5):1355-1363.
    [37]Tian Zedan, Xu Chuanshan, Quan Xuemo, et al. Advacement in sonosensilizer and Photosensilizer [J]. J Ultrasound in Clin Med,2008,10(1):39-41.
    [38]Peng Yiru, Wang Qingping. Recent Advance on the Metal Phthalocyanine as anticancer Photosensitizer [J]. STRAIT PHARMACEUTICAL JOURNAL,2003, 15(2):5-7.
    [39]Zhi PX, Qing HZ, Gao QL. Inorganic nanoparticles as carriers for efficient cellular delivery [J]. Chemical Engineering Science,2006,61(3):1027-1040.
    [40]Zhang Haixia, Wang Jiexin, Le Yuan. Review of liquid controlled precipitation process for preparation of pharmaceutical nano-/microparticles [J]. Journal of Chemical Industry and Engineering(China),2010,61(7):1720-1733.
    [41]Xiang Yan, Xia Jingsong, Li Hongfa, et al. Current Status and Key Technology in Targeting therapy for Cancer [J]. BULLETIN OF CHINESE CANCER,2002, 11(5):289-291.
    [42]Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery:effect of particle size [J]. Cancer research,2000,60(16): 4440-4445.
    [43]R Ravichandran. Physico-chemical evaluation of gymnemic acids nanocrystals [J]. International Journal of Nanoparticles,2010,3(3):280-296.
    [44]李平平,周国瑜,沈玲悦,等.二氢卟酚纳米光敏剂对CAL-27细胞的光动力杀伤效应[J].中国口腔颌面外科杂志,2011,9(4):296-300.
    [45]卿三华,李缪洋,盛新华,等.纳米微粒光敏剂光动力治疗结肠癌的实验研究[J].中华胃肠外科杂志,2006,9(6):530-533.
    [46]熊小强,陈汝福,汪峰,等.PLGA-m-THPC纳米型光敏剂的制备及其光动力治疗肝癌细胞的研究[J].中华普通外科学文献,2008,12(6):460-464.
    [47]Chono S, Li SD, Conwell CC, et al. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor [J]. Journal of Controlled Release,2008,131(1):64-69.
    [48]Allen TM. Ligan:1-targeted therapeutics in anticancer therapy [J]. Nat Rev Cancer,2002,2(20):750-763.
    [49]Yuan F, Dellian M, Fukumura D, et al. Vascular Permeability in a Human Tumor Xenograft:Molecular Size Dependence and Cutoff Size [J]. Cancer Res,1995, 55(17):3752-3756.
    [50]Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake [J]. Biomaterials,2002, 23(7):1553-1561.
    [51]陈晓华.人食管癌光动力效应影响因素及机制的实验研究[D].广州:第一军医大学,2007.
    [52]Li LB, Luo RC. Effect of drug-light interval on the mode of action of photofrin photodynamic therapy in a mouse tumor model [J]. Lasers Med Sci,2009,24(4): 597-603.
    [53]Jin I, Yuji M, Yoshinori N, et al. Anti-tumor effect of PDT using Photofrin in a mouse angiosarcoma model [J]. Arch Dermatol Res,2008,300(4):161-166.
    [54]Castellani A, Pace GP, Concioli M. Photo-dynamic effect of haematoporphyrin on blood microcirculation [J]. J Pathol Bacteriol,1963,86:99-102.
    [55]Star WM, Marijnissen HP, vanden Berg-Blok AE, et al. Destructio n of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers [J]. Cancer Res,1986,46:2532-2540.
    [56]Bhuvaneswari R, Gan YY, Soo KC, et al. The effect of photodynamic therapy on tumor angiogenesis [J]. Cell Mol Life Sci,2009,66(14):2275-2283.
    [57]Tseng MT, Reed MW, Ackermann DM, et al. Photodynamic therapy induced ultrastructural alterations in microvasculature of the rat cremaster muscle [J]. Photochem Photobiol,1988,48(5):675-681.
    [58]Henderson BW, Waldow SM, Mang TS, et al. Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy [J]. Cancer Res,1985,45(2):572-576.
    [59]Henderson BW, Fingar VH. Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model [J]. Photochem Photobiol,1989, 49(3):299-304.
    [60]Gomer CJ, Rucker N, Murphree AL. Differential cell photosensitivity following porphyrin photodynamic therapy [J]. Cancer Res,1988,48(16):4539-4542.
    [61]West CM, West DC, Ku mar S, et al. A comparison of the sensitivity to photodynamic treatment of endothelial and tumour cells in different proliferative states [J]. Int J Radiat Biol,1990,58(1):145-156.
    [62]Hanahan D, Folkinan J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis [J]. Cell,1996,86(3):353-364.
    [63]KlagsbrunM, Soker S. VEGF/VPF:the angiogenesis factor found? [J]. Curr Biol, 1993,3(10):699-702.
    [64]Dvorak HF, Brown LF, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis [J]. Am J Pathol,1995,146(5):1029-1039.
    [65]Roberts WG, Hasan T. Tumor-secreted vascular permeability factor/vascular endothelial growth factor influences photosensitizer uptake [J]. Cancer Res,1993, 53(1):153-7.
    [66]Ferrario A, Gomer CJ. Avastin enhances photodynamic therapy treatment of Kaposi's sarcoma in a mouse tumor model [J]. J Environ Pathol Toxicol Oncol, 2006,25(1-2):251-9.
    [67]Solban N, Selbo PK, Sinha AK, et al. Hasan:Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer [J]. Cancer Res,2006,66(11):5633-40.
    [68]Ferrario A, von Tiehl KF, Rucker N, et al. Antiangiogenie treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma [J]. Cancer Res,2000,60(15):4066-9.
    [69]Kosharskyy B, Solban N, Chang SK, et al. A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer [J]. Cancer Res,2006,66(22):10953-8.
    [70]Osiecka BJ, Ziolkowski P, Gamian E, et al. Determination of vaseular endothelial growth factor levels in serum from tumor-bearing BALB/c mice treated with Photodynamic therapy [J]. Med Sci Monit,2003,9(4):110-114.
    [71]Sehmidt-Erfurth U, Sehlotzer-Sehrehard U, Cursiefen C, et al. Influence of photodynamic therapy on expression of vaseular endothelial growth faetor (VEGF), VEGF receptor 3, and pigment epithelium-derived factor [J]. Invest Ophthalmol Vis Sci,2003,44(10):4473-4480.
    [72]Ferrario A, von TK, Rucker N, et al. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma [J]. Cancer Res,2000,60(15):4066-4069.
