用户名: 密码: 验证码:
楸子不同类型抗旱耐盐性评价及遗传差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
楸子(Malus prunifolia)是我国特有的苹果野生种质资源,对不同自然条件有很强的适应性,与苹果嫁接亲和力强,长势旺盛,是我国西北地区重要的苹果砧木。在我国经长期天然杂交,加上基因突变及环境因素的影响,使得楸子产生很多不同的类型(变种)。有些类型在形态上极为相似,以至于很难将其区分,这对楸子不同类型的命名造成一定的困难,对其在分类学上的划分产生较大争议。此外,楸子作为一种野生种质资源,其不同类型之间的抗逆性,还未曾有过系统地分析和评价。本研究通过分析干旱、盐胁迫下各类型的生理响应,对楸子不同类型的抗旱、耐盐性做出综合评价,筛选出不同抗性的苹果砧木资源,这对于苹果抗性育种研究以及经济栽培具有重要的理论和实用价值;同时,利用SSR分子标记技术,结合聚类分析及主成分分析,对楸子不同类型之间的亲缘关系在分子水平上做进一步鉴定,为阐明苹果砧木资源的分类、优化种质资源的收集与管理工作提供理论依据。主要研究结果如下:
     1.将‘富士’嫁接于8种苹果砧木(7个楸子类型,1个新疆野苹果)后进行12d干旱处理,其叶片相对含水量(RWC)与对照相比(0d)显著降低,总叶绿素含量与光合参数在胁迫过程中也有不同程度的下降。胁迫第9d,以东北黄海棠、新疆野苹果和富平楸子为砧木的‘富士’仍然保持相对较高的Pn,分别为8.48,7.55和6.34μmol m-2s-1,而以红海棠和白海棠为砧木的‘富士’的Pn则分别下降到2.54和3.82μmol m-2s-1。此时,以富平楸子为砧木的‘富士’的WUEi最高,达到5.71μmol mmol-1,WUEi最小的是以红海棠作为砧木的‘富士’,只有2.42μmol mmol-1。
     2.干旱胁迫下,所有植株的APX活性在胁迫前3d急剧上升,在第9d开始下降,不同砧木的‘富士’所达到的最大值不同。以红海棠、五棱海棠和白海棠为砧木的‘富士’的POD活性在胁迫后3d便开始下降,而以富平楸子、东北黄海棠、新疆野苹果以及崂山柰子为砧木的‘富士’的POD活性仍有上升趋势。在胁迫初期,以红海棠和白海棠为砧木的‘富士’的CAT活性上升较快,但并没有持续太长时间;而以富平楸子、东北黄海棠和新疆野苹果为砧木的‘富士’的CAT活性在胁迫初期上升较为缓慢,但第3d以后,活性突然升高,并在第6d达到最大值。
     3.干旱胁迫12d后,所有植株叶片的膜透性以及丙二醛(MDA)含量与对照相比均有不同程度的升高。抗旱性较弱的红海棠和白海棠的相对电导率与对照相比分别高出46.37%和45.86%,丙二醛含量与对照相比分别增加了30.04%和31.92%。抗旱性较强的砧木,如富平楸子、东北黄海棠以及新疆野苹果,其相对电导率与对照相比升高了23.33~32.94%;丙二醛含量与对照相比升高了22.06~23.94%。聚类分析将8种砧木的抗旱性分为三类,抗旱性强的砧木有富平楸子、东北黄海棠和新疆野苹果;中等抗旱的砧木为吴起楸子、五棱海棠以及崂山柰子;抗旱性相对较弱的是红海棠和白海棠。
     4.用150mM NaCl处理11种苹果砧木(9个楸子类型,另外2种分别为新疆野苹果和平邑甜茶)10d,统计盐害指数(SI)显示:处理3d后,红海棠、白海棠、冬白果和内蒙古海红较早地表现出了盐害症状(SI≥0.10);在处理后第10d,富平楸子、东北黄海棠、崂山柰子、新疆野苹果和平邑甜茶的盐害指数相对较低,而白海棠、五棱海棠和内蒙古海红,它们的盐害指数相对较高,分别达到0.519、0.509和0.625。
     5.通过比较净光合速率(Pn)、相对电导率变化百分比(VP)、相对含水量(RWC),结合盐害指数以及生物量抗逆系数(RAC)的聚类分析结果,11种砧木的耐盐性被分为三大类,耐盐性强的砧木包括富平楸子、东北黄海棠、崂山柰子、新疆野苹果和平邑甜茶;耐盐性中等的砧木有吴起楸子和冬白果;耐盐性弱的砧木分别为红海棠、白海棠、五棱海棠及内蒙古海红。除红海棠之外,聚类分析的结果与统计盐害指数的结果一致。
     6.利用降落PCR结合SSR分子标记技术,对15个楸子类型进行遗传差异分析。10对SSR引物所检测出的170条谱带中,有156条为多态性带,多态性谱带比率达到90.74%,平均遗传相似系数(GC)为0.660,GC最高的是富平楸子与吴起楸子,为0.882;其遗传距离(GD)也只有0.125;冬白果与河北热滚子的GC最低,只有0.529,但GD却达到0.636。
     7.利用非加权算数平均法(UPGMA)在遗传相似值0.650处,15个楸子类型被分为三大类。这与主成分分析(PCA)的结果一致。聚类分析表明,多数聚在一起的楸子类型与它们的地理分布相一致,但也有部分个体的DNA谱带与其起源地不一致,5个起源于新疆的类型就被分散在不同类群,这在一定程度上反映了楸子不同类型复杂的遗传背景。
Malus prunifolia is an endemic wild apple germplasm resource in our country withstrong adaptability to different natural conditions. It is also an important apple rootstock forgood grafting affinity ability and widely used in northern and northwestern China. Thisdiverse species has formed many biotypes (variant) as long-term natural hybridization,genetic mutation and environmental factors influence. Some biotypes are so similar inphenotypic that it is difficult to distinguish them from each other. All these lead to itsnomenclature is confusing and the taxonomy is fraught with problems. On the other hand, nocomprehensive and systematic evaluation has been made of its drought and salt tolerance.Therefore, in our study, through explored the physiological response and evaluated thetolerance in different biotypes of M. prunifolia under drought and salt stress, it provide animportant theoretical and practical value for apple stress breeding and cultivation. Meanwhile,we used SSR markers in combination with cluster and principal coordinate analysis toevaluate the genetic relationship among biotypes of M. prunifolia; the findings are helpful tooptimize the collection and management of apple germplasm resources, and also provide atheoretical reference for traditional morphological classifications of Malus prunifolia at themolecular level.
