用户名: 密码: 验证码:
人巨细胞病毒对早孕绒毛外细胞滋养细胞免疫功能影响的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分T细胞免疫对感染HCMV的绒毛外细胞滋养细胞保护作用研究
     [目的]体外研究T细胞对感染HCMV的绒毛外细胞滋养细胞的免疫效应。
     [方法]①选择人早孕胎盘绒毛滋养细胞株HPT-8进行研究,建立感染HCMV的HPT-8细胞模型:以100TCID50HCMV攻击HPT-8细胞后,应用免疫荧光细胞化学法检测HCMVpp65抗原表达及病毒滴定法观察HPT-8感染情况并绘制生长曲线,判定HPT-8细胞对HCMV的易感性,感染状态以及HCMV在细胞内生长情况。②收集门诊孕前咨询健康妇女外周血,提取外周血单个核细胞,尼龙毛柱法分离纯化获得T细胞。③建立T细胞与感染HCMV的HPT-8细胞共培养模型,应用实时荧光定量PCR法检测HPT-8细胞内HCMV DNA负荷量。
     [结果]①加入HCMV48h后,HPT-8细胞胞质内出现大量HCMV pp65抗原信号;感染3d后的HPT-8细胞培养液(Trophoblast conditioned medium, TCM)可使HEL细胞发生细胞病变;HCMV在HPT-8细胞内的复制于第4d开始增高,6d达到高峰。②T细胞具有下调HPT-8细胞内HCMV DNA负荷量的作用(p<0.05);T细胞与感染的HPT-8细胞共培养3d后的细胞上清,也具有下调HPT-8细胞内HCMV DNA负荷量的作用(p<0.05);共培养3天后的T细胞则失去了下调HPT-8细胞内HCMV DNA负荷量的作用(p>0.05)。
     [结论]T细胞在母-胎界面HCMV感染初期具有一定的免疫防御作用,其机制可能与T细胞的直接溶解杀伤作用及其分泌的细胞因子相关;但T细胞的免疫功能很快受到抑制,其中的机制有待进一步研究。
     第二部分HCMV感染后绒毛外细胞滋养细胞分泌产物对外周血T细胞Treg/Th17平衡的影响
     [目的]体外研究HCMV感染后绒毛外细胞滋养细胞分泌产物对外周血T细胞Treg/Th17平衡的影响
     [方法]①选择人早孕胎盘绒毛滋养细胞株HPT-8进行研究,建立感染HCMV的HPT-8细胞模型。②尼龙毛柱法分离纯化获得T细胞。③建立TCM与T细胞共培养体系:100TCIDso HCMV攻击HPT-8细胞后,收集HCMV感染72h以及相应时间点对照组的TCM,过滤离心后紫外灯照射15mmin灭活HCMV;根据T细胞培养液组分的不同,分为感染组(HCMV感染72h的TCM)、TCM对照组(对照组的TCM)及空白对照组(不含TCM),置于C02培养箱(5%C02、37℃)中继续培养72h。④应用流式分析法检测HCMV感染后绒毛外细胞滋养细胞分泌产物对T细胞内CD4+CD25+CD12-/CD4+、CD4+IL17A+/CD4+比值的影响。⑤应用实时荧光定量PCR法检测HCMV感染后绒毛外细胞滋养细胞分泌产物对T细胞分化相关转录因子Foxp3、 IL-6、IL-17A、TGF-p及RORyt mRNA表达的影响;⑥应用ELISA法检测各组T细胞培养上清中TGF-β、IL-17A的浓度。
     [结果]①与空白对照组相比,TCM对照组Treg/Th17比值增高(p<0.01);与TCM对照组相比,感染组Treg/Th17比值降低(p<0.01)。②与空白对照组比较,TCM对照组T细胞内Foxp3, RORyt及TGF-p mRNA的表达均明显升高(p<0.01);与TCM对照组比较,感染组T细胞内Foxp3, RORyt及TGF-β mRNA表达均明显减少(p<0.01)。③与空白对照组相比,TCM对照组T细胞内IL-17A和IL-6mRNA的表达均明显降低(p<0.01)。与TCM对照组相比,感染组T细胞内IL-17A和IL-6mRNA的表达均明显增加(p<0.01)。④与空白对照组相比,TCM对照组上清中TGF-β1浓度增加(p<0.01);与TCM对照组比较,感染组上清中TGF-β1浓度减少(p<0.01)。⑤与空白对照组相比,TCM组上清中IL-17A浓度减少(p<0.01);和TCM对照组相比,感染组IL-17A的浓度增加(p<0.01)。
     [结论]绒毛外细胞滋养细胞分泌物可促使外周血T细胞Treg/Th17型免疫平衡向Treg细胞偏倚,有利于妊娠的维持,而HCMV可能通过影响绒毛外细胞滋养细胞合成及分泌功能从而使外周血T细胞内Treg/Th17平衡向Th17细胞偏倚,导致不良妊娠结局。
     第三部分HCMV感染对绒毛外细胞滋养细胞合成分泌V][P表达水平的影响
     [目的]体外研究HCMV对绒毛外细胞滋养细胞合成分泌血管活性肠肽(vasoactive intestinal peptide, VIP)表达水平的影响
     [方法]①选择人早孕胎盘绒毛滋养细胞株HPT-8进行研究,建立感染HCMV的HPT-8细胞模型。②收集HCMV感染72h以及相应时间点对照组的细胞及TCM,TCM过滤离心后紫外灯照射15min灭活HCMV。③应用实时荧光定量PCR法检测HCMV感染对HPT-8细胞VIP mRNA表达水平的影响。④应用免疫细胞组织化学及免疫印迹法检测HCMV感染对HPT-8细胞VIP蛋白质表达水平的影响。⑤应用ELISA法检测HCMV感染对HPT-8细胞分泌VIP浓度的影响。
     [结果]①与空白对照组相比,感染组HPT-8细胞VIP mRNA表达水平明显降低(p<0.01)。②空白对照组及感染组HPT-8细胞的胞质和胞浆均有VIP蛋白表达,呈棕黄色颗粒;感染组HPT-8细胞VIP蛋白表达水平明显低于空白对照组p<0.01)。③感染组HPT-8细胞分泌VIP浓度明显低于空白对照组p<0.01)。
     [结论]母-胎界面HCMV感染抑制了绒毛外细胞滋养细胞合成和分泌的VIP表达水平。
     第四部分黄芩素对感染HCMV的绒毛外细胞滋养细胞VIP表达水平的影响
     [目的]探讨黄芩素阻断HCMV感染绒毛外细胞滋养细胞的作用及对HCMV感染的绒毛外细胞滋养细胞VIP表达水平的影响。
