用户名: 密码: 验证码:
苹果属资源对苹果褐斑病的抗性机理及抗性诱导研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果褐斑病是造成我国苹果早期落叶的主要病害之一,目前对该病害的抗病机制尚不明确。本试验从苹果属资源对苹果褐斑病的抗性评价入手,利用组织细胞学、生理生化及分子生物学等多种技术和方法,研究了苹果叶片在接种褐斑病菌后,叶片对病菌入侵和扩展的响应情况,以及寄主中活性氧迸发、抗氧化系统、抗病相关蛋白、抗病信号通路和酚类物质代谢等方面的变化情况,探索了苹果属资源对苹果褐斑病的抗性差异及其机制,并发现外源褪黑素处理可显著提高感病材料对苹果褐斑病的抗性,为生产上防控苹果褐斑病提供依据。取得的主要结果如下:
     1.建立了人工接种苹果褐斑病菌的抗性评价方法,并利用该方法对国内外主栽的28个苹果品种和39个野生资源进行了抗苹果褐斑病评价。共鉴定获得5个抗病品种(‘皮诺娃’、‘蜜脆’、‘首红’、‘粉红女士’和‘秦冠’)和8个抗病的野生材料(武山变叶海棠、新疆野苹果、三叶海棠(西南农大)、滇池海棠、海棠花、野苹果9号、中熟红果子和腾冲三叶海棠)。该研究结果为抗病品种选育提供了种质基础。
     2.利用电镜技术研究了苹果褐斑病菌在不同抗性材料叶片表面和叶组织内的发育情况。扫描电镜观察发现,接种3d后(3dpi),在感病材料‘长富2号’和冬红果的叶片表面,病菌分生孢子萌发率较高,分别为60%和79%,萌发的芽管可以直接侵入也可通过形成附着胞后再侵入寄主细胞;而在抗病材料‘秦冠’和新疆野苹果叶片表面,病菌孢子的萌发率分别为36%和32%,且孢子萌发后出现干瘪现象,很难进一步侵入寄主细胞。细胞学观察表明,接种7d后,抗病品种可以形成胞壁沉积物阻止菌丝体进一步扩展和吸器的形成。以上结果初步证实了苹果属资源对褐斑病菌的抗性表现为抑制分生孢子萌发和抗扩展两个方面。
     3.抗病材料新疆野苹果在接种苹果褐斑病菌2d后,其叶片中H_2O_2迅速积累,而感病材料冬红果中H_2O_2的含量在第4d、6d和10d时均显著低于对照,同时,本研究还发现在抗病材料与苹果褐斑病菌互作前期,超氧化物歧化酶(SOD)活性上升,抗坏血酸过氧化物酶(APX)的活性下降,从而使得H_2O_2得到了有效的积累,为氧迸发提供了有利条件,而在感病材料与苹果褐斑病菌互作的前期,APX和过氧化氢酶(CAT)的活性显著上升,这与感病材料中H_2O_2含量变化相一致,说明氧迸发在苹果属资源抗褐斑病过程中可能起重要作用。
     4.在接种苹果褐斑病菌后,抗病材料新疆野苹果和感病材料冬红果中几丁质酶活性均有所上升,但在抗病材料中的上升时间(6dpi)明显早于感病材料(20dpi),且抗病材料的几丁质酶活性明显高于感病材料。对β-1,3-葡聚糖酶的测定结果表明,抗病材料中β-1,3-葡聚糖酶活性远高于感病材料。同时,利用qRT-PCR对这两个基因在接种后不同时间的表达情况进行了研究,结果也进一步证实了几丁质酶和β-1,3-葡聚糖酶在苹果抵御褐斑病菌的侵染过程中起重要作用。
     5.采用高效液相色谱法测定了抗病材料新疆野苹果和感病材料冬红果接种苹果褐斑病菌后,叶片中18种主要的酚含量变化情况,在抗病材料中,其没食子酸含量在接种后第4d迅速上升,显著高于未接种对照,之后一直保持较高水平,而在感病材料中,没食子酸含量在接种后4d开始下降,在接种后6d达到最低点,之后一直保持较低水平;苹果褐斑病菌的入侵引起表儿茶素含量的显著升高,且在抗病材料中的上升程度要高于感病材料,说明表儿茶素可能与苹果抗褐斑病密切相关;对香豆酸的含量在抗病和感病材料中均表现出一定的下降,说明没食子酸、表儿茶素和对香豆酸与苹果对褐斑病的抗性密切相关。另外,对苯丙氨酸解氨酶(PAL)的活性和其编码的基因在不同抗性材料中转录水平的研究发现,抗病材料中PAL的活性和其编码基因的表达均表现出较高水平的上调,表明PAL与苹果对褐斑病的抗性相关。
     6.利用qRT-PCR对SA,JA和ET信号途径的关键基因在不同抗性材料中的表达情况进行研究,结果表明在抗病材料新疆野苹果中,SA途径响应基因PR1和PR5受苹果褐斑病菌诱导后表达上调;JA途径关键基因COI1和PLD也呈现上调表达,而乙烯途径响应基因ERF3没有显著变化;在感病材料冬红果中,其叶片PR1、COI1和PLD等基因均没有显著变化,ERF3则在接种后显著上调。外源施加SA和MeJA均提高了冬红果对苹果褐斑病的抗性,而施加1-氨基环丙烷羧酸(ACC)未能诱导冬红果产生抗病性。以上结果表明,苹果资源对褐斑病的抗性可能与SA、JA和ET信号途径相互协调作用相关。
     7.根施0.1mM褪黑素预处理3d显著提高了感病材料冬红果对苹果褐斑病的抗性。褪黑素处理可以使植物体内的活性氧维持在一个稳定水平,而且显著提高了过氧化物酶(POD)、PAL、几丁质酶和β-1,3-葡聚糖酶的活性。本研究首次证实了褪黑素可以诱导植物产生抗病性。外源施加褪黑素对苹果褐斑病的防治具有重要的应用价值和现实意义,并且为进一步深入研究褪黑素与植物抗病关系提供了理论参考。
Marssonina apple blotch, caused by Diplocarpon mali Y. Harada&Sawanura (anamorph:Marssonina coronariae (Ellis&J. J. Davis) J. J. Davis), is one of the most severe diseases ofapple (Malus×domestica). This disease leads to premature defoliation in the main regions ofapple production, thereby weakening tree vigor and affecting the size, color, quality, andquantity of the fruit. However, the knowledge of mechanism on marssonina apple blotch ispoorly documented that has become an impediment to effectively control the disease in theorchard. In this study, we previously evaluated the resistance of28cultivars and39Malusspecies or biotypes after inoculating leaves with conidial suspensions of D. mali in vitro andvivo. Using M. sieversii and M. prunifolia cv. Donghongguo, we investigated the infectionprocess of D. mali on apple leaves, and monitored the levels of hydrogen peroxide, activitiesof antioxidant and pathogenesis-related enzymes, expression of marker genes for salicylicacid (SA), jasmonic acid (JA), and ethylene (ET) in pathways for defense regulation, and theconcentrations of18types of phenolic comounds during incompatible and compatibleinteractions. We also examined whether abiotic stress, plant hormones, and melatonin couldimprove resistance to Marssonina apple blotch. Our goal was to offer useful information fordeveloping and optimizing the disease management. The main results are as follows:
     1. Using artificial inoculations, the resistance of28cultivars and39Malus species orbiotypes to Marssonina apple blotch were evaluated. Of the28apple cultivars tested here, five(‘Pinova’,‘Honeycrisp’,‘Pink Lady’,‘Qinguan’, and ‘Redchief Delicious’) proved to beresistance genotypes and a low incidence of infection. The39species and biotypes showedsignificant differences in their degree of resistance to D. mali. Eight accessions wereclassified as resistant resources, including M. toringoides (Rehd.) Hughes cv.Wushanbianyehaitang, M. sieversii Ledeb. cv. Xinjiangyepingguo, M. sieboldii (Reg.) Rehd.cv. Sanyehaitang (xinannongda), M. yunnanensis Schneid. cv. Dianchihaitang, M. spectabilisBorkh. cv. Haitanghua, M. sieversii (Ledeb.) Roemer cv. Yepingguo9, M. sieversii (Ledeb.)Roemer cv. Zhongshuhongguozi, and M. sieboldii (Reg.) Rehd. cv. Tengchongsanyehaitang.Those that proved most resistant are potential resources in programs for resitance breedingand disease management.