     The main results were as follows:
     1. Eight apple rootstocks (seven biotypes of M. prunifolia and M. sieversii) grafted with‘Fuji’ subjected to drought stress for12d. Compared with the control (0d), the leaf relativewater content (RWC) values decreased significantly in different rootstocks, and the amount ofleaves total chlorophyll as well as photosynthesis parameters also declined to varying degrees.M. prunifolia ‘dongbeihuanghaitang’, M. sieversii, and M. prunifolia ‘fupingqiuzi’ stillmaintained relatively high Pn (8.48,7.55, and6.34μmol m-2s-1, respectively) after9d stress.Two more-sensitive biotypes of M. prunifolia—‘honghaitang’ and ‘baihaitang’—which hadthe lowest Pn values, at2.54and3.82μmol m-2s-1, respectively. Moreover, WUEiwas thehighest,5.71, in the more-resistant M. prunifolia ‘fupingqiuzi’, compared with the lowestvalue,2.42, for M. prunifolia ‘honghaitang’.
     2. The activities of ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT)changed significantly during drought treatment. For APX activity, all biotypes had a sharpincrease during the first3d and began to decline after9d stress. However, the maximumactivity varied by biotypes. The POD activity began to drop in M. prunifolia ‘honghaitang’, M.prunifolia ‘wulenghaitang’, and M. prunifolia ‘baihaitang’ after3d, but M. prunifolia‘fupingqiuzi’, M. prunifolia ‘dongbeihuanghaitang’, M. prunifolia ‘laoshannaizi’ and M.sieversii still maintanted an upward trend. CAT activity raised quickly in M. prunifolia—‘honghaitang’ and ‘baihaitang’ at the stress started, but it did not maintant very long;however, M. prunifolia ‘fupingqiuzi’, M. prunifolia ‘dongbeihuanghaitang’, and M. sieversiiincreased slowly during the first3d treatment, then raised at a faster rate and reached thepeak values on6d.
     3. All treated plants had elevated electrolyte leakage (EL) and malondialdehyde (MDA)contents after12d of stress. Compared with their corresponding control, values for EL inless-tolerant M. prunifolia ‘honghaitang’ and ‘baihaitang’ increased by46.37%and45.86%,MDA contents increased by30.04%and31.92%; Such damage was not as severe amonghighly drought-tolerant rootstocks, e.g., M. prunifolia ‘fupingqiuzi’, M. prunifolia‘dongbeihuanghaitang’, and M. sieversii, which EL values increased by23.33~32.94%andMDA contents increased by22.06~23.94%compared with the control. Cluster analysis cangroup these Malus biotypes into three categories. The high tolerance included two M.prunifolia—‘fupingqiuzi’ and ‘dongbeihuanghaitang’—plus M. sieversii Roem; moderatetolerance were three M. prunifolia—‘wuqiqiuzi’,‘wulenghaitang’, and ‘laoshannaizi’; lowtolerance were two M. prunifolia—‘honghaitang’ and ‘baihaitang’.
     4. Eleven apple rootstocks (nine biotypes of Malus prunifolia plus M. sieversii and M.hupehensis) were exposed to150mM NaCl for10d. Salt injury index (SI) showed that, fourbiotypes of M. prunifolia—‘honghaitang’,‘baihaitang’,‘dongbaiguo’, and‘neimengguhaihong’ were more susceptible than other biotypes after3days of exposure (SI≥0.10); after10d stress, M. prunifolia ‘fupingqiuzi’, M. prunifolia ‘dongbeihuanghaitang’, andM. prunifolia ‘laoshannaizi’, as well as plants of M. sieversii and M. hupehensis, hadrelatively low SI. However, three more sensitive biotypes of M. prunifolia—‘baihaitang’,‘wulenghaitang’, and ‘neimengguhaihong’—that had higher SI values of0.519,0.509, and0.625, respectively.
     5. By comparison with net photosynthetic rate (Pn), variation percentage (VP) ofelectrolyte leakage, relative water content (RWC), SI and biomass adverse resistancecoefficients (ARC), we grouped these biotypes into three classes. The high tolerance included:three for M. prunifolia—‘fupingqiuzi’,‘dongbeihuanghaitang’ and ‘laoshannaizi’—plus M. sieversii and M. hupehensis; the moderate tolerance were: M. prunifolia ‘wuqiqiuzi’ and‘dongbaiguo’; the low tolerance were four for M. prunifolia—‘honghaitang’,‘baihaitang’,‘wulenghaitang’, and ‘neimengguhaihong’. Except for M. prunifolia ‘honghaitang’, all ofthese groupings followed a pattern similar to that found with SI values.
     6. We used10pairs of simple sequence repeat (SSR) primers in combination withtouchdown PCR to evaluate the genetic relationships among15biotypes of Malus prunifolia.Out of170detected fragments,156(90.74%) were polymorphic. The average geneticsimilarity coefficient (GC) between pairs of biotypes was0.66. The greatest GC (0.88) wasfound between ‘fupingqiuzi’ and ‘wuqiqiuzi’, while the biotype pairing of ‘dongbaiguo’ and‘hebeiregunzi’ showed the least GC (0.53).
     7. Cluster analysis sorted all biotypes into three groups, which was then confirmed byprincipal component analysis (PCA). A dendrogram showed that some of the clusteredbiotypes were largely congruent for geographical distribution. However, the DNA patterns forsome biotype groups did not demonstrate relative agreement in their origin. Five biotypesarising from the Xinjiang Autonomous Region were dispersed within the dendrogram,reflecting their complex genetic backgrounds.