     [方法]①选择人早孕胎盘绒毛滋养细胞株HPT-8进行研究,建立感染HCMV的HPT-8细胞模型。②收集HCMV感染72h以及相应时间点对照组、黄芩素组的HPT-8细胞及TCM, TCM过滤及离心后用紫外灯照射15min灭活HCMV。③应用实时荧光定量PCR法检测黄芩素对感染HCMV的HPT-8细胞HCMV DNA负荷量的影响。④应用实时荧光定量PCR法检测黄芩素对感染HCMV的HPT-8细胞内VIP mRNA表达的影响。⑤应用免疫细胞组织化学及免疫印迹法检测黄芩素对感染HCMV的HPT-8细胞内VIP蛋白质表达水平的影响。⑥ELISA法检测黄芩素对感染HCMV的HPT-8细胞分泌VIP浓度的影响。
     [结果]①黄芩素减少感染的HPT-8细胞内HCMV DNA负荷量。②与空白对照组相比,感染组HPT-8细胞内VIP蛋白转录,合成及分泌的表达均明显下降,差异均具有统计学意义(p<0.05);黄芩素组HPT-8细胞内VIP蛋白转录,合成及分泌的表达与正常对照组相比,差异均无统计学意义(p>0.05)
     [结论]黄芩素对母-胎界面的HCMV感染及其导致的VIP表达异常具有一定积极影响。
Part1T cell-mediated immunological effect in human cytomegalovirus infected extravillous cytotrophoblasts
     [Objective] To explore T cell-mediated restriction of human cytomegalovirus (HCMV) in extravillous cytotrophoblasts (EVT) in vitro
     [Methods]①A human trophoblast cell line (HPT-8) was chosen to conduct the research, and then to established a HCMV infected HPT-8cells model:HPT-8cells were infected with100TCID50HCMV. The following methods were used to observe infection susceptibility and status of HPT-8cells to HCMV, and growth situation of HCMV in cells: Immunofluorescence cytochemistry method was used to detect HCMV pp65, and method of viral titres was used to observe infection, drawing a growth curve of HCMV.②T cells were isolated and purified by using nylon column from the peripheral blood of normal reproductive women for preconception counseling in outpatient.③A T cells-HCMV infected HPT-8cells co-culture system was established, real-time quantitative PCR was used to detect the HCMV DNA in HPT-8cells.
     [Results]①A large number of HCMV pp65antigen signals could be seen in infected HPT-8cells at the48time point. TCM of3d after infection induced typical cell lesion in HEL cells; HCMV replication began to increase4d after infection and peaked at6d.②HCMV DNA load in infected HPT-8cells was significantly decreased in T cells co-cultured group (p<0.05). Cell-free co-culture supernatant was also diminished the HCMV DNA load (p<0.05). However, when co-cultured T cells was added to fresh HCMV infected HPT-8cells, there was no significant difference in HCMV DNA load with HCMV infected group (p>0.05).
     [Conclusions] T cells had antiviral effect during the early stage of infected maternal-fetal interface, and the mechanism may be associated with both direct killing effect and secreting soluble factors. However, the immune function of T cells was rapidly inhibited, of which the underlying mechanisms remain unclear and need further study.
     Part2The effect of secretory products of human cytomegalovirus infected extravillous cytotrophoblasts on Treg/Th17balance in peripheral blood T cell
     [Objective]To investigated the effect of secretory products of HCMV-infected EVT on the Treg/Th17balance in peripheral blood T cell.