     2. The germination and growth of D. mali on leaves of resistance and susceptible Malusplants was disclosed by fluorecence and electromicroscopy.‘Naganofji No.2’ and M. prunifolia cv. Donghongguo, which were susceptible to Marssonina apple blotch, with highergermination of condia on their leaves surface. The pathogen penetrated the cuticle either bygerm tube or by formation of appressoria. Compared with the susceptible plants, the resistantplants ‘Qinguan’ and M. sieversii significantly suppress condia germinated. On their leavessurface, largely condia were wizened. Seven days post inoculation (dpi), abundant hyphaewas observed in leaves tissue of ‘Naganofji No.2’, but fewer in ‘Qinguan’. These resultsdemonstrate that the disease resistance to Marssonina apple blotch of host plants responsed asinvading-resistance and conidia germinating inhibition.
     3. A ROS burst occurred in the infected plants of disease-resistance M. sieversii but notin those of the susceptible M. prunifolia. Compared with the uninfected M. sieversii control,infected plants of that species had a significant H_2O_2burst at2dpi, and then maintained thathigh level throughout the plant-pathogen interaction. Infected plants of M. prunifolia hadsignificantly lower H_2O_2concentrations at4,6, and10dpi when compared with the controlfor that species. This meant that ROS burst has a key role in the resistance response by M.sieversii. We observed a large increase in SOD activity and suppression of APX activity in M.sieversii plants at the early stage of infection, suggesting that this species produced andaccumulated much more H_2O_2. However, in M. prunifolia, the significant rise in APX andCAT activities during that early stage may have explained why those plants had no ROS burst.
     4. Compared with the uninfected M. sieversii plants, chitinase activity in the infectedplants increased rapidly after6dpi. For M. prunifolia, activity did not differ significantlybetween infected and uninfected plants, except at Day20, meaning that chitinase respondedearlier in M. sieversii. Relative expression followed a similar trend, with up-regulation ofchitinase transcripts occurring8d earlier in M. sieversii. Furthermore, β-1,3-glucanaseactivities and transcription levels were higher in M. sieversii than in M. prunifolia under eitherinoculated or uninoculated conditions. This demonstrated that chitinase and β-1,3-glucanasewere more effective in limiting pathogen growth and invasion in M. sieversii.
     5. Using M. sieversii and M. prunifolia cv. Donghongguo, we monitored theconcentrations of18types of phenolic compounds, transcripts for key enzymes in thephenylpropanoid pathway, and activities by phenylalanine ammonia lyase (PAL), polyphenoloxidases (PPO), and peroxidases (POD) when plants interacted with D. mali. We found gallicacid, epicatechin, and ρ-coumaric acid showed sensitivity to inoculation with D. mali. Levelsof gallic acid followed opposite trends in M. sieversii and M. prunifolia after inoculation.Compared with the uninfected M. sieversii control, infected plants of that species had asignificantly high concentration of gallic acid at4dpi, which was then maintained throughoutthe remainder of that interaction period. Infected plants of M. prunifolia had significantly lower gallic acid concentrations after4dpi than did the control for that species. In bothspecies, infection with D. mali enhanced their concentrations of epicatechin and reduced theirlevels of ρ-coumaric acid. PAL activity in M. sieversii plants was dramatically elevated after10dpi, peaking to3.14-fold higher than the control at20dpi. For M. prunifolia, PAL activitygradually increased before being decreased in infected plants.
     6. Up-regulation of the SA and JA pathway, along with suppression of the ET pathway,proved to be essential to resistance by M. sieversii plants. PR1and PR5were strongly inducedby D. mali only in M. sieversii, indicating that effective manipulation of the SA pathway wasessential for conferring resistance by that species. The transcription of COI1and PLD wasinduced in the incompatible interaction of M. sieversii-D. mali but not in the susceptible M.prunifolia plants, meaning that this JA pathway was also essential to the resistance by M.sieversii. However, we also found that JA-signaling acted antagonistically on SA-dependentdefenses such that, during the later stages of infection, expression of the JA markers COI1andPLD was increased while that of PR1and PR5in the SA pathway was decreased. ERF3wasinduced by D. mali in the susceptible genotype M. prunifolia but not in the resistant M.sieversii. We verified this theory by pre-treating those plants with exogenous ACC, and foundthat such an application made them even more susceptible to D. mali. By contrast, exogenousSA and JA improved the resistance of M. prunifolia plants, which was consistent with ourconclusion that the up-regulation of the SA and JA pathway, along with suppression of the ETpathway enable plants of M. sieversii to be resistant to D. mali.
     7. Pre-treatment with exogenous melatonin improved resistance to D. mali by susceptiblegenotype M. prunifolia. Pre-treatment enabled plants to maintain intracellular H_2O_2concentrations at steady-state levels and enhance the activities of plant defense-relatedenzymes, possibly improving disease resistance. Because melatonin is safe and beneficial toanimals and humans, exogenous pre-treatment might represent a promising cultivationstrategy to protect plants against this pathogen infection.