引文
白瑞霞,彭建营.2004. DNA分子标记在果树遗传育种研究中的应用.西北植物学报,24(8):1547~1554
    白团辉,马锋旺,李翠英,束怀瑞,韩明玉,王昆.2008.苹果砧木幼苗对根际低氧胁迫的生理响应及耐性分析.中国农业科学,41(12):4140~4148
    鲍思伟,谈锋,廖志华.2001.蚕豆对不同水分胁迫的光合适应性研究.西南师范大学学报,26(4):448~451
    蔡诚,徐建平,汪洁明,项艳.2007.滩地13个杨树无性系遗传多样性的RAPD分析.中国农学通报,23(6):222~226
    陈惠.2005.转基因耐盐旱稻的获得及转AtNCED3水稻的抗逆性研究.[博士学位论文].北京:中国农业大学
    陈立松,刘星辉.1998.水分胁迫对荔枝叶片活性氧代谢的影响.园艺学报,25(3):241~246
    陈义强,邓祖湖,郭春芳,陈如凯,张木清.2007.甘蔗常用亲本及其衍生品种的抗旱性评价.中国农业科学,40(6):1108~1117
    陈长兰,龚欣,贾敬贤.1996.梨树野生砧木的抗盐性和抗旱性鉴定初报.作物品种资源,(4):30~31
    陈之欢.2004.水分胁迫对两种旱生花卉生理生化的影响.中国农业简报,4(18):20~23
    程智慧,孟焕文, Stephen A R, Julie D S.2002.水分胁迫对番茄叶片气孔传导及光合色素的影响.西北农林科技大学学报,30(6):93~96
    邓俭英,刘忠,康德贤,张玲玲,王绪,方锋学.2005. RFLP分子标记及其在蔬菜研究中的应用.分子植物育种,3(2):245~248
    杜景周.2006.荒漠植物的水分生理特征与耐旱特性.甘肃科技,22(1):169~173
    杜中军,翟衡,李建,解秀芹.2001.盐胁迫对苹果砧木的膜伤害.山东农业大学学报,32(4):532~534
    杜中军,翟衡,罗新书,程述汉,潘志勇.2002.苹果砧木耐盐性鉴定及其指标判定.果树学报,19(1):4~7
    樊卫国.2003.刺梨对土壤干旱胁迫的生理响应.中国农业科学,36(10):1243~1248
    付爱红,陈亚宁,李卫红,张宏锋.2005.干旱、盐胁迫下的植物水势研究与进展.中国沙漠,25(5):744~749
    傅明洋,樊军锋,周永学,高建社.2009.白杨派树种亲缘关系的RAPD分析.西北植物学报,29(12):2408~2414
    高源,刘凤之,曹玉芬,王昆.2007.苹果属种质资源亲缘关系的SSR分析,果树学报.24(2):129~143
    韩宏伟,杨敏生,徐兴兴,梁海永.2007.利用SSR标记鉴定主要梨栽培品种.中国农学通报22(12):383~386
    侯小改,燕段,刘素云,刘改秀,薛娴.2007.不同土壤水分条件下牡丹的生理特性研究.华北农学报,22(3):80~83
    黄子琛.1992.荒漠植物的水分关系与抗旱性.甘肃林业科技,(2):1~7
    姜卫兵,高光林,俞开锦,汪良驹,马凯.2002.水分胁迫对果树光合作用及同化代谢的影响研究进展.果树学报,19(6):416~420
    姜小李,秦毓茜.2007.植物的盐害及提高植物耐盐性的途径.安徽农业科学,35(19):5697~5698
    蒋明义,荆家海,王韶唐.1991.渗透胁迫对水稻光合色素和膜脂过氧化的影响.西北农业大学学报,19(1):79~93
    李会云,郭修武.2008.盐胁迫对葡萄砧木叶片保护酶活性和丙二醛含量的影响.果树学报,25(2):240~243
    李建武,王蒂,雷武生.2007.干旱胁迫对马铃薯叶片膜保护酶系统的影响.江苏农业科学,(3):100~102
    李明,王根轩.2002.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,22(4):503~507
    李培夫.1999.盐碱地的生物改良与抗盐植物的开发利用.垦植与稻作,(3):38~40
    李珊,赵桂仿.2003.AFLP分子标记及其应用.西北植物学报,23(5):830~836
    李英慧,韩振海,许雪峰.2002.分子标记技术在苹果育种中的应用.生物技术通报,(6):10~13
    李育农.2001.苹果属植物种质资源研究.北京:中国农业出版社
    李振侠,董杰.2008. SSR标记在果树遗传育种中的应用.河北果树,1~20
    梁宏伟,王长忠,李忠,罗相忠,邹桂伟.2008.聚丙烯酰胺凝胶快速、高效银染方法的建立.遗传,30(10):1379~1382
    梁慧敏,夏阳,杜峰,张普金.2001.盐胁迫对两种草坪草抗性生理生化指标影响的研究.中国草地,23(5):27~30
    廖岩,陈桂珠.2008.三种红树植物对盐胁迫的生理适应.生态学报,27(6):2208~2214
    林雷通,童德文,陈郑盟.2009.土壤盐渍化对烟草生理生化影响的研究进展.河北农业科学,13:6~7
    刘丙花.2012.苹果资源苗期水分利用效率的评价和高效用水的生理机制及其调控研究.[博士学位论文].杨凌:西北农林科技大学
    刘春林,官春云,李木旬.1999.植物RAPD标记的可靠性研究.生物技术通报,15(2):31~34
    刘国琴,樊卫国.2000.果树对水分胁迫的生理响应.西南农业学报,13(1):101~106
    陆秋农,贾定贤.1999.中国果树志.北京:中国农业科技出版社
    路贵和,安海瑞.1999.作物抗旱性鉴定方法与指标研究进展.山西农业科学,27(4):39~43
    罗正荣,米森敬三,杉浦明.1995.应用RAPD技术进行柿种类和品种鉴定.日本园艺学会杂志,(64):535~541
    罗支成.2001.旱地农业.南京:江苏科学技术出版社
    骆建霞,史燕山,松吕,黄俊轩,王丹,李建科.2005.3种木本地被植物耐盐性的研究.西北农林科技大学学报,33(12):121~124
    苗海霞,孙明高,夏阳.2005.盐胁迫对苦楝根系活力的影响.山东农业大学学报,36(1):9~12
    钱惠荣,郑康乐.1999. DNA标记和分子育种.生物工程进展,18(3):12~18
    任丽花,王义祥,翁伯琦,方金梅,应朝阳,黄毅斌.2005.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响.厦门大学学报,44:28~31
    任志彬,聂庆娟,王志刚,黄大庄,项亚飞,冯学全.2011.盐胁迫对锦带花生长及光合特性的影响.北方园艺,(7):93~97
    宋福南,杨传平,刘雪梅,李公斌.2006.盐胁迫对柽柳超氧化物歧化酶活性的影响.东北林业大学学报,34(3):54~56
    宋丽华,高彬.2010.持续干旱胁迫对中宁枸杞水分生理的影响.西北林学院学报,25(3):15~19
    孙云蔚,李嘉瑞,谢建国.1988.西北地区的果树种质资源.干旱地区农业研究,(4):47~63
    唐建民,周世良,成明昊,林启冰,周志钦.2006.用RAPD和SSR分子标记鉴定小金海棠F1代杂种实生苗的研究.农业生物技术科学,22(2):36~40
    田丰,张永成,张凤军,马菊,孙冬梅,刘云.2009.不同品种马铃薯叶片游离脯氨酸含量、水势与抗旱性的研究.作物杂志,(2):73~75
    田义柯.2001.苹果柱型基因(Co)一个SCAR标记的可靠性分析.莱阳农学院学报,18(1):28~31
    万美亮,邝炎华,陈建勋.1999.缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响.华南农业大学学报,2(2):58~61
    王宝山.2004.植物生理学.北京:科学出版社
    王斌,翁曼丽.2003.AFLP的原理及其应用.杂交水稻,(5):27~30
    王海英,孙建设,王旭静,李艳华,刘冬云.2004.果树耐盐性研究进展.河北农业大学学报,23(2):54~61
    王倩,王斌.2000. DNA分子标记在果树遗传学研究上的应用.遗传,22(5):339~344
    王鑫,李志强,谷卫彬,石雷,唐宇丹,高辉远,赵世杰,姜闯道.2010.盐胁迫下高粱新生叶片结构和光合特性的系统调控.作物学报,36(11):1941~1949
    吴成龙,周春霖,尹金来,刘兆普,徐阳春,沈其荣.2006. NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响.西北植物学报,26(11):2289~2296
    徐崇志,廖胜刚.2006.分子标记技术在果树种质资源及遗传育种研究中的应用.塔里木大学学报,18:39~45
    徐兴兴,杨敏生,梁海永,韩宏伟.2007.苹果栽培品种的微卫星标记鉴定.园艺园林科学,23(6):414~417
    薛淮,刘敏,张纯花,潘毅.2003. RAPD分子标记在园艺植物遗传学研究中的应用.生物技术,13(2):42~43
    杨德光,沈秀瑛,赵天宏,孙守钧.2002.水分胁迫对不同抗旱性玉米杂交种产量和光合作用的影响.天津农学院学报,9(1):22~25
    杨少辉,季静,王罡.2006a.盐胁迫对植物的影响及植物的抗盐机理.世界科技研究与发展,28(4):70~76
    杨少辉,季静,王罡,宋英今.2006b.盐胁迫对植物影响的研究进展.分子育种学4(3):139~142
    尹佟明,黄敏仁.1997.AFLP分子标记及其在植物育种上的应用.生物工程进展,17(1):6~11
    俞德俊.1979.中国果树分类学.北京:中国农业出版社
    俞德浚.1984.落叶果树分类学.上海:上海科技出版社
    俞德浚,阎振茏,张鹏.1979.中国果树砧木资源.中国果树,(1):1~7
    张川红,沈应柏,尹韦伦.2002.盐胁迫对几种苗木生长及光合作用的影响.林业科学,38(2):27~31
    张金凤,孙明高,夏阳,李国雷,胡学俭.2004.盐胁迫对石榴和樱桃脯氨酸含量和硝酸还原酶活性及电导率的影响.山东农业大学学报,35(2):164~168
    张开春,李荣旗.1997. RAPD技术—检测平邑甜茶遗传一致性的有效方法.农业生物技术学报,5(2):201~202
    张志峰,史洪才,武坚,简子健.2005.微卫星DNA聚丙烯酰胺凝胶电泳(PAGE)银染法的改良.生物技术,15(3):51~53
    赵风斌,王丽卿,季高华,李为星.2012.盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响.环境污染与防治,34(10):40~44
    赵可夫.1993.植物抗盐生理.北京:中国科学技术出版社:24~27
    赵兰,邢新婷,江泽慧.2010.4种地被观赏竹的抗旱性研究.林业科学研究,23(2):221~226
    赵丽英,邓西平,山仑.2005.活性氧清除系统对干旱胁迫的响应机制.西北植物学报,25(2):413~418
    赵秀明,王飞,韩明玉,张文娥,田治国,赵丹.2012.新引进苹果矮化中间砧木的抗旱性评价.干旱地区农业研究,30(4):105~112
    郑青松,刘兆普,刘友良,刘玲.2004.等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应.植物生态学报,28(6):823~827
    周爱琴,祝军,曲云军,宋玉丽,张长胜.2000.应用RAPD技术鉴定苹果砧木.莱阳农学院学报,17(3):166~169
    周延清.2005. DNA分子标记技术在植物研究中的应用.北京:化学工业出版社