     [Methods]①A human trophoblast cell line (HPT-8) was chosen to conduct the research, and then to establish a HCMV infected HPT-8model.②T cells were isolated and purified by using nylon column.③The co-culture system of TCM and T cells was established in vitro:HPT-8cells were infected with100TCID50HCMV, and then TCM was collected after HCMV infection within72h and that of control group at the same time point, after centrifugation HCMV in the TCM inactivated by ultraviolet light irradiating15min; the study was grouped according to various components of TCM:infection group (including TCM from infected HCMV within72h), TCM control group (including non-infected TCM) and control group (without TCM), and then put them into incubator (37℃,5%CO2) for72h.③Flow cytometric analysis was applied to detect the change of CD4+CD25+CD127-/CD4+CD4+IL17A+/CD4+in T cells after HCMV infection.⑤Real-time quantitative PCR was used to detect the effect of secretory products of HCMV infected EVT on the expression of the associated transcription factors of T cells differentiation Foxp3、IL-6、IL-17A、TGF-β and RORyt.⑥TGF-β1and IL-17A excreted by T cells were detected with ELISA method.
     [Results]①Compared with control group, The ratio of Treg/Th17in TCM control group was significantly higher (p<0.01); The ratio of Treg/Th17was significantly lower in infection group than that in TCM control group (p<0.01).②Compared with control group, the mRNA expression in TCM control group of the three associated transcription factors of T cells differentiation Foxp3、TGF-β and RORyt were significantly increased (p<0.01); compared with TCM control group, the mRNA expression of the three factors was decreased in infection group (p<0.01).③Compared with control group, the mRNA expression levels in TCM control group of the two associated transcription factors of T cells differentiation IL-17A and IL-6were significantly decreased (p<0.01); the mRNA expression levels of the two transcription factors was significantly higher in infection group than that in TCM control group (p<0.01).④TGF-β1concentration in TCM control group was higher than that in control group (p<0.01); compared with TCM control group, TGF-β1concentration in infection group was significantly decreased (p<0.01).⑤The concentration of IL-17A in control group was significantly lower than that in TCM control group (p<0.01); compared with TCM control group, IL-17A concentration was significantly increased (p<0.01)
     [Conclusions] EVT secretion can promote the balance of Treg/Th17to Treg cells in peripheral blood T cell, which is conductive to pregnancy. However, HCMV may boost the balance of Treg/Th17to Th17cells in peripheral blood T cell by disturbing the secretory function of EVT, which may induce adverse pregnancy outcomes.
     Part3Effect of human cytomegalovirus infection on VIP synthesized and excreted by extravillous cytotrophoblasts
     [Objective]To study the effect of HCMV infection on VIP synthesized and excreted by EVT.
     [Methods]①A human trophoblast cell line (HPT-8) was chosen to conduct the research, and then a HCMV infected HPT-8model was established.②HPT-8cells and TCM were collected after HCMV infection within72h and that of control group at the same time point, after centrifugation HCMV in the TCM inactivated by ultraviolet light irradiating15min;③The mRNA expression of VIP was detected by real-time quantitative PCR.④The protein expression level of VIP was detected by both immunocytochemistry and Western blot.⑤VIP excreted by HPT-8cells was detected with ELISA method.
     [Results]①Comparing to control group, the mRNA expression level of VIP was lower in infection group (p<0.01).②VIP protein expressed in cytoplast and cell plasma of HPT-8cells in both control group and infection group with the expression presenting yellow-brown; the protein expression of VIP in infection group was lower than that in control group (p<0.01).③VIP concentration in TCM from infection group was lower than that from control group (p<0.01)
     [Conclusions] The expression of VIP synthesized and excreted by EVT was decreased after HCMV infection at maternal-fetal interface.
     Part4Effect of baicalein on the expression of VIP in extravillous cytotrophoblasts infected with human cytomegalovirus in vitro
     [Objective] to study the function of baicalein to interrupt HCMV infected EVT and its effect on the expression of VIP of infected EVT.
     [Methods]①A human trophoblast cell line (HPT-8) was chosen to conduct the research, and a HCMV infected HPT-8model was established.②After infected72h, the cultured HPT-8cells and TCM were collected respectively. The TCM was exposed to ultraviolet rays for15min to inactivate CMV, after filtration and centrifugalization.③The effect of baicalein on HCMV DNA load in infected HPT-8cells was detected by real-time quantative PCR.④The effect of baicalein on the expression of VIP mRNA in infected HPT-8cells was also detected by real-time quantative PCR.⑤The effect of baicalein on the protein expression of VIP was detected by immunocytochemistry and Western blot.⑥The effect of baicalein on VIP concentration in supernatant was observed with ELISA method.
     [Results]①Beicalein can reduce HCMV DNA load in infected HPT-8cells.②Compared to control group, the mRNA and protein expression levels of VIP synthesized and excreted by HPT-8cells in infection group was decreased (p<0.05). The differences in the mRNA, protein and excretion expression levels of VIP between control group and beicalein group were not significant statistically (p>0.05)
     [Conclusions] Baicalein has a positive impact on the abnormal VIP expression by HCMV infection at maternal-fetal interface.
引文
[1]Kenneson A, Cannon M J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection[J]. Rev Med Virol.2007,17(4): 253-276.
    [2]Cheeran M C, Lokensgard J R, Schleiss M R. Neuropathogenesis of congenital cytomegalovirus infection:disease mechanisms and prospects for intervention[J]. Clin Microbiol Rev.2009,22(1):99-126.