    [73]Deryugina El, Quigley JP. Matrix metalloproteinases and tumor metastasis [J]. Cancer Metastasis Rev,2006,25:9-34.
    [74]Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases:Regulators of the tumor microenvironment [J]. Cell,2010,141:52-67.
    [75]Cox G, O'Byrne KJ. Matrix metalloproteinases and cancer [J]. Anticancer Res. 2001,21:4207-421.
    [76]袁发焕,王海燕,李惊子.ECM、MMPs/TIMPS及其调节研究进展[J].国外医学生理病理学与临床分册.2000,20(2):93-96.
    [77]杨翠红,刘芝华,王群,等.基质金属蛋白酶基因MMP20在人食管癌发生发展中的表达差异分析[J].科学通报,2001,46(5):405-407.
    [78]Kleiner D, Stetler-stevenson W. Matrix metalloproteinases and metastasis [J]. Cancer Chemother pharmaclo,1999,43:42-51.
    [79]Sang QX, Birkeda-hansen H, Vanwart HE. Proteolytic and non-proteolytic activation of human neutrophil progelatinase B [J]. Bicchim Biophys Acta,1995, 1251(2):99-108.
    [80]朱人敏,汪芳裕.Ⅳ型胶原与癌症浸润和转移关系研究进展[J].金陵医院学报,1994,9(4):456-458.
    [81]姚宏,王虹,平苏萍,等.基质金属蛋白酶及其抑制因了在大肠癌侵袭和转移中的研究[J].山西医药杂志.2002,31(3):189-192.
    [82]彭再梅,杨竹林,刘友文等.MMP1, TIMP1在肺癌组织中的表达及临床生物学意义[J].湖南医科大学学报,2002,27(2):159-161.
    [83]李泽良,孔垂泽,刘同才,等.MMP2、MMP9和TIMP1在膀胱癌中的表达及与预后的关系[J].中华泌尿外科杂志,2001,22(8):463.
    [84]Shirabe K, Shimada M, Kajiyama K, et al. Expression of matrix metalloproteinase-9 in surgically resected intrahepatic cholangiocarcinoma [J]. Surgery,1999,126:842-846.
    [85]Itatsu K, Zen Y, Yamaguchi J, et al. Expression of matrix metalloproteinase 7 is an unfavorable postoperative prognostic factor in cholangiocarcinoma of the perihilar, hilar, and extrahepatic bile ducts [J]. Hum Pathol,2008,39:710-719.
    [86]Kirimlioglu H, Turkmen I, Bassullu N, et al. The expression of matrix metalloproteinases in intrahepatic cholangiocarcinoma, hilar(klatskin tumor), middle and distal extrahepatic cholangiocarcinoma, gallbladder cancer, and ampullary carcinoma:Role of matrix metalloproteinases in tunlor progression and prognosis [J]. Turk J Gastroenterol,2009,20:41-47.
    [87]Jo Chae K, Rha SY, Oh BK, et al. Expression of matrix metalloproteinase-2 and-9 and tissue inhibitor of metalloproteinase-1 and -2 inintraductal and nonintraductal growth type of cholangiocarcinoma [J]. Am J Gastroenterol,2004, 99:68-75.
    [88]Liotta L. Isolation of a protein that stimulate blood vessel growth [J]. Nature, 1985,318(6041):14.
    [89]Stetler S. Matrix metalloproteinases in angiogenesis:a moving target for therapeutic intervention [J]. J J Clin Invest,1999,103(9):1237-41.
    [90]Brooks PC, Silletti S, Von-Schalsha TL, et al. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity [J]. Cell. 1998,92(3):391-400.
    [91]Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy [J]. Biochim Biophys Acta,2007,1776:86-107.
    [92]Oleinick NL and Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms [J]. Radiat Res,1998,150:146-56.
    [93]Romani AA, Soliani P, Desenzani S, et al. The associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma [J]. BMC Cancer,2006,8(26):255-259.
    [94]Blank M, Shiloh Y. Programs for Cell Death:Apoptosis is Only One Way to Go [J]. Cell Cycle,2007,7(6):6.
    [95]Plaetzer K, Kiesslich T, Oberdanner CB. Apoptosis following photodynamic tumor therapy:induction, mechanisms and detection [J]. Curr Pharm Des,2005, 11:1151-65.
    [96]Agarwal ML, Clay ME, Harvey EJ, et al. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells [J]. Cancer Res,1991, 51:5993-6.
    [97]Granville DJ, Carthy CM, Jiang H, et al. Rapid cytochrome c release, activation of caspases 3,6,7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy [J]. FEBS Lett,1998,437:5-10.
    [98]Ozoren N, El-Deiry WS. Cell surface Death Receptor signaling in normal and cancer cells [J]. Semin Cancer Biol,2003,13:135-47.
    [99]Schempp CM, Simon-Haarhaus B, Termeer CC. Hypericin photo-induced apoptosis involves the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and activation of caspase-8 [J]. FEBS Lett,2001,493:26-30.
    [100]Evans S, Matthews W, Perry R, et al. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages [J]. J Natl Cancer Inst,1990, 82:34-9.
    [101]Granville DJ, Jiang H, McManus BM. Fas ligand and TRAIL augment the effect of photodynamic therapy on the induction of apoptosis in JURKAT cells [J]. Int Immunopharmacol,2001,1:1831-40.
    [102]Granville DJ, Levy JG Hunt DW. Photodynamic therapy induces caspase-3 activation in HL-60 cells [J]. Cell Death Differ,1997,4:623-8.
    [103]Varnes ME, Chiu SM, Xue LY, et al. Photodynamic therapy-induced apoptosis in lymphoma cells:translocation of cytochrome c causes inhibition of respiration as well as caspase activation [J]. Biochem Biophys Res Commun,1999,255: 673-9.
    [1]Bergh J. Quo vadis with targ eted drugs in the 21st century [J]? J Clin Oncol.2009, 27:2-5.
    [2]Fojo T, Grady C. How much is life worth:cetuximab, non-small cell lung cancer, and the $440 billion question [J]. J Natl Can-cer Inst,2009,101:1044-1048.
    [3]Hampton T. Targeted cancer therapies lag-ging:better trial design could boost suc-cess rate [J]. JAMA.2006,296:1951-1952.
    [4]Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynam ic therapy [J]. J Natl Cancer Inst,1998,90:889-905.
    [5]Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer [J]. Nat Rev Cancer,2003,3:380-387.