引文
曹克强,国立耘,李保华,孙广宇,陈汉杰.2009.中国苹果树腐烂病发生和防治情况调查.植物保护,35(2):114~116
    常聚普,周增强,郭利民,杨玉巧,李洁茹,景向方.2007.苹果褐斑病田间防治试验.中国果树,4:18~20
    党志国,高华,王雷存,鲁玉妙,赵政阳.2011.不同苹果品种对褐斑病抗性的鉴定及抗性生理研究.植物生理学报,47(7):691~698
    党志国,赵政阳,万怡震,高华,王雷存,祁楠.2010.苹果杂交F1代抗褐斑病遗传趋势及抗性选择研究.西北农林科技大学学报(自然科学版),38(5):137~142
    董向丽,罗丽,王彩霞,董霞霞,张俊丽,李保华.2009.苹果褐斑病的治疗药剂及有效施药时期研究.中国农学通报,25(6):190~194
    高月娥,李保华,董向丽,王彩霞,李桂舫,李宝笃.2011.温度和湿度对越冬后苹果褐斑病菌产孢的影响.中国农业科学,44(7):1367~1374
    郭小侠,石勇强,陈川.2009.陕西渭北苹果树早期落叶主要原因探析.中国果树,1:61~62
    黄亦存.1986.苹果褐斑病菌的越冬特性.西南林学院学报,6(1):61~65
    姜好胜,冷德训,秦韶梅,孙秀丽,高坤金,万春先.2005.2004年招远市苹果褐斑病大发生原因及防治对策.中国植保导刊,25(7):25~26
    孔宝华,阮应珍,曹克强,石安宪,李云国,毛文秀,邹晓军,王凯,赵雪琼,杨毅娟,马钧.2010.云南昭通苹果早期落叶病流行动态.植物保护,36(6):117~120
    李武贵,冷怀琼,余师珍.1991a.苹果—褐斑病菌相互作用中苯丙氨酸解氨酶的研究.四川农业大学学报,9(2):277~284
    李武贵,冷怀琼,余师珍.1991b.钙对苹果品种褐斑病的抗病性的作用研究.四川农业大学学报,9(2):269~277
    李保华,董向丽,李桂舫,王彩霞.2008.苹果褐斑病在山东烟台的发生与防治.中国果树,6:33~35
    李娟,苟丽霞,胡小敏,任福平,卫军峰,安德荣.2011.气象因素对陕西省苹果褐斑病流行的影响及预测模型.应用生态学报,22(1):268~272
    李嘉瑞,邹养军,任小林.2008.刍议中国苹果产业现代化.果树学报,25(3):378~381
    李燕,周倩,高华,万怡震,王雷存,赵政阳.2012.苹果主栽品种的褐斑病和斑点病抗性评价.西北林学院学报,27(1):132~136
    李东鸿,赵政阳,赵惠燕,胡想顺,雷延明,刘向阳,尚东东,高鹏.2005.苹果早期落叶病发病规律与药剂防治研究.西北农林科技大学学报(自然科学版),33(5):76~80
    寿园园,李春敏,赵永波,陈东玫,张新忠.2009.苹果抗褐斑病离体鉴定的方法.果树学报,26(6):912~914
    王洁.2012.利用组织细胞学技术研究苹果褐斑病菌对富士、山定子的侵染过程差异.[硕士论文].陕西杨凌:西北农林科技大学
    谢云.2009.我国苹果产业化发展中存在的问题及对策研究.长江大学学报(自然科学版),6(3):85~87
    谢为龙,冷怀琼.1988.苹果褐斑病的研究-Ⅰ病原的侵入和生物学特性.四川农业大学学报,3(3):223~227
    谢为龙,冷怀琼.1990a.苹果褐斑病的研究-品种间抗病性差异与理化性状的关系.四川农业大学学报,8(1):51~54
    谢为龙,冷怀琼.1990b.苹果叶片感染褐斑病过程中过氧化物酶同工酶变化的研究.云南农业大学学报,5(3):161~165
    赵晶,朱刚,黄园,张荣,胡小平,孙广宇.2012.冠盘二胞Marssonina coronaria侵染不同抗性苹果叶片的组织病理学研究.菌物学报,31(4):548~559
    赵磊,赵政阳,党志国,张坤,张小猜.2008.秦冠,富士苹果杂交后代抗早期落叶病的遗传分析.西北农业学报,17(2):197~201
    赵华,周天仓,程晶晶,李小虎,黄丽丽.2009a.三唑类杀菌剂对苹果褐斑病菌生长发育的毒力及其防病作用.林业科学,45(3):68~73
    赵华,黄丽丽,谢芳芹,康振生.2009b.苹果盘二孢的分离培养研究.菌物学报,28(4):490~495
    张坤,党志国,赵磊,赵政阳.2007.富士,秦冠苹果对早期落叶病抗性的遗传分析.西北林学院学报,22(4):128~130
    周天仓,赵华,黄丽丽,奚焕民,周冬子,程晶晶.2008.丙森锌对苹果褐斑病的防治效果及其对叶片锌含量的影响.植物保护学报,35(6):519~524
    Abeles F B, Forrence L E.1970. Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgarisL. Plant Physiol,45(4):395~400
    Aebi H.1984. Catalase in vitro. Methods Enzymol,105:121~126
    Afreen F, Zobayed S M A, Kozai T.2006. Melatonin in Glycyrrhiza uralensis: response of plant roots tospectral quality of light and UV‐B radiation. J Pineal Res,41(2):108~115
    Ahn I-P, Lee S-W, Suh S-C.2007. Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene,jasmonic acid, and NPR1. Mol Plant Microbe In,20(7):759~768
    Aist J R.1983. Structural responses as resistance mechanisms. Dynam Host Defence,3:33-70
    Apel K, Hirt H.2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. AnnuRev Plant Biol,55:373~399
    Arnao M B, Hernández‐Ruiz J.2007. Melatonin promotes adventitious‐and lateral root regeneration inetiolated hypocotyls of Lupinus albus L. J Pineal Res,42(2):147~152
    Arrigoni O, Dipierro S, Borraccino G.1981. Ascorbate free radical reductase: a key enzyme of the ascorbicacid system. FEBS Lett,125(2):242~244
    Asada K.1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation ofexcess photons. Annu Rev Plant Physiol Plant Mol Biol,50(1):601~639
    Asselbergh B, De Vleesschauwer D, H fte M.2008. Global switches and fine-tuning-ABA modulates plantpathogen defense. Mol Plant Microbe In,21(6):709~719
    Ausubel F M.2005. Are innate immune signaling pathways in plants and animals conserved? NatureImmunol,6(10):973~979
    Baptista P, Martins A, Pais M S, Tavares R M, Lino-Neto T.2007. Involvement of reactive oxygen speciesduring early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius.Mycorrhiza,17(3):185~193
    Bartnicki-Garcia S.1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu RevMicrobiol,22(1):87~108
    Beardmore J, Ride J, Granger J.1983. Cellular lignification as a factor in the hypersensitive resistance ofwheat to stem rust. Physiol Plant Pathol,22(2):209~210
    Bent A F, Mackey D.2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply ofquestions. Annu Rev Phytopathol,45:399~436
    Bidlack J, Malone M,Benson R (1992). Molecular structure and component integration of secondary cellwalls in plants. Proc Okla Acad Sci,72:51~56
    Boller T, Gehri A, Mauch F, V geli U.1983. Chitinase in bean leaves: induction by ethylene, purification,properties, and possible function. Planta,157(1):22~31
    Bolwell G P.1999. Role of active oxygen species and NO in plant defence responses. Curr Opin Plant Biol,2(4):287~294
    Bolwell G P, Bindschedler L V, Blee K A, Butt V S, Davies D R, Gardner S L, Gerrish C, Minibayeva F.2002. The apoplastic oxidative burst in response to biotic stress in plants: a three‐component system.J Expe Bot,53(372):1367~1376
    Bolwell G P, Robbins M P, Dixon R A.1985. Metabolic changes in elicitor‐treated bean cells. Eur JBiochem,148(3):571~578
    Bradford M M.1976. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein–dye binding. Anal Biochem,72(7):248~254
    Brown I, Trethowan J, Kerry M, Mansfield J, PaulBolwell G.1998. Localization of components of theoxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during theinteraction between non-pathogenic strains ofXanthomonas campestris andFrench bean mesophyllcells. Plant J,15(3):333~343
    Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, Renou J-P, Touraine B.2008.Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. Strain ORS278andPseudomonas syringae pv. tomato DC3000leads to complex transcriptome changes. Mol PlantMicrobe In,21(2):244~259
    Castanares A, McCrae S I, Wood T M.1992. Purification and properties of a feruloyl/ρ-coumaroyl esterasefrom the fungus Penicillium pinophilum. Enzyme Microb Tech,14(11):875~884
    Chang S, Puryear J,Cairney J.1993. A simple and efficient method for isolating RNA from pine trees. PlantMol Biol Rep,11(2):113~116
    Chassot C, Nawrath C, Métraux J P.2007. Cuticular defects lead to full immunity to a major plant pathogen.Plant J,49(6):972~980
    Chen C, Belanger R R, Benhamou N, Paulitz T C.2000. Defense enzymes induced in cucumber roots bytreatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. PhysiolMol Plant P,56(1):13~23
    Chen C S, Zhang D, Wang Y Q, Li P M, Ma F W.2012. Effects of fruit bagging on the contents of phenoliccompounds in the peel and flesh of ‘Golden Delicious’,‘Red Delicious’, and ‘Royal Gala’apples. SciHortic,142:68~73
    Chi M H, Park S Y, Kim S, Lee Y H.2009. A novel pathogenicity gene is required in the rice blast fungusto suppress the basal defenses of the host. PLoS Pathog,5(4): e1000401
    Chisholm S T, Coaker G, Day B, Staskawicz B J.2006a. Host-microbe interactions: shaping the evolutionof the plant immune response. Cell,124(4):803~814