    朱新广,张其德.1999. NaCl对光合作用影响的研究进展.植物学通报,16(4):332~338
    Aebi H.1984. Catalase in vitro. Orlando: Academic Press:121~126
    Alian A, Altman A, Heuer B.2000. Genotypic difference in salinity and water stress tolerance of freshmarket tomato cultivars. Plant Science,152(1):59~65
    Apel K, Hirt H.2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Annual Review of Plant Biology,55(1):373~399
    Asada K.1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation ofexcess photons. Annual Review of Plant Physiology and Plant Molecular Biology,50(1):601~639
    Bai T H, Li C Y, Ma F W, Feng F J, Shu H R.2010. Responses of growth and antioxidant system toroot-zone hypoxia stress in two Malus species. Plant Soil,327(1-2):95~105
    Bai T H, Li C Y, Ma F W, Shu H R, Han M Y.2009. Exogenous salicylic acid alleviates growth inhibitionand oxidative stress induced by hypoxia stress in Malus robusta Rehd. J Plant Growth Regul,28(4):358~366
    Bailly C, Benamar A, Corbineau F, Come D.1996. Changes in malondialdehyde content and in superoxidedismutase, catalase and glutathione reductase activities in sunflower seeds as related to deteriorationduring accelerated aging. Physiologia Plantarum,97(1):104~110
    Bao A K, Wang S M, Wu GQ, Xi J J, Zhang J L, Wang C M.2009. Overexpression of the ArabidopsisH+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.).Plant Science,176(2):232~240
    Bartoli C G, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S.1999. Drought andwatering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves.Journal of Experimental Botany,50(332):375~383
    Behboudian M H, Walker R R, T r kfalvy E.1986. Effects of water stress and salinity on photosynthesisof pistachio. Scientia Horticulturae,29(3):251~261
    Bian S M, Jiang Y W.2009. Reactive oxygen species, antioxidant enzyme activities and gene expressionpatterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. ScientiaHorticulturae,120(2):264~270
    Bor M, zdemir F, Türkan I.2003. The effect of salt stress on lipid peroxidation and antioxidants in leavesof sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science,164(1):77~84
    Botta R, Scott N S, Eynard I, Thomas M R.1995. Evaluation of microsatellite sequence-tagged sitemarkers for characterizing Vitis vinifera cultivars. Vitis,34(22):99~102
    Boyer J S.1982. Plant productivity and environment potential for increasing crop plant productivity,genotype selection. Science,(218):443~448
    Campos P S, Quartin V N, Ramalho J C, Nunes M A.2003. Electrolyte leakage and lipid degradationaccount for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology,160(3):283~292
    Chance M, Maehly A C.1955. Assay of catalases and peroxidases. Methods in Enzymology,(2):764~775
    Chartzoulakis K S.2005. Salinity and olive: growth, salt tolerance, photosynthesis and yield. AgriculturalWater Management,78(1-2),108~121
    Chaudhuri K, Choudhuri M A.1997. Effects of short-term NaCl stress on water relations and gas exchangeof two jute species. Biologia Plantarum,40(3):373~380
    Chaves M M.1991. Effects of water deficits on carbon assimilation. Journal of Experimental Botany,42(1):1~16
    Chen H, Jiang J G.2010. Osmotic adjustment and plant adaptation to environmental changes related todrought and salinity. Environmental Reviews18:309~319
    Chen W, Zou D, Gou W.2009. Effects of salt stress on growth, photosynthesis and solute accumulation inthree poplar cultivars. Photosynthetica,47(3):415~421
    Coleman W K.2008. Evaluation of wild Solanum species for drought resistance:1. Solanum gandarillasiiCardenas. Environmental and Experimental Botany,62(3):221~230
    Cruz de Carvalho R, Cunha A, Marques da Silva J.2011. Photosynthesis by six Portuguese maize cultivarsduring drought stress and recovery. Acta Physiol Plant,33(2):359~374
    Dalbó M A, Ye G N, Weeden N F, Steinkellner H, Sefc K M, Reisch B I.2000a. A gene controlling sex ingrapevines placed on a molecular marker-based genetic map. Genome,43(2):333~340
    Dalbó M A, Ye G N, Weeden N F, Wilcox W F, Reisch B I.2001b. Marker-assisted selection for powderymildew resistance in grapes. Journal of the American Society for Horticultural Science,126(1):83~89
    Darren J K, John S M.2008. Touchdown PCR for increased specificity and sensitivity in PCRamplification. Nature Protocols,3:1452~1456
    Dionisio-Sese M L, Tobita S.1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science,135(1)1~9
    Don R H, Cox P T, Wainwright B J, Baker K, Mattick J S.1991.'Touchdown PCR' to circumvent spuriouspriming during gene amplification. Nucleic Acids Research,19(14):4008
    Donovan L A, Grisé D J, West J B, Pappert R A, Alder N N, Richards J H.1999. Predawn disequilibriumbetween plant and soil water potentials in two cold-desert shrubs. Oecologia,120(2):209~217
    Doyle J J, Doyle J L.1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochemical Bulletin,19(1):11~15
    El-Hendawy S E, Hu Y, Yakout G M, Awad A M, Hafiz S E, Schmidhalter U.2005. Evaluating salttolerance of wheat genotypes using multiple parameters. European Journal of Agronomy,22(3):243~253