    [6]Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers:a clinical review [J]. Photodiagnosis Photodyn Ther,2010,7:61-75.
    [7]Chen B, Roskams T, de Witte PA. Antivascular tumor eradication by hypericin-mediated photodynamic therapy [J]. Photochem Photobiol,2002,76: 509-513.
    [8]Garg AD, Nowis D, Golab J, et al. Immunogenic cell death, DAMPs and anticancer therapeutics:an emerging amalgamation. Biochim Biophys Acta [J], 2010,1805:53-71.
    [9]Ascencio M, Collinet P, Farine MO, et al. Protoporphyrin DC fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy [J]. Lasers Surg Med,2008, 40:332-341.
    [10]De Rosa FS, Bentley MV. Photodynamic therapy of skin cancers:sensitizers, clinical studies and future directives [J]. Pharm Res,2000,17:1447-1455.
    [11]Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy [J]. J Photochem Photobiol B,1994,23:3-8.
    [12]Iyer AK, Greish K, Seki T, et al. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation [J]. J Drug Target,2007,15:496-506.
    [13]Kessel D. The role of low-density lipoprotein in the biodistribution of photosensitizing agents [J]. J Photochem Photobiol B,1992,14:261-262.
    [14]Sibani SA, McCarron PA, Woolfson AD, et al. Photosensitiser delivery for photodynamic therapy. Part 2:systemic carrier platforms [J]. Expert Opin Drug Deliv,2008,5:1241-1254.
    [15]Juzeniene A, Nielsen KP, Moan J. Biophysical aspects of photodynamic therapy [J]. J Environ Pathol Toxicol Oncol,2006,25:7-28.
    [16]Henderson BW, Busch TM, Snyder JW. Fluence rate as a modulator of PDT mechanisms [J]. Lasers Surg Med,2006,38:489-493.
    [17]Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy [J]. Lasers Med Sci,2002,17:173-186.
    [18]Juzeniene A, Juzenas P, Ma LW, et al. Effectiveness of different light sources for 5-amin olevulinic acid photodynamic therapy [J]. Lasers Med Sci,2004,19: 139-149.
    [19]Szeimies RM, Morton CA, Sidoroff A, et al. Photodynamic therapy for non-melanoma skin cancer [J]. Acta Derm Venereol,2005,85:483-490.
    [20]Beyer W. Systems for light application and dosimetry in photodyna mic therapy [J]. J Photochem Photobiol B,1996,36:153-156.
    [21]Wilson BC, Patter son MS. The physics, biophysics and technology of photodynamic therapy [J]. Phys Med Biol,2008,53:61-109.
    [22]Plaetzer K, Krammer B, Berlanda J, et al. Photophysics and photochemistry of photodynamic therapy:fundamental aspects [J]. Lasers Med Sci,2009,24: 259-268.
    [23]Rousset N, Bourre' L, Thibaud S. Sensitizers in photodynamic therapy In: Photodynamic Therapy. Ed:T Patrice [D]. UK, The Royal Society of Chemistry, Cambridge,2003.
    [24]Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers [J]. Photochem Photobiol,1996,64:469-85.
    [25]Peng Q, Moan J, Farrants Q et al. Localization of potent photosensitizers in human tumor LOX by means of laser scanning microscopy [J]. Cancer Lett,1991, 58:17-27.
    [26]del Carmen MG, I Rizvi, Y Chang, et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo [J]. J Natl Cancer Inst,2005,97:1516-24.
    [27]Duska LR, MR Hamblin, JL Miller, et al. Combination photoimmunotherapy and cisplatin:effects on human ovarian cancer ex vivo [J]. J Natl Cancer Inst,1999, 91:1557-63.
    [28]Solban N, I Rizvi, T Hasan. Targeted photodynamic therapy [J]. Lasers Surg Med, 2006,38:522-31.
    [29]Kennedy J.C., R.H. Pottier, D.C. Pross. Photodynamic therapy with endogenous protoporphyrin IX:basic principles and present clinical experience [J]. J Photochem Photobiol B,1990,6:143-8.
    [30]Peng Q., K. Berg, J. Moan, et al.5-Aminolevulinic acid-based photodynamic therapy:principles and experimental research [J]. Photochem Photobiol,1997,65: 235-51.
    [31]Sinha A.K., S. Anand, B.J. Ortel, et al. Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells [J]. Br J Cancer,2006,95:485-95.
    [32]Ortel B., N. Chen, J. Brissette, et al. Differentiation-specific increase in ALAinduced protoporphyrin IX accumulation in primary mouse keratinocytes [J]. Br J Cancer,1998,77:1744-51.
    [33]Sato N., B.W. Moore, S. Keevey, et al. Vitamin D enhances ALA-induced protoporphyrin IX production and photodynamic cell death in 3-D organotypic cultures of keratinocytes [J]. J Invest Dermatol,2007,127:925-34.
    [34]Gaullier J.M., K. Berg, Q. Peng, et al. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture [J]. Cancer Res,1997,57: 1481-6.
    [35]Kloek J., W. Akkermans, GM. Beijersbergen van Henegouwen. Derivatives of 5-aminolevulinic acid for photodynamic therapy:enzymatic conversion into protoporphyrin [J]. Photochem Photobiol,1998,67:150-4.
    [36]Casas A., H. Fukuda, G Di Venosa, et al. Photosensitization and mechanism of cytotoxicity induced by the use of ALA derivatives in photodynamic therapy [J]. Br J Cancer,2001,85:279-84.
    [37]Redmond R.W., I. E. Kochevar. Spatially resolved cellular responses to singlet oxygen [J]. Photochem Photobiol,2006,82:1178-86.
    [38]Moan J., K. Berg. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen [J]. Photochem Photobiol,1991,53: 549-53.
    [39]Shea C.R., M.E. Sherwood, T.J. Flotte, et al. Rhodamine 123 phototoxicity in laserirradiated MGH-U1 human carcinoma cells studied in vitro by electron microscopy and confocal laser scanning microscopy [J]. Cancer Res,1990,50: 4167-72.
    [40]Chiu S., H.H. Evans, M. Lam, et al. Phthalocyanine 4 photodynamic therapy-induced apoptosis of mouse L5178Y-R cells results from a delayed but extensive release of cytochrome c from mitochondria [J]. Cancer Lett,2001,165: 51-8.
    [41]Girotti A.W. Photosensitized oxidation of membrane lipids:reaction pathways, cytotoxic effects, andcytoprotective mechanisms [J]. J Photochem Photobiol B, 2001,63:103-13.