    [3]Cannon M J, Westbrook K, Levis D, et al. Awareness of and behaviors related to child-to-mother transmission of cytomegalovims[J]. Prev Med.2012,54(5):351-357.
    [4]Cordier A G, Guitton S, Vauloup-Fellous C, et al. Awareness of cytomegalovirus infection among pregnant women in France[J]. J Clin Virol.2012,53(4):332-337.
    [5]Pereira L, Maidji E, Mcdonagh S, et al. Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity[J]. J Virol.2003,77(24):13301-13314.
    [6]Scott G M, Chow S S, Craig M E, et al. Cytomegalovirus infection during pregnancy with maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic fluid[J]. J Infect Dis.2012,205(8):1305-1310.
    [7]Mccarthy F P, Giles M L, Rowlands S, et al. Antenatal interventions for preventing the transmission of cytomegalovirus (CMV) from the mother to fetus during pregnancy and adverse outcomes in the congenitally infected infant[J]. Cochrane Database Syst Rev.2011(3):D8371.
    [8]Pereira L, Maidji E. Cytomegalovirus infection in the human placenta:maternal immunity and developmentally regulated receptors on trophoblasts converge[J]. Curr Top Microbiol Immunol.2008,325:383-395.
    [9]Warning J C, Mccracken S A, Morris J M. A balancing act:mechanisms by which the fetus avoids rejection by the maternal immune system[J]. Reproduction.2011,141(6): 715-724.
    [10]Kumpel B M, Manoussaka M S. Placental immunology and maternal alloimmune responses[J]. Vox Sang.2012,102(1):2-12.
    [11]Mosmann T R, Cherwinski H, Bond M W, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol.1986,136(7):2348-2357.
    [12]Wegmann T G, Lin H, Guilbert L, et al. Bidirectional cytokine interactions in the maternal-fetal relationship:is successful pregnancy a TH2 phenomenon?[J]. Immunol Today.1993,14(7):353-356.
    [13]Chaouat G, Ledee-Bataille N, Zourbas S, et al. Cytokines, implantation and early abortion:re-examining the Th1/Th2 paradigm leads to question the single pathway, single therapy concept[J]. Am J Reprod Immunol.2003,50(3):177-186.
    [14]Bates M D, Quenby S, Takakuwa K, et al. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss?[J]. Hum Reprod.2002,17(9): 2439-2444.
    [15]Aluvihare V R, Kallikourdis M, Betz A G. Regulatory T cells mediate maternal tolerance to the fetus[J]. Nat Immunol.2004,5(3):266-271.
    [16]Mjosberg J, Berg G, Jenmalm M C, et al. FOXP3+regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua[J]. Biol Reprod. 2010,82(4):698-705.
    [17]Santner-Nanan B, Peek M J, Khanam R, et al. Systemic increase in the ratio between Foxp3+and IL-17-producing CD4+T cells in healthy pregnancy but not in preeclampsia[J]. J Immunol.2009,183(11):7023-7030.
    [18]Saito S, Nakashima A, Shima T, et al. Thl/Th2/Thl 7 and regulatory T-cell paradigm in pregnancy[J]. Am J Reprod Immunol.2010,63(6):601-610.
    [19]Crome S Q, Wang A Y, Levings M K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease[J]. Clin Exp Immunol.2010,159(2):109-119.
    [20]Chaudhry A, Rudra D, Treuting P, et al. CD4+regulatory T cells control TH17 responses in a Stat3-dependent manner[J]. Science.2009,326(5955):986-991.
    [21]武华栋,王新华,周荣斌.调节性T细胞与Th17细胞之间平衡作用的机制[J].中国热带医学.2011(9):1164-1166.
    [22]Ramhorst R, Fraccaroli L, Aldo P, et al. Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells[J]. Am J Reprod Immunol.2012, 67(1):17-27.
    [23]Tarrade A, Lai K R, Malassine A, et al. Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta[J]. Lab Invest.2001, 81(9):1199-1211.
    [24]Dong M, Ding G, Zhou J, et al. The effect of trophoblasts on T lymphocytes:possible regulatory effector molecules-a proteomic analysis[J]. Cell Physiol Biochem.2008, 21(5-6):463-472.
    [25]Delgado M, Ganea D. Vasoactive intestinal peptide:a neuropeptide with pleiotropic immune functions[J]. Amino Acids.2011.
    [26]Marzioni D, Fiore G, Giordano A, et al. Placental expression of substance P and vasoactive intestinal peptide:evidence for a local effect on hormone release[J]. J Clin Endocrinol Metab.2005,90(4):2378-2383.
    [27]Fraccaroli L, Grasso E, Hauk V, et al. Defects in the vasoactive intestinal peptide (VIP)/VPAC system during early stages of the placental-maternal leucocyte interaction impair the maternal tolerogenic response[J]. Clin Exp Immunol.2012,170(3): 310-320.
    [28]Liu T, Zheng X, Chen J, et al. Effect of human cytomegalovirus on invasive capability of early pregnant extravillous cytotrophoblasts[J]. J Huazhong Univ Sci Technolog Med Sci.2011,31(6):819-823.