    Elsheery N, Cao K F.2008. Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mangocultivars under drought stress. Acta Physiol Plant,30(6):769~777
    Foyer C H, Noctor G.2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept ofoxidative stress in a physiological context. Plant, Cell&Environment,28(8):1056~1071
    Fu M Y, Li C, Ma F W.2013. Physiological responses and tolerance to NaCl stress in different biotypes ofMalus prunifolia. Euphytica,189(1):101~109
    Gallé A, Haldimann P, Feller U.2007. Photosynthetic performance and water relations in young pubescentoak (Quercus pubescens) trees during drought stress and recovery. New Phytologist,174(4):799~810
    Geibel M, Dehmer K J, Forsline P L.1999. Biological diversity in Malus sieversii populations from centralAsia. Acta Horticulturae,(538):43~49
    Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C.1998. Simple sequence repeats for thegenetic analysis of apple. Theoret Appl Genetics,96(8):1069~1076
    Graan T, Boyer J.1990. Very high CO2partially restores photosynthesis in sunflower at low waterpotentials. Planta,181(3):378~384
    Gratani L, Varone L.2004. Leaf key traits of Erica arborea L., Erica multiflora L. and Rosmarinusofficinalis L. co-occurring in the Mediterranean maquis. Flora-Morphology, Distribution, FunctionalEcology of Plants,199(1):58~69
    Grodzicker T, Williams J, Sharp P, Sambrook J.1974. Physical mapping of temperature sensitivemutatitions of adenoviruses. Cold Spring Harbor Symp Quant Biol,39:439~446
    Gucci R, Tattini M.2010. Horticultural Reviews. In: Jules J. Salinity Tolerance in Olive. Vol21. Norwich:John Wiley&Sons, Inc:177~214
    Guilford P, Prakash S, Zhu J M, Rikkerink E, Gardiner S, Bassett H, Forster R.1997. Microsatellites inMalus×domestica (apple): Abundance, polymorphism and cultivar identification. Theoret ApplGenetics,94(2):249~254
    Harris S A, Robinson J P, Juniper B E,2002. Genetic clues to the origin of the apple. Trends in Genetics,18(8):426~430
    Hasegawa P M, Bressan R A, Zhu J K. Bohnert H J.2000. Plant cellular and molecular responses to highsalinity. Annual Review of Plant Physiology and Plant Molecular Biology,51(1):463~499
    Heath R L, Packer L.1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry offatty acid peroxidation. Archives of Biochemistry and Biophysics,125(1):189~198
    Hemmat M,Weedon N F,Manganaris A G,Lawson D M.1994. Molecular marker linkage map for apple.Journal of Heredity,85(1):4~11
    Hoagland D R, Arnon D I.1950. The water-culture for growing plants without soil. Calif Agric Exp StatCirc,347(2):23~32
    Hormaza J I.1999. Early selection in cherry combining RAPDs with embryo culture. Scientia Horticulturae,79(1-2):121~126
    Hossain Z, Mandal A K A, Datta S K, Biswas A K.2007. Development of NaCl-tolerant line inChrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. Journal ofBiotechnology,129(4):658~667
    Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte A J, Georgi L, AbbottA G, Arús P.2005. Mapping with a few plants: using selective mapping for microsatellite saturation ofthe prunus reference map. Genetics,171(3):1305~1309
    Hu L X, Li H Y, Pang H C, Fu J M.2012. Responses of antioxidant gene, protein and enzymes to salinitystress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. Journal ofPlant Physiology,169(2):146~156
    Iqbal R M.2005. Effect of different salinity levels on partitioning of leaf area and dry matter in wheat.Ansian Journal of Plant Sciences,4(3):244~248
    Iturbe-Ormaetxe I, Escuredo P R, Arrese-Igor C, Becana Ausejo M.1998. Oxidative damage in pea plantsexposed to water deficit or paraquat. Plant Physiol,116(1):173~181
    Karadge B A.1981. Photosynthetic carbon metabolism in Portulaca oleracea and Arachis hypogaeaexposed to salt and water stress. Journal of Photochemistry,17(1):39
    Katula-Debreceni D, Lencsés A K, Sz ke A, Veres A, Hoffmann S, Kozma P, Kovács L G, Heszky L, KissE.2010. Marker-assisted selection for two dominant powdery mildew resistance genes introgressedinto a hybrid grape population. Scientia Horticulturae,126(4):448~453
    Kchaou H, Larbi A, Gargouri K, Chaieb M, Morales F, Msallem M.2010. Assessment of tolerance to NaClsalinity of five olive cultivars, based on growth characteristics and Na+and Cl-exclusion mechanisms..Scientia Horticulturae,124(3):306~315
    King G.1994. Progress in mapping agronomic genes in apple (The European Apple Genome MappingProject). Euphytica,77(1-2):65~69
    Koca H, Ozdemir F, Turkan I.2006. Effect of salt stress on lipid peroxidation and superoxide dismutaseand peroxidase activities of Lycopersicon esculentum and L. pennellii. Biologia Plantarum,50(4):745~748
    Kumar A, Singh D P, Singh P.1994. Influence of water stress on photosynthesis, transpiration, water-useefficiency and yield of Brassica juncea L. Field Crops Research,37(2):95~101
    Lawlor D W.2002. Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and therole of ATP. Annals of Botany,89(7):871~885