    [42]Girotti A.W., T. Kriska. Role of lipid hydroperoxides in photo-oxidative stress signaling [J]. Antioxid Redox Signal,2004,6:301-10.
    [43]Shen H.R., J.D. Spikes, P. Kopecekova, et al. Photodynamic crosslinking of proteins. I. Model studies using histidine-and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers [J]. J Photochem Photobiol B, 1996,34:203-10.
    [44]Spikes J. D., H.R. Shen, P. Kopeckova & J. Kopecek:Photodynamic crosslinking of proteins. III. Kinetics of the FMN- and rose bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine-containing N-(2-hydroxypropyl)methacrylamide copolymers [J]. Photochem Photobiol,1999, 70:130-7.
    [45]Xue L.Y., S.M. Chiu, N.L. Oleinick. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4 [J]. Oncogene,2001,20:3420-7.
    [46]Weyergang A., P.K. Selbo, K. Berg. Y1068 phosphorylation is the most sensitive target of disulfonated tetraphenylporphyrin-based photodynamic therapy on epidermal growth factor receptor [J]. Biochem Pharmacol,2007,74:226-35.
    [47]Henderson B.W., C. Daroqui, E. Tracy, et al. Cross-linking of signal transducer and activator of transcription 3--a molecular marker for the photodynamic reaction in cells and tumors [J]. Clin Cancer Res,2007,13:3156-63.
    [48]Mercurio F., A.M. Manning. NF-kappaB as a primary regulator of the stress response [J]. Oncogene,1999,18:6163-71.
    [49]Ryter S.W., C.J. Gomer. Nuclear factor kappa B binding activity in mouse L1210 cells following photofrin II-mediated photosensitization [J]. Photochem Photobiol, 1993,58:753-6.
    [50]Matroule J.Y., C. Volanti, J. Piette. NF-kappaB in photodynamic therapy: discrepancies of a master regulator [J]. Photochem Photobiol,2006,82:1241-6.
    [51]Granville D.J., C.M. Carthy, H. Jiang, et al. Nuclear factor-kappaB activation by the photochemotherapeutic agent verteporfin [J]. Blood,2000,95:256-62.
    [52]Du H.Y., M. Olivo, R. Mahendran, et al. Hypericin photoactivation triggers down-regulation of matrix metalloproteinase-9 expression in well-differentiated human nasopharyngeal cancer cells [J]. Cell Mol Life Sci,2007,64:979-88.
    [53]Volanti C., N. Hendrickx, J. Van Lint, et al. Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy [J]. Oncogene,2005,24:2981-91.
    [54]Ferrario A., K.F. von Tiehl, N. Rucker, et al. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma [J]. Cancer Res,2000,60:4066-9.
    [55]Mitra S., S.E. Cassar, D.J. Niles, et al Photodynamic therapy mediates the oxygen-independent activation of hypoxiainducible factor 1 alpha [J]. Mol Cancer Ther,2006,5:3268-74.
    [56]Ji Z., G. Yang, S. Shahzidi, et al. Induction of hypoxiainducible factor-lalpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy [J]. Cancer Lett,2006,244:182-9.
    [57]Gomer C.J., A. Ferrario, N. Rucker, et al. Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization [J]. Cancer Res,1991,51:6574-9.
    [58]Curry P.M., J.G Levy. Stress protein expression in murine tumor cells following photodynamic therapy with benzoporphyrin derivative [J]. Photochem Photobiol, 1993,58:374-9.
    [59]Fisher A.M., A. Ferrario, C.J. Gomer. Adriamycin resistance in Chinese hamster fibroblasts following oxidative stress induced by photodynamic therapy [J]. Photochem Photobiol,1993,58:581-8.
    [60]Gomer C.J., S.W. Ryter, A. Ferrario, et al. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins [J]. Cancer Res, 1996,56:2355-60.
    [61]Gomer C.J., N. Rucker, S. Wong. Porphyrin photosensitivity in cell lines expressing a heat-resistant phenotype [J]. Cancer Res,1990,50:5365-8.
    [62]Luna M.C., A. Ferrario, S. Wong, et al. Photodynamic therapy-mediated oxidative stress as a molecular switch for the temporal expression of genesligated to the human heat shock promoter [J]. Cancer Res,2000,60:1637-44.
    [63]Morgan J., J.E. Whitaker, A.R. Oseroff. GRP78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye victoria blue BO [J]. Photochem Photobiol,1998,67:155-64.
    [64]Wong S., M. Luna, A. Ferrario, et al. CHOP activation by photodynamic therapy increases treatment induced photosensitization [J]. Lasers Surg Med,2004,35: 336-41.
    [65]Unno M., T. Matsui, M. Ikeda-Saito. Structure and catalytic mechanism of heme oxygenase [J]. Nat Prod Rep,2007,24:553-70.
    [66]Bressoud D., V. Jomini, R.M. Tyrrell. Dark induction of haem oxygenase messenger RNA by haematoporphyrin derivative and zinc phthalocyanine; agents for photodynamic therapy [J]. J Photochem Photobiol B,1992,14:311-8.
    [67]Nowis D., M. Legat, T. Grzela, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity [J]. Oncogene,2006,25: 3365-74.
    [68]Frank J., M.R. Lornejad-Schafer, H. Schoffl, et al. Inhibition of hemeoxygenase-1 increases responsiveness of melanoma cells toALA-based photodynamic therapy [J]. Int J Oncol,2007,31:1539-45.
    [69]Kocanova S., E. Buytaert, J.Y. Matroule, et al. Induction of hemeoxygenasel requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericinmediated photodynamic therapy [J]. Apoptosis,2007,12: 731-41.
    [70]Moor A.C. Signaling pathways in cell death and survival after photodynamic therapy [J]. J Photochem Photobiol B,2000,57:1-13.
    [71]Liu G., L. Kleine, R.L. Hebert. Advances in the signal transduction of ceramide and related sphingolipids [J]. Crit Rev Clin Lab Sci,1999,36:511-73.
    [72]Separovic D., K.J. Mann, N.L. Oleinick. Association of ceramide accumulation with photodynamic treatmentinduced cell death [J]. Photochem Photobiol,1998, 68:101-9.
    [73]Separovic D., S. Wang, M.Y. Awad Maitah, et al. Ceramide response postphotodamage is absent after treatment with HA 14-1 [J]. Biochem Biophys Res Commun,2006,345:803-8.
    [74]Separovic D., J.J. Pink, N.A. Oleinick, et al. Niemann-Pick human lymphoblasts are resistant to phthalocyanine 4-photodynamic therapyinduced apoptosis [J]. Biochem Biophys Res Commun,1999,258:506-12.