    Chisholm S T, Coaker G, Day B, Staskawicz B J.2006b. Host-microbe interactions: shaping the evolutionof the plant immune response. Cell,124(4):803~814
    Chong J, Harder D.1982. Ultrastructure of haustorium development in Puccinia coronata avenae: somehost responses [Avena sativa, oats]. Phytopathology,72
    Clement J A, Martin S G, Porter R, Butt T M, Beckett A.1993. Germination and the role of extracellularmatrix in adhesion of urediniospores of Uromyces viciae-fabae to synthetic surfaces. Mycological Res,97(5):585~593
    Conrath U.2006. Systemic acquired resistance. Plant Signal Behav,1(4):179~184
    Conrath U, Linke C, Jeblick W, Geigenberger P, Quick W P, Neuhaus H E.2003. Enhanced resistance toPhytophthora infestans and Alternaria solani in leaves and tubers, respectively, of potato plants withdecreased activity of the plastidic ATP/ADP transporter. Planta,217(1):75~83
    Cosgrove D J.2005. Growth of the plant cell wall. Nat Rev Mol Cell Biol,6(11):850-861
    Dangl J L, Jones J D.2001. Plant pathogens and integrated defence responses to infection. Nature,411(6839):826~833
    Dao T T H, Linthorst H J M, Verpoorte R.2011. Chalcone synthase and its functions in plant resistance.Phytochem Rev,10(3):397~412
    Daudi A, Cheng Z, O’Brien J A, Mammarella N, Khan S, Ausubel F M, Bolwell G P.2012. The apoplasticoxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. PlantCell,24(1):275~287
    Deising H, Nicholson R L, Haug M, Howard R J, Mendgen K.1992. Adhesion pad formation and theinvolvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell,4(9):1101~1111
    Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M,Kessmann H, Ward E.1994. A central role of salicylic acid in plant disease resistance. Science,266(5188):1247~1250
    Ding L, Xu H, Yi H, Yang L, Kong Z, Zhang L, Xue S, Jia H, Ma Z.2011. Resistance to hemi-biotrophic F.graminearum infection is associated with coordinated and ordered expression of diverse defensesignaling pathways. PloS one,6(4): e19008
    Dixon R A, Achnine L, Kota P, Liu C J, Reddy M S, Wang L.2002. The phenylpropanoid pathway andplant defence—a genomics perspective. Mol Plant Pathol,3(5):371~390
    Dodds P N, Rathjen J P.2010. Plant immunity: towards an integrated view of plant–pathogen interactions.Nat Rev Genet,11(8):539~548
    Doke N.1983. Involvement of superoxide anion generation in the hypersensitive response of potato tubertissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wallcomponents. Physiol Plant Pathol,23(3):345~357
    Dong X.2001. Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol,4(4):309~314
    Dubbels R, Reiter R J, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara H W, Schloot W.1995.Melatonin in edible plants identified by radioimmunoassay and by high performance liquidchromatography‐mass spectrometry. J Pineal Res,18(1):28~31
    Duge de Bernonvile T, Gaucher M, Flors V, Gaillard S, Paulin J P, Dat J F, Brisset M N.2012.T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistantgenotypes of Malus spp. Challenged with Erwinia amylovora. Plant Sci,188:1~9
    Durrant W, Dong X.2004. Systemic acquired resistance. Annu Rev Phytopathol,42:185~209
    Edwards E A, Rawsthorne S, Mullineaux P M.1990. Subcellular distribution of multiple forms ofglutathione reductase in leaves of pea (Pisum sativum L.). Planta,180(2):278~284
    El Oirdi M, El Rahman T A, Rigano L, El Hadrami A, Rodriguez M C, Daayf F, Vojnov A, Bouarab K.2011. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promotedisease development in tomato. Plant Cell,23(6):2405~2421
    Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C.2007. Red colouration inapple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J,49,414~427
    Fan C Y, K ller W.1998. Diversity of cutinases from plant pathogenic fungi: differential and sequentialexpression of cutinolytic esterases by Alternaria brassicicola. FEMS Microbiol Lett,158(1):33~38
    Farmer E E.1985. Effects of fungal elicitor on lignin biosynthesis in cell suspension cultures of soybean.Plant Physiol,78(2):338~342
    Fernandez M R, Heath M C.1989. Interactions of the nonhost French bean plant (Phaseolus vulgaris) withparasitic and saprophytic fungi. III. Cytologically detectable responses. Can J Bot,67(3):676~686
    Flor H H.1971. Current status of the gene-for-gene concept. Annu Rev Phytopathol,9(1):275~296
    Francia D, Demaria D, Calderini O, Ferraris L, Valentino D, Arcioni S, Tamietti G, Cardinale F.2007.Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in cross‐protection. Plant Cell Environ,30(11):1357~1365
    Friend J.1981. Plant phenolics, lignification and plant disease. Pro Phytochem,7:197~261
    Fry S C.1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev PlantPhysiol,37(1):165~186
    Fry S C.1987. Intracellular feruloylation of pectic polysaccharides. Planta,171(2):205~211
    Fu Z Q, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel S H, Tada Y, Zheng N.2012. NPR3andNPR4are receptors for the immune signal salicylic acid in plants. Nature,486(7402):228~232
    Giannopolitis C N, Ries S K.1977. Superoxide dismutases II. purification and quantitative relationshipwith water-soluble protein in seedlings. Plant Physiol,59(2):315~318
    Glazebrook J.2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.Annu Rev Phytopathol,43:205~227
    Govrin E M, Levine A.2000. The hypersensitive response facilitates plant infection by the necrotrophicpathogen Botrytis cinerea. Curr Biol,10(13):751~757
    Grabber J H, Ralph J, Pan X (2010). Incorporation of epicatechin esters into lignin enhances cell wallfermentability.32nd Symp Biotech Fuels Chem
    Grand C, Sarni F, Lamb C J.1987. Rapid induction by fungal elicitor of the synthesis of cinnamyl‐alcoholdehydrogenase, a specific enzyme of lignin synthesis. Eur J Biochem,169(1):73~77
    Green T, Ryan C.1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanismagainst insects. Science,175(4023):776~777
    Griffith O W.1980. Determination of glutathione and glutathione disulfide using glutathione reductase and2-vinylpyridine. Anall Biochem,106(1):207~212
    Hückelhoven R.2007. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu RevPhytopathol,45:101~127
    Ham K S, Kauffmann S, Albersheim P, Darvill A G.1991. Host pathogen Interactions XXXIX. A soybeanpathogenesis-related protein with b-1,3-glucanase activity releases phytoalexin elicitor-active heatstable fragments from fungal walls. Mol Plant-Microbe Interact,4:545~552
    Hammerschmidt R.2009. Systemic acquired resistance. Adv Bot Res,51:173~222
    Hammerschmidt R, Ku J.1982. Lignification as a mechanism for induced systemic resistance in cucumber.Physiol Plant Pathol,20(1):61~71