    [29]Tao L, Suhua C, Juanjuan C, et al. In vitro study on human cytomegalovirus affecting early pregnancy villous EVT's invasion function[J]. Virol J.2011,8:114.
    [30]萧文惠,王自能,陈福民,等.人妊娠母胎耐受机制的研究进展[J].暨南大学学报:自然科学与医学版.2011,32(4):369-373.
    [31]Halwachs-Baumann G, Wilders-Truschnig M, Desoye G, et al. Human trophoblast cells are permissive to the complete replicative cycle of human cytomegalovirus[J]. J Virol.1998,72(9):7598-7602.
    [32]Yinon Y, Farine D, Yudin M H, et al. Cytomegalovirus infection in pregnancy [J]. J Obstet Gynaecol Can.2010,32(4):348-354.
    [33]Terauchi M, Koi H, Hayano C, et al. Placental extravillous cytotrophoblasts persistently express class I major histocompatibility complex molecules after human cytomegalovirus infection[J]. J Virol.2003,77(15):8187-8195.
    [34]Yan W H, Lin A, Chen B G, et al. Induction of both membrane-bound and soluble HLA-G expression in active human cytomegalovirus infection[J]. J Infect Dis.2009, 200(5):820-826.
    [35]Lopez H, Benard M, Saint-Aubert E, et al. Novel model of placental tissue explants infected by cytomegalovirus reveals different permissiveness in early and term placentae and inhibition of indoleamine 2,3-dioxygenase activity [J]. Placenta.2011, 32(7):522-530.
    [36]Liu Y S, Wu L, Tong X H, et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion[J]. Am J Reprod Immunol.2011,65(5): 503-511.
    [37]Ogura H, Murakami M, Okuyama Y, et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction[J]. Immunity.2008, 29(4):628-636.
    [38]Schleiss M R. Prospects for development and potential impact of a vaccine against congenital cytomegalovirus (CMV) infection[J]. J Pediatr.2007,151(6):564-570.
    [39]孙文英,孙新,肖华,等.更昔洛韦治疗婴幼儿巨细胞病毒感染安全性和不良反应的临床研究[J].中国儿童保健杂志.(2).
    [40]Evers D L, Chao C F, Wang X, et al. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action[J]. Antiviral Res.2005,68(3): 124-134.
    [41]高燕,顾振纶,蒋小岗,等.黄芩素药理学研究新进展[J].时珍国医国药.2010(7):1765-1767.
    [42]杨丽萍,杨幼明,杨钧,等.黄芩对大鼠胚胎致畸作用的观察[J].中国比较医学杂志.(5).
    [1]闫凤亭,李芬.孕期巨细胞病毒感染的免疫学变化[J].国外医学.妇幼保健分册:27-31.
    [2]Guleria I, Sayegh M H. Maternal acceptance of the fetus:true human tolerance[J]. J Immunol,2007; 178(6):3345-3351.
    [3]Warning J C, Mccracken S A, Morris J M. A balancing act:mechanisms by which the fetus avoids rejection by the maternal immune system[J]. Reproduction,2011; 141(6): 715-724.
    [4]Dong M, Ding G, Zhou J, et al. The effect of trophoblasts on T lymphocytes:possible regulatory effector molecules-a proteomic analysis[J]. Cell Physiol Biochem,2008; 21(5-6):463-472.
    [5]刘涛,陈娟娟,尹宗智,等.人巨细胞病毒影响绒毛外细胞滋养细胞增殖功能的体外研究[J].中国妇幼保健,2011(9):1397-1399.
    [6]Liu T, Zheng X, Chen J, et al. Effect of human cytomegalovirus on invasive capability of early pregnant extravillous cytotrophoblasts[J]. J Huazhong Univ Sci Technolog Med Sci,2011;31(6):819-823.
    [7]Morley P J, Ertl P F, Sweet C. High-frequency interferon-gamma-secreting splenocytes specific for murine cytomegalovirus immediate-early-1 (IE-1) peptide 168YPHFMPTNL176 are insufficient to provide complete protection from viral challenge[J]. J Med Virol,2003;69(2):240-250.
    [8]Kumpel B M, Manoussaka M S. Placental immunology and maternal alloimmune responses[J]. Vox Sang,2012;102(1):2-12.
    [9]Beetz S, Wesch D, Marischen L, et al. Innate immune functions of human gammadelta T cells[J]. Immunobiology,2008;213(3-4):173-182.
    [10]Scott G M, Chow S S, Craig M E, et al. Cytomegalovirus infection during pregnancy with maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic fluid[J]. J Infect Dis,2012;205(8):1305-1310.
    [11]Revello M G, Gerna G. Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications[J]. Rev Med Virol,2010;20(3):136-155.
    [12]Abate D A, Watanabe S, Mocarski E S. Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response[J]. J Virol,2004;78(20):10995-11006.
    [13]Yang J, Wang D. [Clinical value of human cytomegalovirus phosphoprotein 65 in the diagnosis of cytomegalovirus disease][J]. Nan Fang Yi Ke Da Xue Xue Bao,2008; 28(2):263-265.