    [75]Agarwal M.L., H.E. Larkin, S.I. Zaidi, et al. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells [J]. Cancer Res,1993,53: 5897-902.
    [76]Luna M.C., S. Wong, C.J. Gomer. Photodynamic therapy mediated induction of early response genes [J]. Cancer Res,1994,54:1374-80.
    [77]Tong Z., G. Singh, A.J. Rainbow. Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy [J]. Cancer Res,2002,62:5528-35.
    [78]Tao J., J.S. Sanghera, S.L. Pelech, et al. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative [J]. J Biol Chem,1996,271:27107-15.
    [79]Xue L., J. He, N.L. Oleinick. Promotion of photodynamic therapy-induced apoptosis by stress kinases [J]. Cell Death Differ,1999,6:855-64.
    [80]Zhuang S., I. E. Kochevar. Singlet oxygen-induced activation of Akt/protein kinase B is independent of growth factor receptors [J]. Photochem Photobiol, 2003,78:361-71.
    [81]Schieke S.M., C. von Montfort, D.P. Buchczyk, et al. Singlet oxygen-induced attenuation of growth factor signaling:possible role of ceramides [J]. Free Radic Res,2004,38:729-37.
    [82]Ferrario A., N. Rucker, S. Wong, et al. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response [J]. Cancer Res,2007,67:4989-95.
    [83]Cormane R.H., E. Szabo, T.T. Hoo. Histopathology of the skin in acquired and hereditary porphyria cutanea tarda [J]. Br J Dermatol,1971,85:531-9.
    [84]Gigli I., A.A. Schothorst, N.A. Soter et al. Erythropoietic protoporphyria. Photoactivation of the complement system [J]. J Clin Invest,1980,66,517-22.
    [85]Korbelik M. PDT-associated host response and its role in the therapy outcome [J]. Lasers Surg Med,2006,38:500-8.
    [86]Korbelik M., J. Sun, I. Cecic et al. Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors [J]. Photochem Photobiol Sci,2004,3:812-6.
    [87]Korbelik M., P.D. Cooper. Potentiation of photodynamic therapy of cancer by complement:the effect of gamma-inulin [J]. Br J Cancer,2007,96:67-72.
    [88]Cecic I., C.S. Parkins, M. Korbelik. Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors [J]. Photochem Photobiol,2001, 74,712-20.
    [89]Cecic I., J. Sun, M. Korbelik. Role of complement anaphylatoxin C3a in photodynamic therapy-elicited engagement of host neutrophils and other immune cells [J]. Photochem Photobiol,2006,82:558-62.
    [90]Cecic I., M. Korbelik. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors [J]. Cancer Lett,2002,183:43-51.
    [91]Stott B., M. Korbelik. Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy [J]. Cancer Immunol Immunother,2007,56: 649-58.
    [92]Korbelik M., I. Cecic, S. Merchant et al. Acute phase response induction by cancer treatment with photodynamic therapy [J]. Int J Cancer,2008,122:1411-7.
    [93]Merchant S., J. Sun, M. Korbelik. Dying cells program their expedient disposal: serum amyloid P component upregulation in vivo and in vitro induced by photodynamic therapy of cancer [J]. Photochem Photobiol Sci,2007,6:1284-9.
    [94]Herrmann G., M. Wlaschek, K. Bolsen, et al. Photosensitization of uroporphyrin augments the ultraviolet A-induced synthesis of matrix metalloproteinases in human dermal fibroblasts [J]. J Invest Dermatol,1996,107:398-403.
    [95]Gollnick S.O., S.S. Evans, H. Baumann, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation [J]. Br J Cancer,2003,88: 1772-9.
    [96]Wei L.H., H. Baumann, E. Tracy, et al. Interleukin-6 trans signalling enhances photodynamic therapy by modulating cell cycling [J]. Br J Cancer,2007,97: 1513-22.
    [97]Bellnier D.A., S.O. Gollnick, S.H. Camacho, et al. Treatment with the tumor necrosis factor-alpha-inducing drug 5,6-dimethylxanthenone-4-acetic acid enhances the antitumor activity of thephotodynamic therapy of RIF-1 mouse tumors [J]. Cancer Res,2003,63:7584-90.
    [98]Ferrario A., C.J. Gomer:Systemic toxicity in mice induced by localized porphyrin photodynamic therapy [J]. Cancer Res,1990,50:539-43.
    [99]Nseyo U.O., R.K. Whalen, M.R. Duncan, et al. Urinary cytokines following photodynamic therapy for bladder cancer [J]. A preliminary report. Urology,1990, 36:167-71.
    [100]Buytaert E., M. Dewaele, P. Agostinis. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy [J]. Biochim Biophys Acta, 2007,1776:86-107.
    [101]Oleinick N.L., H.H. Evans. The photobiology of photodynamic therapy: cellular targets and mechanisms [J]. Radiat Res,1998,150:146-56.
    [102]Plaetzer K., T. Kiesslich, C.B. Oberdanner, et al. Apoptosis following photodynamic tumor therapy:induction, mechanisms and detection [J]. Curr Pharm Des,2005,11:1151-65.
    [103]Agarwal M.L., M.E. Clay, E.J. Harvey, et al. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells [J]. Cancer Res, 1991,51:5993-6.
    [104]Granville D.J., C.M. Carthy, H. Jiang, et al. Rapid cytochrome c release, activation of caspases 3,6,7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy [J]. FEBS Lett,1998,437:5-10.
    [105]Ozoren N., W.S. El-Deiry. Cell surface Death Receptor signaling in normal and cancer cells [J]. Semin Cancer Biol,2003,13:135-47.
    [106]Schempp C.M., B. Simon-Haarhaus, C.C. Termeer, et al. Hypericin photo-induced apoptosis involves the tumor necrosis factor-related apoptosisinducing
    ligand (TRAIL) and activation of caspase-8 [J]. FEBS Lett,2001,493:26-30.
    [107]Evans S., W. Matthews, R. Perry, et al. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages [J]. J Natl Cancer Inst, 1990,82:34-9.
    [108]Granville D.J., H. Jiang, B.M. McManus, et al. Fas ligand and TRAIL augment the effect of photodynamic therapy on the induction of apoptosis in JURKAT cells [J]. Int Immunopharmacol,2001,1:1831-40.
    [109]Granville D.J., J.G Levy, D.W. Hunt. Photodynamic therapy induces caspase-3 activation in HL-60 cells [J]. Cell Death Differ,1997,4:623-8.