    Harada Y, Sawamura K, Konno K.1974. Diplocarpon mali sp. nov., the perfect state of apple blotch fungusMarssonina coronaria. Ann Phytopath Soc Japan,40(5):412~418
    Hare R C.1966. Physiology of resistance to fungal diseases in plants. Bot Rev,32(2):95~137
    Hartmut K.1983. Determinations of total carotenoids and chlorophylls b of leaf extracts in differentsolvents. Biochem Soc Trans,4:142~196
    Heil M, Ton J.2008. Long-distance signalling in plant defence. Trends Plant Sci,13(6):264~272
    Heller J, Tudzynski P.2011. Reactive oxygen species in phytopathogenic fungi: signaling, development,and disease. Annu Rev Phytopathol,49:369~390
    Herbers K, Meuwly P, Frommer W B, Metraux J-P, Sonnewald U.1996. Systemic acquired resistancemediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway.Plant Cell,8(5):793~803
    Heslop-Harrison J.1966. Cytoplasmic continuities during spore formation in flowering plants. Endeavour,25(95):65~72
    Hoefle C, Hückelhoven R.2008. Enemy at the gates: traffic at the plant cell pathogen interface. CellularMicrobiol,10(12):2400~2407
    Horsfall J, Dimond A.1957. Interactions of tissue sugar, growth substances and disease susceptibility. ZPflanzenk Pflanzen,64:415~421
    Howe G A.2004. Jasmonates as signals in the wound response. J Plant Growth Regul,23(3):223-237
    Johnson R, Ryan C A.1990. Wound-inducible potato inhibitor II genes: enhancement of expression bysucrose. Plant Mol Biol,14(4):527~536
    Jones J D G, Dangl J L.2006. The plant immune system. Nature,444(7117):323~329
    K ller W, Yao C, Trial F, Parker D.1995. Role of cutinase in the invasion of plants. Can J Bot,73(S1):1109~1118
    Kang Z, Buchenauer H.1999. Immunocytochemical localization of fusarium toxins in infected wheatspikes by Fusarium culmorum. Physiol Mol Plant P,55(5):275~288
    Keen N T.1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet,24(1):447~463
    Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J.1994. Induction ofsystemic acquired disease resistance in plants by chemicals. Annu Rev Phytopathol,32(1):439~459
    Khan N U, Vaidyanathan C S.1986. A new simple spectrophotometric assay of phenylalanineammonia-lyase. Curr Sci,55:391~393
    Kim K H, Choi Y M, Yiem M S.1998. Cultural characteristics of Diplocarpon mali. RDA J Crop Prot,40(2):120~123
    Kloepper J W, Ryu C M, Zhang S.2004. Induced systemic resistance and promotion of plant growth byBacillus spp. Phytopathology,94(11):1259~1266
    Kolá J, Machá ková I.2005. Melatonin in higher plants: occurrence and possible functions. J Pineal Res,39(4):333~341
    Kr ner A, Marnet N, Andrivon D,Val F.2012. Nicotiflorin, rutin and chlorogenic acid: phenylpropanoidsinvolved differently in quantitative resistance of potato tubers to biotrophic and necrotrophicpathogens. Plant Physiol Bioch,57:23~31
    Ku J.2001. Concepts and direction of induced systemic resistance in plants and its application. Eur J PlantPathol,107(1):7~12
    Kurosaki F, Tashiro N, Nishi A.1986. Induction of chitinase and phenylalanine ammonia-lyase in culturedcarrot cells treated with fungal mycelial walls. Plant Cell Physiol,27(8):1587~1591
    Lagrimini L M, Rothstein S.1987. Tissue specificity of tobacco peroxidase isozymes and their induction bywounding and tobacco mosaic virus infection. Plant Physiol,84(2):438~442
    Lamb C, Dixon R A.1997. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol PlantMol Biol,48(1):251~275
    Lawrence C B, Singh N P, Qiu J, Gardner R G, Tuzun S.2000. Constitutive hydrolytic enzymes areassociated with polygenic resistance of tomato to Alternaria solani and may function as an elicitorrelease mechanism. Physiol Mol Plant P,57(5):211~220a niewska J, Macioszek V K, Kononowicz A K.2012. Plant-fungus interface: The role of surfacestructures in plant resistance and susceptibility to pathogenic fungi. Physiol Mol Plant P,78:24~30
    Lee D H, Back C G, Win N K K, Choi K H, Kim K M, Kang I K, Choi C, Yoon T M, Uhm J Y, Jung H Y.2011. Biological characterization of Marssonina coronaria associated with apple blotch disease.Mycobiology,39(3):200~205
    Lee S W, Kim D A, Choi K H, Lee D H, Ryu O H, Suh S J.1996. Questionnaire on status and opinions ofpest control to apple growers and its related groups. RDA J Agric Sci,38:545~552
    Lei X Y, Zhu R Y, Zhang G Y, Dai Y R.2004. Attenuation of cold‐induced apoptosis by exogenousmelatonin in carrot suspension cells: the possible involvement of polyamines. J Pineal Res,36(2):126~131
    Leite Jr R P, Tsuneta M, Kishino A Y.1986. Apple leaf spot caused by Marssonina coronaria. FitopatolBras,11:725~729
    Levine A, Pennell R I, Alvarez M E, Palmer R, Lamb C.1996. Calcium-mediated apoptosis in a planthypersensitive disease resistance response. Curr Biol,6(4):427~437
    Levine A, Tenhaken R, Dixon R, Lamb C.1994. H2O2from the oxidative burst orchestrates the planthypersensitive disease resistance response. Cell,79(4):583~593
    Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F.2012. The mitigation effects of exogenousmelatonin on salinity‐induced stress in Malus hupehensis. J Pineal Res,53:298~306
    Li P, Castagnoli S, Cheng L.2008. Red ‘Anjou’pear has a higher photoprotective capacity than green‘Anjou’. Physiol Plant,134(3):486~498
    Linke C, Conrath U, Jeblick W, Betsche T, Mahn A, Düring K, Neuhaus H E.2002. Inhibition of theplastidic ATP/ADP transporter protein primes potato tubers for augmented elicitation of defenseresponses and enhances their resistance against Erwinia carotovora. Plant Physiol,129(4):1607~1615
    Liu B, Lu Y, Xin Z, Zhang Z.2009. Identification and antifungal assay of a wheat β-1,3-glucanase.Biotechnol Lett,31(7):1005~1010
    Liu B, Xue X, Cui S, Zhang X, Han Q, Zhu L, Liang X, Wang X, Huang L, Chen X.2010. Cloning andcharacterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Pucciniastriiformis f. sp. tritici. Mol Biol Rep,37(2):1045~1052
    Liu J, Maldonado‐Mendoza I, Lopez‐Meyer M, Cheung F, Town C D, Harrison M J.2007. Arbuscularmycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and anincrease in disease resistance in the shoots. Plant J,50(3):529~544
    Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitativePCR and the2ΔΔCTmethod. Methods,25(4):402~408
    Loake G, Grant M.2007. Salicylic acid in plant defence—the players and protagonists. Curr Opin PlantBiol,10(5):466~472
    Logan B A, Grace S C, Adams III W W, Demmig-Adams B.1998. Seasonal differences in xanthophyllcycle characteristics and antioxidants in Mahonia repens growing in different light environments.Oecologia,116(1-2):9~17