    [14]张欣文,韩蕾,李芬.母胎界面人巨细胞病毒免疫逃逸机制研究进展[J].中国妇幼健康研究,2006(4):302-304.
    [15]Shimamura M, Murphy-Ullrich J E, Britt W J. Human cytomegalovirus induces TGF-betal activation in renal tubular epithelial cells after epithelial-to-mesenchymal transition[J]. PLoS Pathog,2010;6(11):e1001170.
    [16]Jackson S E, Mason G M, Wills M R. Human cytomegalovirus immunity and immune evasion[J]. Virus Res,2011;157(2):151-160.
    [1]Ramhorst R, Fraccaroli L, Aldo P, et al. Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells[J]. Am J Reprod Immunol,2012; 67(1):17-27.
    [2]Pongcharoen S, Niumsup P R, Sanguansermsri D. JEG-3 cell culture supernatants cause reduced interferon-gamma and interleukin-17 production in mixed-lymphocyte reactions[J]. Am J Reprod Immunol,2007;57(3):227-231.
    [3]Yinon Y, Farine D, Yudin M H, et al. Cytomegalovirus infection in pregnancy[J]. J Obstet Gynaecol Can,2010;32(4):348-354.
    [4]Liu T, Zheng X, Chen J, et al. Effect of human cytomegalovirus on invasive capability of early pregnant extravillous cytotrophoblasts[J]. J Huazhong Univ Sci Technolog Med Sci,2011;31(6):819-823.
    [5]Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol,2004;22:531-562.
    [6]Fujimoto M, Nakano M, Terabe F, et al. The influence of excessive IL-6 production in vivo on the development and function of Foxp3+regulatory T cells[J]. J Immunol, 2011;186(1):32-40.
    [7]Workman C J, Szymczak-Workman A L, Collison L W, et al. The development and function of regulatory T cells[J]. Cell Mol Life Sci,2009;66(16):2603-2622.
    [8]Ohkura N, Sakaguchi S. Regulatory T cells:roles of T cell receptor for their development and function[J]. Semin Immunopathol,2010;32(2):95-106.
    [9]Gandhi R, Anderson D E, Weiner H L. Cutting Edge:Immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-beta-dependent manner[J]. J Immunol,2007;178(7):4017-4021.
    [10]Mjosberg J, Berg G, Jenmalm M C, et al. FOXP3+regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua[J]. Biol Reprod, 2010;82(4):698-705.
    [11]Ernerudh J, Berg G, Mjosberg J. Regulatory T helper cells in pregnancy and their roles in systemic versus local immune tolerance[J]. Am J Reprod Immunol,2011;66 Suppl 1:31-43.
    [12]Mjosberg J, Berg G, Jenmalm M C, et al. FOXP3+regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua[J]. Biol Reprod,2010; 82(4):698-705.
    [13]Dimova T, Nagaeva O, Stenqvist A C, et al. Maternal Foxp3 expressing CD4+CD25+ and CD4+CD25-regulatory T-cell populations are enriched in human early normal pregnancy decidua:a phenotypic study of paired decidual and peripheral blood samples[J]. Am J Reprod Immunol,2011;66 Suppl 1:44-56.
    [14]Mcgeachy M J, Cua D J. Th17 cell differentiation:the long and winding road[J]. Immunity,2008;28(4):445-453.
    [15]Wang L, Yi T, Kortylewski M, et al. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway[J]. J Exp Med,2009;206(7):1457-1464.
    [16]Awasthi A, Kuchroo V K. Th17 cells:from precursors to players in inflammation and infection[J]. Int Immunol,2009;21(5):489-498.
    [17]Crome S Q, Wang A Y, Levings M K. Translational mini-review series on Thl7 cells: function and regulation of human T helper 17 cells in health and disease[J]. Clin Exp Immunol,2010;159(2):109-119.
    [18]Loong C C, Hsieh H G, Lui W Y, et al. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection[J]. J Pathol,2002; 197(3):322-332.
    [19]Ogura H, Murakami M, Okuyama Y, et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction[J]. Immunity,2008; 29(4):628-636.
    [20]Nakashima A, Ito M, Shima T, et al. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases[J]. Am J Reprod Immunol,2010;64(1):4-11.
    [21]Santner-Nanan B, Peek M J, Khanam R, et al. Systemic increase in the ratio between Foxp3+and IL-17-producing CD4+T cells in healthy pregnancy but not in preeclampsia[J]. J Immunol,2009;183(11):7023-7030.
    [22]Abraham C, Cho J. Interleukin-23/Th17 pathways and inflammatory bowel disease[J]. Inflamm Bowel Dis,2009;15(7):1090-1100.
    [23]Lohr J, Knoechel B, Wang J J, et al. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease[J]. J Exp Med,2006;203(13):2785-2791.
    [24]Chaudhry A, Rudra D, Treuting P, et al. CD4+regulatory T cells control TH17 responses in a Stat3-dependent manner[J]. Science,2009;326(5955):986-991.
    [25]Weaver C T, Hatton R D, Mangan P R, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages[J]. Annu Rev Immunol,2007;25:821-852.