    [110]Varnes M.E., S.M. Chiu, L.Y. Xue, et al. Photodynamic therapy-induced apoptosis in lymphoma cells:translocation of cytochrome c causes inhibition of respiration as well as caspase activation [J]. Biochem Biophys Res Commun, 1999,255:673-9.
    [111]Xue L.Y., S.M. Chiu, K. Azizuddin, et al. Protection by Bcl-2 against apoptotic but not autophagic cell death after photodynamic therapy [J]. Autophagy,2008,4: 125-7.
    [112]He J., M.L. Agarwal, H.E. Larkin, et al. The induction of partial resistance to photodynamic therapy by the protooncogene BCL-2 [J]. Photochem Photobiol, 1996,64:845-52.
    [113]Kim H.R., Y. Luo, G Li, et al. Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection [J]. Cancer Res,1999,59:3429-32.
    [114]Xue L.Y., S.M. Chin, A. Fiebig, et al. Photodamage to multiple Bcl-xL isoforms by photodynamic therapy with the phthalocyanine photosensitizer Pc 4 [J]. Oncogene,2003,22:9197-204.
    [115]Kessel D.. Promotion of PDT Efficacy by a Bcl-2Antagonist [J]. Photochem Photobiol,2007.
    [116]Kessel D., M. Castelli, J.J. Reiners, et al. Apoptotic response to photodynamic therapy versus the Bcl-2 antagonist HA14-1. Photochem Photobiol,2002,76: 314-9.
    [117]Furre I.E., M.T. Moller, S. Shahzidi, et al. Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells [J]. Apoptosis,2006,11:2031-42.
    [118]Usuda J., S.M. Chiu, K. Azizuddin, et al. Promotion of photodynamic therapy-induced apoptosis by the mitochondrial protein Smac/DIABLO: dependence on Bax [J]. Photochem Photobiol,2002,76:217-23.
    [119]Granville D.J., B.A. Cassidy, D.O. Ruehlmann, et al. Mitochondrial release of apoptosis-inducing factor and cytochrome c during smooth muscle cell apoptosis [J]. Am J Pathol,2001,159:305-11.
    [120]Furre I.E., S. Shahzidi, Z. Luksiene, et al. Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells [J]. Cancer Res, 2005,65:11051-60.
    [121]Klionsky D.J.. The molecular machinery of autophagy:unanswered questions [J]. J Cell Sci,2005,118:7-18.
    [122]Buytaert E., G. Callewaert, N. Hendrickx, et al. Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericinmediated photodynamic therapy [J]. Faseb J,2006,20:756-8.
    [123]Buytaert E., G. Callewaert, J.R. Vandenheede, et al. Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum [J]. Autophagy,2006,2:238-40.
    [124]Xue L.Y., S.M. Chiu, K. Azizuddin, et al. apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy [J]. Photochem Photobiol, 2007,83:1016-23.
    [125]Kessel D., M.G. Vicente, J.J. Reiners, et al. Initiation of apoptosis and autophagy by photodynamic therapy [J]. Autophagy,2006,2:289-90.
    [126]McMahon K.S., T.J. Wieman, P.H. Moore, et al. Effects of photodynamic therapy using mono-Laspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response [J]. Cancer Res,1994,54:5374-9.
    [127]Bernstein Z.P., B.D. Wilson, A.R. Oseroff, et al. Photofrin photodynamic therapy for treatment of AIDS-related cutaneous Kaposi's sarcoma [J]. Aids,1999, 13:1697-704.
    [128]Luo Y., D. Kessel. Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol [J],1997,66, 479-83.
    [129]Golstein P., G Kroemer. Cell death by necrosis:towards a molecular definition [J]. Trends Biochem Sci,2007,32:37-43.
    [130]Castano A.P., P. Mroz, M.R. Hamblin. Photodynamic therapy and anti-tumour immunity [J]. Nat Rev Cancer,2006,6:535-45.
    [131]Roberts W.G., T. Hasan. Tumor-secreted vascular permeability factor/vascular endothelial growth factor influences photosensitizer uptake [J]. Cancer Res,1993, 53:153-7.
    [132]Ferrario A., C. J. Gomer. Avastin enhances photodynamic therapy treatment of Kaposi's sarcoma in a mouse tumor model [J]. J Environ Pathol Toxicol Oncol, 2006,25:251-9.
    [133]Solban N., P.K. Selbo, A.K. Sinha, et al. Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer [J]. Cancer Res,2006,66:5633-40.
    [134]Kosharskyy B., N. Solban, S.K. Chang, et al. A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer [J]. Cancer Res,2006,66:10953-8.
    [135]Hull M.A.. Cyclooxygenase-2:how good is it as a target for cancer chemoprevention [J]? Eur J Cancer,2005,41:1854-63.
    [136]Ferrario A., K. Von Tiehl, S. Wong, et al. Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response [J]. Cancer Res,2002, 62:3956-61.
    [137]Makowski M., T. Grzela, J. Niderla, et al. Inhibition of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice [J]. Clin Cancer Res,2003,9:5417-22.
    [138]Yee K.K., K.C. Soo, M. Olivo. Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex in the treatment of human nasopharyngeal carcinoma [J]. Int J Mol Med,2005,16:993-1002.
    [139]Luna M., S. Wong, A. Ferrario, et al. Cyclooxygenase-2 Expression Induced by Photofrin Photodynamic Therapy Involves the p38 MAPK Pathway [J]. Photochem Photobiol,2008.
    [140]Malemud C.J.. Matrix metalloproteinases (MMPs) in health and disease:an overview [J]. Front Biosci,2006,11:1696-701.
    [141]Lein M., K. Jung, B. Ortel, et al. The new synthetic matrix metalloproteinase inhibitor (Roche 28-2653) reduces tumor growth and prolongs survival in a prostate cancer standard rat model [J]. Oncogene,2002,21:2089-96.
    [142]Karrer S., A.K. Bosserhoff, P. Weiderer, et al. Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts [J]. Br J Dermatol,2004,151:776-83.
    [143]Takahashi H., S. Komatsu, M. Ibe, A. Ishida-Yamamoto, S. Nakajima, I. Sakata & H. Iizuka:ATX-S10 (Na)-PDT shows more potent effect on collagen metabolism of human normal and scleroderma dermal fibroblasts than ALA-PDT [J]. Arch Dermatol Res,2006,298:257-63.
    [144]Ferrario A., C.F. Chantrain, K. von Tiehl, et al. The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model [J]. Cancer Res,2004,64:2328-32.