    Lohar D P, Haridas S, Gantt J S, VandenBosch K A.2007. A transient decrease in reactive oxygen speciesin roots leads to root hair deformation in the legume–rhizobia symbiosis. New Phytol,173(1):39~49
    Low P S,Merida J R.1996. The oxidative burst in plant defense: function and signal transduction. PhysiolPlant,96(3):533~542
    Maher E A, Bate N J, Ni W, Elkind Y, Dixon R A, Lamb C J.1994. Increased disease susceptibility oftransgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. P Natl AcadSci USA,91(16):7802~7806
    Maisuthisakul P, Suttajit M, Pongsawatmanit R.2007. Assessment of phenolic content and freeradical-scavenging capacity of some Thai indigenous plants. Food Chem,100(4):1409~1418
    Malamy J, Carr J P, Klessig D F, Raskin I.1990. Salicylic acid: a likely endogenous signal in the resistanceresponse of tobacco to viral infection. Science,250(4983):1002~1004
    Massala R, Legrand M, Fritig B.1980. Effect of α-aminooxyacetate, a competitive inhibitor ofphenylalanine ammonia-lyase, on the hypersensitive resistance of tobacco to tobacco mosaic virus.Physiol Plant Pathol,16(2):213~226
    Matern U, Kneusel R E.1988. Phenolic compounds in plant disease resistance. Phytoparasitica,16(2):153~170
    Mauch-Mani B, Slusarenko A J.1996. Production of salicylic acid precursors is a major function ofphenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell,8(2):203~212
    Mauch F, Hadwiger L A, Boller T.1984. Ethylene: symptom, not signal for the induction of chitinase andβ-1,3-glucanase in pea pods by pathogens and elicitors. Plant Physiol,76(3):607~611
    Mauch F, Mauch-Mani B, Boller T.1988. Antifungal hydrolases in pea tissue II. Inhibition of fungalgrowth by combinations of chitinase and β-1,3-glucanase. Plant Physiol,88(3):936~942
    McDowell J M, Dangl J L.2000. Signal transduction in the plant immune response. Trends Biochem Sci,25(2):79~82
    Medzhitov R, Janeway C.1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell,91:295~298
    Mehdy M C.1994. Active oxygen species in plant defense against pathogens. Plant Physiol,105(2):467~472
    Mellon J E, Helgeson J P.1982. Interaction of a hydroxyproline-rich glycoprotein from tobacco callus withpotential pathogens. Plant Physiol,70(2):401~405
    Meuwly P, Molders W, Buchala A, Metraux J-P.1995. Local and systemic biosynthesis of salicylic acid ininfected cucumber plants. Plant Physiol,109(3):1107~1114
    Mil evi ová R, Gosch C, Halbwirth H, Stich K, Hanke M V, Peil A, Flachowsky H, Rozhon W, Jonak C,Oufir M.2010. Erwinia amylovora-induced defense mechanisms of two apple species that differ insusceptibility to fire blight. Plant Sci,179(1):60~67
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F.2004. Reactive oxygen gene network of plants.Trends Plant Sci,9(10):490~498
    Mohammadi M, Kazemi H.2002. Changes in peroxidase and polyphenol oxidase activities in susceptibleand resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci,162(4):491~498
    Moreau M, Tian M, Klessig D F.2012. Salicylic acid binds NPR3and NPR4to regulate NPR1-dependentdefense responses. Cell,22:1631~1633
    Nürnberger T, Brunner F.2002. Innate immunity in plants and animals: emerging parallels between therecognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol,5(4):318~324
    Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinachchloroplasts. Plant and Cell Physiol,22(5):867~880
    Nanda A K, Andrio E, Marino D, Pauly N, Dunand C.2010. Reactive Oxygen Species duringPlant-microorganism Early Interactions. J Integr Plant Biol,52(2):195~204
    Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd N P, Jones J D G.2008. DELLAs control plantimmune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol,18(9):650~655
    Nawrath C.2006. Unraveling the complex network of cuticular structure and function. Curr Opin PlantBiol,9(3):281~287
    Nicholson R L, Hammerschmidt R.1992. Phenolic compounds and their role in disease resistance. AnnuRev Phytopathol,30(1):369~389
    Nielsen K A, Nicholson R L, Carver T L, Kunoh H, Oliver R P.2000. First touch: An immediate responseto surface recognition in conidia of Blumeria graminis. Physiol Mol Plant P,56(2):63~70
    Niemann G J, van der Bij A, Brandt-de Boer B, Boon J J, Baayen R P.1991a. Differential response of fourcarnation cultivars to races1and2of Fusarium oxysporum f. sp. dianthi and to Phialophoracinerescens. Physiol Mol Plant P,38(2):117~136
    Niemann G J, van der Kerk A, Niessen W, Versluis K.1991b. Free and cell wall-bound phenolics and otherconstituents from healthy and fungus-infected carnation (Dianthus caryophyllus L.) stems. PhysiolMol Plant P,38(6):417~432
    Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y.1998. Antagonistic effect of salicylic acid and jasmonicacid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves.Plant Cell Physiol,39(5):500~507
    Nims R C, Halliwell R S, Rosberg D W.1967. Wound healing in cultured tobacco cells followingmicroinjection. Protoplasma,64(3):305~314
    O’Brien J A, Daudi A, Butt V S, PaulBolwell G.2012. Reactive oxygen species and their role in plantdefence and cell wall metabolism. Planta,236(3):765~779
    Olsen K M, Lea U S, Slimestad R, Verheul M, Lillo C.2008. Differential expression of four ArabidopsisPAL genes; PAL1and PAL2have functional specialization in abiotic environmental-triggered flavonoidsynthesis. J Plant Physiol,165(14):1491~1499
    Paredes S D, Korkmaz A, Manchester L C, Tan D X, Reiter R J.2009. Phytomelatonin: a review. J Exp Bot,60(1):57~69
    Parmelee J A.1971. Marssonina leafspot of Apple. Can Plant Dis Surv,51(2):91~92
    Pascholati S, Deising H, Leiti B, Anderson D, Nicholson R.1993. Cutinase and non-specific esteraseactivities in the conidial mucilage of Colletotrichum graminicola. Physiol and Mol Plant P,42(1):37~51
    Pascholati S F, Yoshioka H, Kunoh H, Nicholson R L.1992. Preparation of the infection court by Erysiphegraminis f. sp. hordei: cutinase is a component of the conidial exudate. Physiol Mol Plant P,41(1):53~59
    Patterson B D, MacRae E A, Ferguson I B.1984. Estimation of hydrogen peroxide in plant extracts usingtitanium (IV). Anal Biochem,139(2):487~492
    Pelagio‐Flores R, Mu oz‐Parra E, Ortiz‐Castro R, López‐Bucio J.2012. Melatonin regulatesArabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res,53:279~288
    Pieterse C, Van Wees S, Hoffland E, Van Pelt J A, Van Loon L C.1996. Systemic resistance in Arabidopsisinduced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-relatedgene expression. Plant Cell,8(8):1225~1237
    Pieterse C M, Van Wees S C, Van Pelt J A, Knoester M, Laan R, Gerrits H, Weisbeek P J, Van Loon L C.1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell,10(9):1571~1580