    Lee G, Carrow R N, Duncan R R.2004. Photosynthetic responses to salinity stress of halophytic seashorepaspalum ecotypes. Plant Science,166(6):1417~1425
    Leshem Y.1992. Plant membranes: A biophysical approach to structure, development and senescence.Dordrecht: Kluwer Academic Press:174~191
    Li C Y, Bai T H, Ma F W, Han M Y.2010. Hypoxia tolerance and adaptation of anaerobic respiration tohypoxia stress in two Malus species. Scientia Horticulturae,124(2):274~279
    Li C, Wang P, Wei Z W, Liang D, Liu C H, Yin L H, Jia D F, Fu M Y, Ma F W.2012. The mitigation effectsof exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research,53(3):298~306
    Li G, Wan S W, Zhou J, Yang Z Y, Qin P.2010. Leaf chlorophyll fluorescence, hyperspectral reflectance,pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinuscommunis L.) seedlings to salt stress levels. Industrial Crops and Products,31(1):13~19
    Lichtenthaler H K, Wellburn A R.1983. Determination of total carotenoids and chlorophyll a and b of leafextracts in different solvents. Biochemical Society Transactions,11:591~592
    Liebhard R, Gianfranceschi L, Koller B, Ryder C D, Tarchini R, Van de Weg E, Gessler C.2002.Development and characterisation of140new microsatellites in apple (Malus×domestica Borkh.).Molecular Breeding,10(4):217~241
    Liebhard R, Koller B, Gianfranceschi L, Gessler C.2003. Creating a saturated reference map for the apple(Malus×domestica Borkh.) genome. Theoret Appl Genetics,106(8):1497~1508
    Litt M, Luty J A.1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotiderepeat within the cardiac muscle actin gene. American journal of human genetics,44:397~401
    Liu B H, Cheng L, Liang D, Zou Y J, Ma F W.2012. Growth, gas exchange, water-use efficiency, andcarbon isotope composition of ‘Gale Gala’ apple trees grafted onto9wild Chinese rootstocks inresponse to drought stress. Photosynthetica,50(3):401~410
    Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F.1999. Antioxidative defense system, pigmentcomposition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol,119(3):1091~1100
    Lu C M, Jiang G M, Wang B S, Kuang T Y.2003. Photosystem II photochemistry and photosyntheticpigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions.Journal of Plant Physiology,160(4):403~408
    Lutts S, Kinet J M, Bouharmont J.1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.)cultivars differing in salinity resistance. Annals of Botany,78(3):389~398
    M ller I M.2001. Plant mitochondria and oxidative stress: elctron transport, NADPH turnover, andmetabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant MolecularBiology,52(1):561~591
    Ma H C, Fung L, Wang S S, Altman A, Hüttermann A.1997. Photosynthetic response of Populuseuphratica to salt stress. Forest Ecology and Management,93(1-2):55~61
    Ma Q H, Wang G X, Liang L S.2011. Development and characterization of SSR markers in Chinese jujube(Ziziphus jujuba Mill.) and its related species. Scientia Horticulturae,129(4):597~602
    Maliepaard C, Alston F H, van Arkel G, Brown L M, Chevreau E, Dunemann F, Evans K M, Gardiner S,Guilford P, van Heusden A W, Janse J, Laurens F, Lynn J R, Manganaris A G, den Nijs A P M, PeriamN, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh J J, Vrielink-vanGinkel M, King G J.1998. Aligning male and female linkage maps of apple (Malus pumila Mill.)using multi-allelic markers. Theoret Appl Genetics,97(1-2):60~73
    Martínez-Ferri E, Manrique E, Valladares F, Balaguer L.2004. Winter photoinhibition in the field involvesdifferent processes in four co-occurring Mediterranean tree species. Tree Physiology,24(9):981~990
    McKay H M, Mason W L.1991. Physiological indicators of tolerance to cold storage in Sitka spruce andDouglas-fir seedlings. Canadian Journal of Forest Research,21(6):890~901
    Medrano H, Parry M A J, Socias X, Lawlor D W.1997. Long term water stress inactivates Rubisco insubterranean clover. Annals of Applied Biology,131(3):491~501
    Meyer S, Genty B.1999. Heterogeneous inhibition of photosynthesis over the leaf surface of Rosarubiginosa L. during water stress and abscisic acid treatment: induction of a metabolic component bylimitation of CO2diffusion. Planta,210(1):126~131
    Misra N, Dwivedi U N.2004. Genotypic difference in salinity tolerance of green gram cultivars. PlantScience,166(5):1135~1142
    Moran J, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas R, Aparicio-Tejo P.1994. Drought inducesoxidative stress in pea plants. Planta,194(3):346~352
    Munné-Bosch S, Pe uelas J.2004. Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.)growing in Mediterranean field conditions. Plant Science,166(4):1105~1110
    Munns R.1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses.Plant, Cell&Environment,16:15~24
    Nabil M, Coudret A.1995. Effects of sodium chloride on growth, tissue elasticity and solute adjustment intwo Acacia nilotica subspecies. Physiologia Plantarum,93(2):217~224
    Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinachchloroplasts. Plant Cell Physiology,22:867~880