    [145]Hunt D.W., J.G Levy. Immunomodulatory aspects of photodynamic therapy [J]. Expert Opin Investig Drugs,1998,7:57-64.
    [146]Hunt D.W., A.H. Chan. Influence of photodynamic therapy on immunological aspects of disease-an update [J]. Expert Opin Investig Drugs,2000,9:807-17.
    [147]Simkin GO., J.S. Tao, J.G. Levy, et al. IL-10 contributes to the inhibition of contact hypersensitivity in mice treated with photodynamic therapy [J]. J Immunol, 2000,164:2457-62.
    [148]van Iperen H.P., H.J. Schuitmaker, GM. Beijersbergen van Henegouwen. Non-specific systemic immune suppression induced by photodynamic treatment of lymph node cells with bacteriochlorin a [J]. J Photochem Photobiol B,1995,28: 197-202.
    [149]Reddan J.C., C.Y. Anderson, H. Xu, et al. Immunosuppressive effects of silicon phthalocyanine photodynamic therapy [J]. Photochem Photobiol,1999,70:72-7.
    [150]Hryhorenko E.A., A.R. Oseroff, J. Morgan, et al. Antigen specific and nonspecific modulation of the immune response by aminolevulinic acid based photodynamic therapy [J]. Immunopharmacology,1998,40:231-40.
    [151]Gruner S., H. Meffert, H.D. Volk, et al. The influence of haematoporphyrin derivative and visible light on murine skin graft survival, epidermal Langerhans cells and stimulation of the allogeneic mixed leucocyte reaction [J]. Scand J Immunol,1985,21:267-73.
    [152]Jiang H., D.J. Granville, J.R. North, et al. Selective action of the photosensitizer QLT0074 on activated human T lymphocytes [J]. Photochem Photobiol,2002,76: 224-31.
    [153]Jiang H., D.J. Granville, B.M. McManus, et al. Selective depletion of a thymocyte subset in vitro with an immunomodulatory photosensitizer [J]. Clin Immunol,1999,91:178-87.
    [154]Gollnick S.O., X. Liu, B. Owczarczak, et al. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo [J]. Cancer Res, 1997,57:3904-9.
    [155]Oseroff A.. PDT as a cytotoxic agent and biological response modifier: Implications for cancer prevention and treatment in immunosuppressed and immunocompetent patients [J]. J Invest Dermatol,2006,126:542-4.
    [156]Thong P.S., K.W. Ong, N.S. Goh, et al. Photodynamic-therapy-activated immune response against distant untreated tumours in recurrent angiosarcoma [J]. Lancet Oncol,2007,8:950-2.
    [157]Gollnick S.O., L. Vaughan, B.W. Henderson. Generation of effective antitumor vaccines using photodynamic therapy [J]. Cancer Res,2002,62:1604-8.
    [158]Korbelik M., I. Cecic. Contribution of myeloid and lymphoid host cells to the curative outcome of mouse sarcoma treatment by photodynamic therapy [J]. Cancer Lett,1999,137:91-8.
    [159]Korbelik M., G. Krosl, J. Krosl, et al. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy [J]. Cancer Res, 1996,56:5647-52.
    [160]Korbelik M., G.J. Dougherty. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors [J]. Cancer Res,1999,59:1941-6.
    [161]Canti G, D. Lattuada, A. Nicolin, et al. Antitumor immunity induced by photodynamic therapy with aluminum disulfonated phthalocyanines and laser light [J]. Anticancer Drugs,1994,5:443-7.
    [162]Kabingu E., L. Vaughan, B. Owczarczak, et al. CD8+T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+T cells and dependent on natural killer cells [J]. Br J Cancer,2007,96:1839-48.
    [163]Kousis P.C., B.W. Henderson, P.G. Maier, et al. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils [J]. Cancer Res, 2007,67:10501-10.
    [164]Krosl G., M. Korbelik, J. Krosl, et al. Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocytemacrophage colony-stimulating factor [J]. Cancer Res,1996,56: 3281-6.
    [165]Korbelik M., J. Sun, J.J. Posakony. Interaction between photodynamic therapy and BCG immunotherapy responsible for the reduced recurrence of treated mouse tumors [J]. Photochem Photobiol,2001,73:403-9.
    [166]Saji H., W. Song, K. Furumoto, et al. Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy [J]. Clin Cancer Res,2006,12:2568-74.
    [167]叶松,黄蕾,向小东.光动力学疗法治疗胆管癌[J].中国激光医学杂志,2008,17(3):213-217.
    [168]Fritcher EG, Kipp BR, Hailing KC, et al. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatobiliary strictures [J]. Gastroenterology,2009,136(7):2180-2186.
    [169]Khan SA, Davidson BR, Goldin R, et al, Guidelines for the diagnosis and treatment of cholangiocarcinoma:consensus document [J]. Gut,2002,51(6):1-9.
    [170]Paik WH, Park YS, Hwang JH, et al. Palliative treatment with self-expandable metallic stents in patients with advanced type Ⅲ or Ⅳ hilar cholangiocarcinoma: a percutaneous versus endoscopic approach [J]. Gastrointest endosc,2009,69(1): 55-62.
    [171]Baron TH. Photodynamic therapy:standard of care for palliation of cholangiocarcinoma [J]. Clin Gastroenterol Hepatol,2008,6(3):266-267.
    [172]Berr F, Wiedmann M, Tannapfel A, et al. Photodynamic therapy for advanced bile duct cancer:evidence for improved palliation and extended survival [J]. Hepatology,2000,31(2):291-298.
    [173]Witzigmann H, Berr F, Ringel U, et al. Surgical and palliative management and outcome in 184 patients with hilar cholangiocarcinoma:palliative photodynamic therapy plus stenting is comparable to rl/r2 resection [J]. Ann Surg,2006,244: 230-239.
    [174]Ortner ME, Caca K, Berr F, et al. Successful photodynamic therapy for nonresectable cholangiocarcinoma:a randomized prospective study [J]. Gastroenterology,2003,125(5):1355-1363.
    [175]Zoepf T, Jakobs R, Arnold JC, et al. Palliation of nonresectable bile duct cancer improved survival after photodynamic namic therapy [J]. Am Gastroenterol,2005, 100:2425-2430.
    [176]Kahaleh M, Mishra R, Shami VM, et al. Unresectable cholangiocarcinoma: comparison of survival in biliary stenting alone versus stenting with photodynamic therapy [J]. Clin Gastroenterl Hepatol,2008,6:290-297.