    Pieterse C M J, Leon-Reyes A, Van der Ent S, Van Wees S C M.2009. Networking by small-moleculehormones in plant immunity. Nat Chem Bio,5(5):308~316
    Posmyk M M, Kuran H, Marciniak K, Janas K M.2008. Presowing seed treatment with melatonin protectsred cabbage seedlings against toxic copper ion concentrations. J Pineal Res,45(1):24~31
    Pozo M J, Van Loon L C, Pieterse C M J.2004. Jasmonates-signals in plant-microbe interactions. J PlantGrowth Regul,23(3):211~222
    Rao M V, Paliyath G, Ormrod D P.1996. Ultraviolet-B-and ozone-induced biochemical changes inantioxidant enzymes of Arabidopsis thaliana. Plant Physiol,110(1):125~136
    Rasmussen J B, Hammerschmidt R, Zook M N.1991. Systemic induction of salicylic acid accumulation incucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol,97(4):1342~1347
    Reimers P J, Guo A, Leach J E.1992. Increased activity of a cationic peroxidase associated with anincompatible interaction between Xanthomonas oryzae pv oryzae and rice (Oryza sativa). PlantPhysiol,99(3):1044~1050
    Reina-Pinto J J, Yephremov A.2009. Surface lipids and plant defenses. Plant Physiol Biochem,47(6):540~549
    Reisige K, Gorzelanny C, Daniels U, Moerschbacher B M.2006. The C28aldehyde octacosanal is amorphogenetically active component involved in host plant recognition and infection structuredifferentiation in the wheat stem rust fungus. Physiol Mol Plant P,68(1):33~40
    Reissig J L, Strominger J L, Leloir L F.1955. A modified colorimetric method for the estimation ofN-acetylamino sugars. J Biol Chem,217(2):959~966
    Ride J P.1983. Cell walls and other structural barriers in defense. Biochem Plant Pathol,14:215~236
    Ryals J, Uknes S, Ward E.1994. Systemic acquired resistance. Plant Physiol,104(4):1109~1112
    Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H-Y, Hunt M D.1996. Systemic acquiredresistance. Plant Cell,8(10):1809~1819
    Ryan C A.1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens.Ann Rev Phytopathol,28(1):425~449
    Schmelzer E.2002. Cell polarization, a crucial process in fungal defence. Trends Plant Sci,7(9):411~415
    Schroeder H W.1955. Factors affecting resistance of wheat to scab caused by Gibberella zeae (Schw.)Petch: Univ. of Minnesota
    Schwachtje J, Baldwin I T.2008. Why does herbivore attack reconfigure primary metabolism? PlantPhysiol,146(3):845~851
    Segarra G, Van der Ent S, Trillas I, Pieterse C.2009. MYB72, a node of convergence in induced systemicresistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol,11(1):90~96
    Shadle G L, Wesley S V, Korth K L, Chen F, Lamb C,Dixon R A.2003. Phenylpropanoid compounds anddisease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase.Phytochemistry,64(1):153~161
    Shan L, He P, Li J, Heese A, Peck S C, Nürnberger T, Martin G B,Sheen J.2008. Bacterial effectors targetthe common signaling partner BAK1to disrupt multiple MAMP receptor-signaling complexes andimpede plant immunity. Cell Host Microbe,4(1):17~27
    Sharma I M.2003. Influence of environmental factors on the development of pre-mature defoliationdisease caused by Marssonina coronaria in apple and its management. J Mycol Plant Pathol,33(1):89~95
    Sharma I M, Bhardwaj S S.2003. Efficacy and economics of different fungicide spray schedules incontrolling premature defoliation disease in apple. Plant Dis Res,18(1):21~24
    Sharma J N.1999. Marssonina blotch-a new disease causing premature leaf fall in apple. Indian Phytopath,52(1):101~102
    Sharma J N, Sharma P.2006. Studies on Marssonina coronaria (Ell.&JJ Davis) JJ Davis causingMarssonina blotch of apple in Himachal Pradesh. Phytomorphology,56(1/2):61~64
    Sharma N, Thakur V S.2011. Epidemic outbreak of apple blotch disease: epidemiology and management inHimachal Pradesh. Indian Phytopath,63(2):141~144
    Sharma N, Thakur V S, Mohan J, Khurana S M P, Sharma S.2011. Epidemiology of Marssonina blotch(Marssonina coronaria) of apple in India. Indian Phytopath,62(3):348~359
    Sharma N, Thakur V S, Sharma S, Mohan J, Khurana S M P.2012a. Development of Marssonina blotch(Marssonina coronaria) in different genotypes of apple. Indian Phytopath,64(4):358~362
    Sharma N, Thakur V S, Sharma S, Mohan J, Khurana S M P.2012b. Development of Marssonina blotch(Marssonina coronaria) in different genotypes of apple. Indian Phytopath,64(4):358~362
    Shaw B D, Hoch H.2000. Ca2+Regulation of Phyllosticta ampelicida Pycnidiospore Germination andAppressorium Formation. Fungal Genet Biol,31(1):43~53
    Shaw S L, Long S R.2003. Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol,132(4):2196~2204
    Shetty N P, J rgensen H J L, Jensen J D, Collinge D B, Shetty H S.2008. Roles of reactive oxygen speciesin interactions between plants and pathogens. Eur J Plant Pathol,121(3):267~280
    Shukla Y N, Srivastava A, Kumar S, Kumar S.1999. Phytotoxic and antimicrobial constituents of Argyreiaspeciosa and Oenothera biennis. J Ethnopharmacol,67(2):241~245
    Shulaev V, León J, Raskin I.1995. Is salicylic acid a translocated signal of systemic acquired resistance intobacco? Plant Cell,7(10):1691~1701
    Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J.2006. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in diseasedevelopment. Mol Plant Microbe Interact,19(5):480~494
    Slatnar A M M P, Halbwirth H, Stampar F, Stich K, Veberic R.2010. Enzyme activity of thephenylpropanoid pathway as a response to apple scab infection. Ann Appl Biol,156(3):449~456
    Smith-Becker J, Marois E, Huguet E J, Midland S L, Sims J J, Keen N T.1998. Accumulation of salicylicacid and4-hydroxybenzoic acid in phloem fluids of cucumber during systemic acquired resistance ispreceded by a transient increase in phenylalanine ammonia-lyase activity in petioles and stems. PlantPhysiol,116(1):231~238
    Soliva R C, Elez P, Sebastián M, Mart n O.2000. Evaluation of browning effect on avocado puréepreserved by combined methods. Food Sci Emerg,1(4):261~268
    Tamietti G, Matta A.2003. First report of leaf blotch caused by Marssonina coronaria on apple in Italy.Plant Dis,87(8):1005
    Tan D X, Manchester L C, Di Mascio P, Martinez G R, Prado F M, Reiter R J.2007a. Novel rhythms ofN1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth:importance for phytoremediation. FASEB J,21(8):1724~1729
    Tan D X, Manchester L C, Helton P, Reiter R J.2007b. Phytoremediative capacity of plants enriched withmelatonin. Plant Signal Behav,2(6):514~516
    Tanaka S, Kamegawa N, Ito S, Kameya-Iwaki M.2000. Detection of thiophanate-methyl-resistant strainsin Diplocarpon mali, causal fungus of apple blotch. J Gen Plant Pathol,66(1):82~85