    Nazar R, Iqbal N, Masood A, Syeed S, Khan N A.2011. Understanding the significance of sulfur inimproving salinity tolerance in plants. Environmental and Experimental Botany,70(2-3):80~87
    Noctor G, Foyer C H.1998. Ascorbate and glutathione: keeping active oxygen under control. AnnualReview of Plant Physiology and Plant Molecular Biology,49(1):249~279
    Parida A K, Das A B.2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology andEnvironmental Safety,60(3):324~349
    Park Y J, Lee J K, Kim N S.2009. Simple sequence repeat polymorphisms (SSRPs) for evaluation ofmolecular diversity and germplasm classification of minor crops. Molecules,14(11):4546~4569
    Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A.1998. Cross-species amplification of soybean(Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implicationsfor the transferability of SSRs in plants. Molecular Biology and Evolution,15(10):1275~1287
    Pieters A J, El Souki S.2005. Effects of drought during grain filling on PS II activity in rice. Journal ofPlant Physiology,162(8):903~911
    Pompelli M F, Barata-Luís R, Vitorino H S, Gon alves E R, Rolim E V, Santos M G, Almeida-Cortez J S,Ferreira V M, Lemos E E, Endres L.2010. Photosynthesis, photoprotection and antioxidant activity ofpurging nut under drought deficit and recovery. Biomass and Bioenergy,34(8):1207~1215
    Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A.1996. The comparison ofRFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding,2(3):225~238
    Rai M K, Kalia R K, Singh R, Gangola M P, Dhawan A K.2011. Developing stress tolerant plants throughin vitro selection—An overview of the recent progress. Environmental and Experimental Botany,71(1):89~98
    Ramanjulu S, Bartels D.2002. Drought-and desiccation-induced modulation of gene expression in plants.Plant, Cell&Environment,25(2):141~151
    Richardson S G, McCree K J.1985. Carbon balance and water relations of Sorghum exposed to salt andwater stress. Plant Physiology,79:1015~1020
    Rohlf F J.2002. Numerical Taxonomy and Multivariate Analysis System. New York: Exeter software press:5~25
    Ruiz-Carrasco K, Antognoni F, Coulibaly A K, Lizardi S, Covarrubias A, Martínez E A,Molina-Montenegro M A, Biondi S, Zurita-Silva A.2011. Variation in salinity tolerance of fourlowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits,and sodium transporter gene expression. Plant Physiology and Biochemistry,49(1):1333~1341
    Sameoto J A, Metaxas A.2008. Can salinity-induced mortality explain larval vertical distribution withrespect to a halocline? The Biological Bulletin,214(3),329~338
    Schaal B A, Hayworth D A, Olsen K M, Rauscher J T, Snith W A.1998. Phylogeographic studies in plants:problems and prospects. Molecular Ecology,7(4):465~474
    Schonfeld M A, Johnson R C, Carver B F, Mornhinweg D W.1988. Water relations in winter wheat asdrought resistance indicators. Crop Sci,28(3):526~531
    Seemann J R, Critchley C.1985. Effects of salt stress on the growth, ion content, stomatal behaviour andphotosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta,164(2):151~162
    Selote D, Khanna-Chopra R.2010. Antioxidant response of wheat roots to drought acclimation.Protoplasma,245(1-4):153~163
    Selote D S, Bharti S, Khanna-Chopra R.2004. Drought acclimation reduces O2accumulation and lipidperoxidation in wheat seedlings. Biochemical and Biophysical Research Communications,314(3)724~729
    Sgherri C L M, Maffei M, Navari-Izzo F.2000. Antioxidative enzymes in wheat subjected to increasingwater deficit and rewatering. Journal of Plant Physiology,157(3):273~279
    Shah K, Kumar R G, Verma S, Dubey R S.2001. Effect of cadmium on lipid peroxidation, superoxideanion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science,161(6):1135~1144
    Shangguan Z P, Shao M A, Dyckmans J.1999. Interaction of osmotic adjustment and photosynthesis inwinter wheat under soil drought. Journal of Plant Physiology,154(5-6):753~758
    Lin S H, Fang C Q, Song W Q, Zhang F.2002. AFLP molecular markers of10species of Pyrus in China.Acta Horticulturae,(587):233~236
    Siddiqi E H, Ashraf M.2008. Can leaf water relation parameters be used as selection criteria for salttolerance in safflower (Carthamus tinctorius L.). Pakistan Journal of Botony,40(1):221~228
    Silfverberg-Dilworth E, Matasci C L, Van de Weg W E, Van Kaauwen M P W, Walser M, Kodde L P,Soglio V, Gianfranceschi L, Durel C E, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A.2006.Microsatellite markers spanning the apple (Malus×domestica Borkh.) genome. Tree Genetics&Genomes,2(4):202~224
    Smart R E, Bingham G E.1974. Rapid estimates of relative water content. Plant Physiology,53:258~260
    Sneath P H A, Brenner D J, Krieg N R, Staley J T, Garrity G M.2005. Numerical Taxonomy. US: Springerpress:39~42
    Sokal R R, Michener C D.1958. A statistical method for evaluating systematic relationships. University ofKansas Science Bulletin,38:1409~1438
    Steduto P, Albrizio R, Giorio P and Sorrentino G.2000. Gas-exchange response and stomatal andnon-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental andExperimental Botany,44(3):243~255