    [177]Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization [J]. Photodiagnosis and Photodynamic Therapy,2004,1(4):279-293.
    [178]Tian ZD, Xu CS, Quan XM, et al. Advacement in sonosensilizer and Photosensilizer [J]. J Ultrasound in Clin Med,2008,10(1):39-41.
    [179]Peng YR, Wang QP. Recent Advance on the Metal Phthalocyanine as anticancer Photosensitizer [J]. STRAIT PHARMACEUTICAL JOURNAL,2003,15(2):5-7.
    [180]Zhi PX, Qing HZ, Gao QL. Inorganic nanoparticles as carriers for efficient cellular delivery [J]. Chemical Engineering Science,2006,61(3):1027-1040.
    [181]Zhang HX, Wang JX, Le Y. Review of liquid controlled precipitation process for preparation of pharmaceutical nano-/microparticles [J]. Journal of Chemical Industry and Engineering(China),2010,61(7):1720-1733.
    [182]Xiang Y, Xia JS, Li HF, et al. Current Status and Key Technology in Targeting therapy for Cancer [J]. BULLETIN OF CHINESE CANCER,2002,11(5): 289-291.
    [183]Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery:effect of particle size [J]. Cancer research,2000,60(16): 4440-4445.
    [184]Ravichandran R. Physico-chemical evaluation of gymnemic acids nanocrystals [J]. International Journal of Nanoparticles,2010,3(3):280-296.
    [185]李平平,周国瑜,沈玲悦,等.二氢卟酚纳米光敏剂对CAL-27细胞的光动 力杀伤效应[J].中国口腔颌面外科杂志,2011,9(4):296-300.
    [186]卿三华,李缪洋,盛新华,等.纳米微粒光敏剂光动力治疗结肠癌的实验研究[J].中华胃肠外科杂志,2006,9(6):530-533.
    [187]熊小强,陈汝福,汪峰,等.PLGA-m-THPC纳米型光敏剂的制备及其光动力治疗肝癌细胞的研究[J].中华普通外科学文献,2008,12(6):460-464.
    [188]Chono S, Li SD, Conwell CC, et al. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor [J]. Journal of Controlled Release,2008,131(1):64-69.
    [189]Allen TM, Ligan.1-targeted therapeutics in anticancer therapy [J]. Nat Rev Cancer,2002,2(20):750-763.
    [190]Yuan F, Dellian M, Fukumura D, et al. Vascular Permeability in a Human Tumor Xenograft:Molecular Size Dependence and Cutoff Size [J]. Cancer Res,1995,55: 752-3756.
    [191]Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake [J]. Biomaterials,2002, 23(7):1553-1561.
    [192]夏怡然,王健,朱金屏,等,纳米药物晶体的制备技术研究进展[J].中国医药工业杂志,2010,41(2):134-140.
    [193]蔡霞,刘春燕,吕慧侠.纳米药物制备工艺与设备研究进展[J].工程工艺与设备.2011,8:5-11.
    [194]Huang HN, Zhang DS, Zhang L, et al. Study on Nanopartiele Drug Carrier System [J]. Journal of Hebei North University(Medical Edition),2010,27(2): 69-71.
    [195]Jain KK. Nanomedicine:Application of Nanobiotechnology in Medical Practice [J]. Medical Principles and Practice,2008,17:89-101.
    [196]谢莹,黄光武,黄樱樱,等.纳米技术在光动力治疗恶性肿瘤中的应用前景[J].中国激光医学杂志,2009,18(1):55-58.
    [197]Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy [J], Nature Nanotechnology,2007,2(12):751-760.
    [198]Qiu LY, Bae YH. Polymer architecture and drug delivery [J], Pharmaceutical Research,2006,23(1):1-30.
    [199]Xu ZP, Zeng QH, Lu GQ, et al. Inorganic nanoparticles as carriers for eficient cellular delivery [J], Chemical Engineering Science,2006,61(3):1027-1040.
    [200]Salafasky B, He YX, Li J. Study on the efficacy of a new long-acting formulation of N, N-diethyl-mtoluamide (DEET) for the prevention of thick attachment [J]. American J Tropical Medicine and Hygiene,2000,62(2):169-172.
    [201]Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenterat drug delivery [J], Adv Drug Del Rev,2004,5(1):1257-1272.
    [202]Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration [J]. J Controlled Release,2005,107(2):215-228.
    [203]Chen Tong-kai Li Yuan Lin Huaqing. Research advances on Solid lipid nanoparticles as new drug carrier [J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2009,18(2):7-10.
    [204]Fu Yaxiang, He Xiangrong, Su Jianming. Study on Optimization in the Preparation and Formulation of Orbifloxacin Nano-liposome [J]. PROGRESS IN VETERINARY MEDICINE,2009,30(4):31-35.
    [205]Wang XC, Hou SX, Li W, et al. Study on drug release in vitro and rat intestinal absorption of resveratrol Nanoliposomes [J]. CHINA JOURNAL OF CHINESE MATERIA MEDICA,2007,32(11):1084-1088.
    [206]Torchilin VP. Micellar Nanocarriers:Pharmaceutical Perspectives [J]. Pharmaceutical Research,2007,24(1):1-16.
    [207]李东红,刁俊林,刘建仓.载光敏剂磁性纳米粉的制备及其光敏活性[J].应用化学,2008,25(9):1065-1068.
    [208]Bi H, Yu LL, Song MM. Progress of inorganic nanoparticles as targeted drug Nanocarriers [J]. JOURNAL OF ANHUI UNIVERSITY(NATURAL SCIENCES), 2011,35 (3):1-8.
    [209]Huang NP, Huang D, Xu MH. et al. The Study of the Photokilling Effect and Mechanism of Ultrafine TiO2 Particles on U937 Cells [J], Progress in Biochemistry and Biophysics,1997,24(5):470-473.
    [210]Kubota Y, Shuin T, Kawasaki C, et al. Photokilling of T-24 human bladder cancer cells with titanium dioxide [J]. British Journal of Cancer,1994,70: 1107-1111.
    [211]Lai CY, Trewyn BG, Jeftinija DM, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc.,2003,125 (15):4451-4459.
    [212]Slowing Ⅱ, Vivero-Escoto JL, Wu CW, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Adv Drug Deliv Rev,2008,60(11):1278-1288.
    [213]Alberto Bianco, Kostas Kostarelos, Maurizio Prato. Applications of carbon nanotubes in drug delivery [J]. Current Opinion in Chemical Biology,2005,9(6): 674-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700