    Tao Y, Xie Z, Chen W, Glazebrook J, Chang H S, Han B, Zhu T, Zou G, Katagiri F.2003. Quantitativenature of Arabidopsis responses during compatible and incompatible interactions with the bacterialpathogen Pseudomonas syringae. Plant Cell,15(2):317~330
    Terao J, Piskula M, Yao Q.1994. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipidperoxidation in phospholipid bilayers. Arch Biochem Biophys,308(1):278~284
    Thomma B P H J, Penninckx I A, Cammue B, Broekaert W F.2001. The complexity of disease signaling inArabidopsis. Curr Opinion Immunol,13(1):63~68
    Ton J, Mauch‐Mani B.2004. β‐amino‐butyric acid‐induced resistance against necrotrophicpathogens is based on ABA‐dependent priming for callose. Plant J,38(1):119~130
    Torres M A, Dangl J L, Jones J D G.2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF arerequired for accumulation of reactive oxygen intermediates in the plant defense response. P Natl AcadSci USA,99(1):517~522
    Torres M A, Jones J D G, Dangl J L.2005. Pathogen-induced, NADPH oxidase–derived reactive oxygenintermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet,37(10):1130~1134
    Torres M A, Jones J D G, Dangl J L.2006. Reactive oxygen species signaling in response to pathogens.Plant Physiol,141(2):373~378
    Treutter D.2001. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul,34(1):71~89
    Treutter D.2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis.Plant Biol,7(6):581~591
    Tsuda K, Katagiri F.2010. Comparing signaling mechanisms engaged in pattern-triggered andeffector-triggered immunity. Curr Opin Plant Biol,13(4):459~465
    Ueeda M, Kubota M, Nishi K.2006. Contribution of jasmonic acid to resistance against Phytophthorablight in Capsicum annuum cv. SCM334. Physiol Mol Plant P,67(3):149~154
    Van B P, Woltering E J, Staats M, Van K J A.2007. Histochemical and genetic analysis of host and non‐host interactions of Arabidopsis with three Botrytis species: an important role for cell death control.Mol Plant Pathol,8(1):41~54
    Van Loon L, Rep M, Pieterse C.2006a. Significance of inducible defense-related proteins in infected plants.Annu. Rev Phytopathol.,44:135~162
    van Loon L C, Geraats B P J, Linthorst H J M.2006b. Ethylene as a modulator of disease resistance inplants. Trends Plant Sci,11(4):184~191
    Vance C P, Kirk T K, Sherwood R T.1980. Lignification as a mechanism of disease resistance. Annu RevPhytopathol,18(1):259~288
    Veitch N C.2004. Structural determinants of plant peroxidase function. Phytochem Rev,3(1):3~18
    Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J.1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistancebut is required in signal transduction. Plant Cell,6(7):959~965
    Vlot A C, Klessig D F, Park S W.2008. Systemic acquired resistance: the elusive signal (s). Curr OpinPlant Biol,11(4):436~442
    Von Dahl C C, Baldwin I T.2007. Deciphering the role of ethylene in plant–herbivore interactions. J PlantGrowth Regul,26(2):201~209
    Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C,von Wettstein D.2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stresstolerance, disease resistance, and higher yield. P Natl Acad Sci USA,102(38):13386~13391
    Walters D, Heil M.2007. Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol,71(1):3~17
    Wang C F, Huang L L, Zhang H C, Han Q M, Buchenauer H, Kang Z S.2010. Cytochemical localization ofreactive oxygen species (O2and H2O2) and peroxidase in the incompatible and compatible interactionof wheat–Puccinia striiformis f. sp. tritici. Physiol Mol Plant P,74(3):221~229
    Wang D, Pajerowska-Mukhtar K, Culler A H, Dong X.2007. Salicylic acid inhibits pathogen growth inplants through repression of the auxin signaling pathway. Curr Biol,17(20):1784~1790
    Wang P, Sun X, Li C, Wei Z, Liang D, Ma F.2012. Long‐term exogenous application of melatonin delaysdrought‐induced leaf senescence in apple. J Pineal Res, DOI:10.1111/jpi.12017
    Wang P, Yin L, Liang D, Li C, Ma F, Yue Z.2011. Delayed senescence of apple leaves by exogenousmelatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res,53:11~20
    Wolfe K L, Liu R H.2003. Apple peels as a value-added food ingredient. J Agric Food Chem,51(6):1676~1683
    Yalpani N, Silverman P, Wilson T, Kleier D A, Raskin I.1991. Salicylic acid is a systemic signal and aninducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell,3(8):809~818
    Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin S A, Petit P X, Mignotte B,Kroemer G.1995. Sequential reduction of mitochondrial transmembrane potential and generation ofreactive oxygen species in early programmed cell death. J Exp Med,182(2):367~377
    Zhang H, Wang C, Cheng Y, Chen X, Han Q, Huang L, Wei G, Kang Z.2012a. Histological and cytologicalcharacterization of adult plant resistance to wheat stripe rust. Plant Cell Rep,31(12):2121~2137
    Zhang J Y, Gao Z H, Guo Z R, Zhou J, Qiao Y S, Qu S C, Zhen Z.2012b. Characterization and expressionof β-1,3glucanase gene cloned from Malus hupehensis. Afr J Agric Res,7(4):597~606
    Zhang N, Zhao B, Zhang H J, Weeda S, Yang C, Yang Z C, Ren S, Guo Y D.2013. Melatonin promoteswater‐stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativusL.). J Pineal Res,54:15~23
    Zhang Y, Li P, Cheng L.2010. Developmental changes of carbohydrates, organic acids, amino acids, andphenolic compounds in ‘Honeycrisp’apple flesh. Food Chem,123(4):1013~1018
    Zhao H, Han Q, Wang J, Gao X, Xiao C L, Liu J, Huang L.2012. Cytology of infection of apple leaves byDiplocarpon mali. Eur J Plant Pathol, DOI:10.1007/s10658-012-0129-8
    Zhao H, Huang L, Xiao C L, Liu J, Wei J, Gao X.2010. Influence of culture media and environmentalfactors on mycelial growth and conidial production of Diplocarpon mali. Lett Appl Microbiol,50(6):639~644
    Zhou Q, Gao H, Wang M, Xu Y, Guo Y Z, Wan Y Z, Zhao Z Y.2012. Characterization of defense-relatedgenes in the ‘Qinguan’apple in response to Marssonina coronaria. S Afr J Bot,80:36~43
    Zimmerli L, Hou B H, Tsai C H, Jakab G, Mauch‐Mani B, Somerville S.2008. The xenobiotic β‐aminobutyric acid enhances Arabidopsis thermotolerance. Plant J,53(1):144~156
    Zimmerli L, Jakab G, Métraux J-P, Mauch-Mani B.2000. Potentiation of pathogen-specific defensemechanisms in Arabidopsis by β-aminobutyric acid. P Natl Acad Sci USA,97(23):12920~12925
    Zimmerli L, Métraux J-P, Mauch-Mani B.2001. β-Aminobutyric acid-induced protection of Arabidopsisagainst the necrotrophic fungus Botrytis cinerea. Plant Physiol,126(2):517~523
    Zipfel C, Felix G.2005. Plants and animals: a different taste for microbes? Curr Opin Plant Biol,8(4):353~360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700