    [26]Saito S, Nakashima A, Shima T, et al. Thl/Th2/Thl7 and regulatory T-cell paradigm in pregnancy[J]. Am J Reprod Immunol,2010;63(6):601-610.
    [27]Liu Y S, Wu L, Tong X H, et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion[J]. Am J Reprod Immunol,2011; 65(5):503-511.
    [28]Tilburgs T, Roelen D L, van der Mast B J, et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy[J]. J Immunol,2008;180(8):5737-5745.
    [29]Aluvihare V R, Kallikourdis M, Betz A G. Regulatory T cells mediate maternal tolerance to the fetus[J]. Nat Immunol,2004;5(3):266-271.
    [30]吴海霞.Th17细胞在人早孕期母—胎界面功能性调节作用[J].
    [31]Gupta A K, Holzgreve W, Hahn S. Microparticle-free placentally derived soluble factors downmodulate the response of activated T cells[J]. Hum Immunol,2005; 66(9):977-984.
    [32]Dong M, Ding G, Zhou J, et al. The effect of trophoblasts on T lymphocytes:possible regulatory effector molecules--a proteomic analysis[J]. Cell Physiol Biochem,2008; 21(5-6):463-472.
    [33]Liu F, Guo J, Tian T, et al. Placental trophoblasts shifted Thl/Th2 balance toward Th2 and inhibited Th17 immunity at fetomaternal interface[J]. APMIS,2011; 119(9): 597-604.
    [34]Pongcharoen S, Niumsup P R, Sanguansermsri D. JEG-3 cell culture supernatants cause reduced interferon-gamma and interleukin-17 production in mixed-lymphocyte reactions[J]. Am J Reprod Immunol,2007;57(3):227-231.
    [1]Leceta J, Gomariz R P, Martinez C, et al. Vasoactive intestinal peptide regulates Th17 function in autoimmune inflammation[J]. Neuroimmunomodulation,2007; 14(3-4): 134-138.
    [2]Delgado M, Ganea D. Vasoactive intestinal peptide:a neuropeptide with pleiotropic immune functions[J]. Amino Acids,2011.
    [3]辛雁.血管活性肠肽[J].国外医学.内分泌学分册,1987(01):8-11.
    [4]Said S I, Mutt V. Polypeptide with broad biological activity:isolation from small intestine[J]. Science,1970;169(3951):1217-1218.
    [5]Said S I, Rosenberg R N. Vasoactive intestinal polypeptide:abundant immunoreactivity in neural cell lines and normal nervous tissue[J]. Science,1976; 192(4242):907-908.
    [6]Marzioni D, Fiore G, Giordano A, et al. Placental expression of substance P and vasoactive intestinal peptide:evidence for a local effect on hormone release[J]. J Clin Endocrinol Metab,2005;90(4):2378-2383.
    [7]Zenclussen A C. Adaptive immune responses during pregnancy [J]. Am J Reprod Immunol,2013;69(4):291-303.
    [8]Fraccaroli L, Alfieri J, Larocca L, et al. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells[J]. Br J Pharmacol,2009; 156(1): 116-126.
    [9]Spong C Y, Lee S J, Mccune S K, et al. Maternal regulation of embryonic growth:the role of vasoactive intestinal peptide[J]. Endocrinology,1999;140(2):917-924.
    [10]Fraccaroli L, Grasso E, Hauk V, et al. Defects in the vasoactive intestinal peptide (VTP)/VPAC system during early stages of the placental-maternal leucocyte interaction impair the maternal tolerogenic response[J]. Clin Exp Immunol,2012;170(3):310-320.
    [1]高燕,顾振纶,蒋小岗,等.黄芩素药理学研究新进展[J].时珍国医国药,2010(7):1765-1767.
    [2]Evers D L, Chao C F, Wang X, et al. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action[J]. Antiviral Res,2005;68(3): 124-134.
    [3]杨丽萍,杨幼明,杨钧,等.黄芩对大鼠胚胎致畸作用的观察[J].中国比较医学杂志,(5).
    [4]孙文英,孙新,肖华,等.更昔洛韦治疗婴幼儿巨细胞病毒感染安全性和不良反应的临床研究[J].中国儿童保健杂志,(2).
    [5]Locatelli F, Percivalle E, Comoli P, et al. Human cytomegalovirus (HCMV) infection in paediatric patients given allogeneic bone marrow transplantation:role of early antiviral treatment for HCMV antigenaemia on patients'outcome[J]. Br J Haematol,1994; 88(1):64-71.
    [6]张喜平,李宗芳,刘效恭.黄芩素的药理学研究概况[J].中国药理学通报,2001(6):711-713.
    [7]赵晶晶.中药有效成分抗豚鼠巨细胞病毒体外实验研究[D].华中科技大学,2011.
    [1]Mosmann T R, Cherwinski H, Bond M W, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins[J]. J Immunol.1986,136(7):2348-2357.
    [2]Wegmann T G, Lin H, Guilbert L, et al. Bidirectional cytokine interactions in the maternal-fetal relationship:is successful pregnancy a TH2 phenomenon?[J]. Immunol Today.1993,14(7):353-356.