    Suriyan C U, Chalermpol K.2009. Proline accumulation, photosynthetic abilities and growth characters ofsugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress.Agricultural Sciences in China,8(1):51~58
    Türkan I, Demiral T.2009. Recent developments in understanding salinity tolerance. Environmental andExperimental Botany,67(1):2~9
    Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z.2000. Physiological and biochemicalresponses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany,68(1):15~28
    Tang D, Shi S, Li D, Hu C, Liu Y.2007. Physiological and biochemical responses of Scytonema javanicum(cyanobacterium) to salt stress. Journal of Arid Environments,71(3):312~320
    Tezara W, Mitchell V J, Driscoll S D, Lawlor D W.1999. Water stress inhibits plant photosynthesis bydecreasing coupling factor and ATP. Nature,401:914~917
    Thompson J E, Legge R L and Barber R F.1987. The role of free radicals in senescence and wounding.New Phytologist,105(3):317~344
    Tian Z G, Wang F, Zhang W N, Liu C M, Zhao X M.2012. Antioxidant mechanism and lipid peroxidationpatterns in leaves and petals of marigold in response to drought stress. Hortic Environ Biotechnol,53(3):183~192
    Vera-Estrella R, Barkla B J and Omar P.2005. Salt atress in Thellungiella halophila activates Na+transportmechanisms required for salinity tolerance. Plant Physiology,139:1507~1517
    Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J K.2006. Methods and concepts in quantifyingresistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal,46(6):1092~1092
    Vos P, Hogers R, Bleeker M, Reijans M, Lee T v d, Hornes M, Friters A, Pot J, Paleman J, Kuiper M,Zabeau M.1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research,23(21):4407~4414
    Wahome P K, Jesch H H and Grittner I.2001. Mechanisms of salt stress tolerance in two rose rootstocks:Rosa chinensis 'Major' and R. rubiginosa. Scientia Horticulturae,87(3):207~216
    Walker R, Blackmore D, Sun Q.1993. Carbon dioxide assimilation and foliar ion concentrations in leavesof Lemon (Citrus limon L.) trees irrigated with NaCl or Na2SO4. Functional Plant Biology,20(2):173~185
    Wang Y, Nii N.2000. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycinebetaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress.Journal of Horticultural Science and Biotechnology,75(6):623~627
    Wang Z, Weber J L, Zhong G, Tanksley S D.1994. Survey of plant short tandem DNA repeats. TheoretAppl Genetics,88(1):1~6
    Warburton M L, BecerraVelasquez V L, Goffreda J C, Bliss F A.1996. Utility of RAPD markers inidentifying genetic linkages to genes of economic interest in peach. Theoret Appl Genetics,93(5-6):920~925
    Whitlow T H, Bassuk N L, Ranney T G, Reichert D L.1992. An improved method for using electrolyteleakage to assess membrane competence in plant tissues. Plant Physiology,98:198~205
    Willekens H, Inzé D, Montagu M, Camp W.1995. Catalases in plants. Molecular Breeding,1(3):207~228
    Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V.1990. DNA polymorphisms amplifiedby arbitrary primers are useful as genetic-markers. Nucleic Acids Research,18(22):6531~6535
    Yamazaki J Y, Ohashi A, Hashimoto Y, Negishi E, Kumagai S, Kubo T, Oikawa T, Maruta E, Kamimura Y.2003. Effects of high light and low temperature during harsh winter on needle photodamage of Abiesmariesii growing at the forest limit on Mt. Norikura in central Japan. Plant Science,165(1):257~264
    Yan G R, Long H, Song W Q, Chen R Y.2008. Genetic polymorphism of Malus sieversii populations inXinjiang, China. Genet Resour Crop Evol,55(1):171~181
    Yang F, Xu X, Xiao X, Li C.2009a. Responses to drought stress in two poplar species originating fromdifferent altitudes. Biologia Plantarum,53(3):511~516
    Yang F, Xiao X W, Zhang S, Korpelainen H, Li C Y.2009b. Salt stress responses in Populus cathayanaRehder. Plant Science,176(5):669~677
    Yin R, Bai T H, Ma F W, Wang X J, Li Y H, Yue Z Y.2010. Physiological responses and relative toleranceby Chinese apple rootstocks to NaCl stress. Scientia Horticulturae,126(2):247~252
    Zhang C Y, Chen X S, He T M, Liu X L, Feng T, Yuan Z H.2007. Genetic structure of Malus sieversiipopulation from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics,34(10):947~955
    Zhang J X, Kirkham M B.1994. Drought-stress-induced changes in activities of superoxide dismutase,catalase, and peroxidase in wheat species. Plant and Cell Physiology,35(5):785~791
    Zhang S, Chen L H, Duan B L, Korpelainen H, Li C Y.2012. Populus cathayana males exhibit moreefficient protective mechanisms than females under drought stress. Forest Ecology and Management,275:68~78
    Zhou Z Q.1999. The apple genetic resources in China: The wild species and their distributions, informativecharacteristics and utilisation. Genet Resour Crop Evol,46(6):599~609
    Zhu J K.2001. Plant salt tolerance. Trends in Plant Science,6(2):66~71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700