    [3]Chaouat G, Ledee-Bataille N, Zourbas S, et al. Cytokines, implantation and early abortion:re-examining the Thl/Th2 paradigm leads to question the single pathway, single therapy concept[J]. Am J Reprod Immunol.2003,50(3):177-186.
    [4]Bates M D, Quenby S, Takakuwa K, et al. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss?[J]. Hum Reprod.2002,17(9): 2439-2444.
    [5]Peck A, Mellins E D. Breaking old paradigms:Th17 cells in autoimmune arthritis[J]. Clin Immunol.2009,132(3):295-304.
    [6]Crome S Q, Wang A Y, Levings M K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease[J]. Clin Exp Immunol.2010,159(2):109-119.
    [7]Akbar A N, Vukmanovic-Stejic M, Taams L S, et al. The dynamic co-evolution of memory and regulatory CD4+T cells in the periphery[J]. Nat Rev Immunol.2007,7(3): 231-237.
    [8]Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+regulatory T cells in immunological tolerance to self and non-self[J]. Nat Immunol.2005,6(4):345-352.
    [9]Crome S Q, Wang A Y, Levings M K. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease[J]. Clin Exp Immunol.2010,159(2):109-119.
    [10]Mcgeachy M J, Cua D J. Thl7 cell differentiation:the long and winding road[J]. Immunity.2008,28(4):445-453.
    [11]Romagnani S. Human Th17 cells[J]. Arthritis Res Ther.2008,10(2):206.
    [12]Nautiyal J, Kumar P G, Laloraya M. Mifepristone (Ru486) antagonizes monocyte chemotactic protein-3 down-regulation at early mouse pregnancy revealing immunomodulatory events in Ru486 induced abortion[J]. Am J Reprod Immunol.2004, 52(1):8-18.
    [13]Ng S C, Gilman-Sachs A, Thaker P, et al. Expression of intracellular Thl and Th2 cytokines in women with recurrent spontaneous abortion, implantation failures after IVF/ET or normal pregnancy[J]. Am J Reprod Immunol.2002,48(2):77-86.
    [14]Arruvito L, Sanz M, Banham A H, et al. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle:implications for human reproduction[J]. J Immunol.2007,178(4):2572-2578.
    [15]Zenclussen A C, Gerlof K, Zenclussen M L, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion:adoptive transfer of pregnancy-induced CD4+CD25+T regulatory cells prevents fetal rejection in a murine abortion model[J]. Am J Pathol.2005,166(3):811-822.
    [16]Darrasse-Jeze G, Klatzmann D, Charlotte F, et al. CD4+CD25+regulatory/suppressor T cells prevent allogeneic fetus rejection in mice[J]. Immunol Lett.2006,102(1): 106-109.
    [17]Miyazaki S, Tsuda H, Sakai M, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua[J]. J Leukoc Biol.2003,74(4):514-522.
    [18]Lin Y, Ren L, Wang W, et al. Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice[J]. J Reprod Immunol.2009,82(1):12-23.
    [19]Fallon P G, Jolin H E, Smith P, et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13[J]. Immunity.2002,17(1):7-17.
    [20]Michimata T, Tsuda H, Sakai M, et al. Accumulation of CRTH2-positive T-helper 2 and T-cytotoxic 2 cells at implantation sites of human decidua in a prostaglandin D(2)-mediated manner[J]. Mol Hum Reprod.2002,8(2):181-187.
    [21]Tsuda H, Michimata T, Sakai M, et al. A novel surface molecule of Th2-and Tc2-type cells, CRTH2 expression on human peripheral and decidual CD4+and CD8+T cells during the early stage of pregnancy [J]. Clin Exp Immunol.2001,123(1):105-111.
    [22]Pongcharoen S, Supalap K. Interleukin-17 increased progesterone secretion by JEG-3 human choriocarcinoma cells[J]. Am J Reprod Immunol.2009,61(4):261-264.
    [23]Zhao J X, Zeng Y Y, Liu Y. Fetal alloantigen is responsible for the expansion of the CD4(+)CD25(+) regulatory T cell pool during pregnancy[J]. J Reprod Immunol.2007, 75(2):71-81.
    [24]杨卉,林其德,肖云山,等.Foxp3在子宫内膜、正常早孕和原因不明复发性流产患者蜕膜上的表达[J].现代妇产科进展.2005(02):129-131.
    [25]Wang W J, Hao C F, Yi-Lin, et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients[J]. J Reprod Immunol.2010,84(2):164-170.
    [26]Nakashima A, Ito M, Shima T, et al. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases[J]. Am J Reprod Immunol.2010,64(1):4-11.
    [27]Yang H, Qiu L, Chen G, et al. Proportional change of CD4+CD25+regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients[J]. Fertil Steril.2008,89(3):656-661.
    [28]Sasaki Y, Sakai M, Miyazaki S, et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases[J]. Mol Hum Reprod.2004,10(5):347-353.
    [29]Arruvito L, Sanz M, Banham A H, et al. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle:implications for human reproduction[J]. J Immunol.2007,178(4):2572-2578.
    [30]Arruvito L, Billordo A, Capucchio M, et al. IL-6 trans-signaling and the frequency of CD4+FOXP3+cells in women with reproductive failure[J]. J Reprod Immunol.2009, 82(2):158-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700