用户名: 密码: 验证码:
碲锌镉像素核辐射探测器原理及实验特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体核辐射探测器的发展相当迅速。这类探测器已经广泛地应用于核物理学、X射线和伽玛射线天文学,以及核医学等诸多领域。与气体探测器和闪烁体探测器相比,半导体探测器的成像性能更为优异,能谱分辨能力也更强,同时还可以使整个探测系统的结构更为紧凑。特别是最近三年来,“神光-III原型”及“LAMOST”等国家大型科学装置的落成,为我国核物理学、高能物理学和天体物理学等诸多研究提供了新平台,开拓了新领域,提供了新契机,为取得进一步重大科研成果奠定了坚实的基础。因此,已经形成了以大科学装置为基础的一系列后续科研课题,产生了对高能射线能谱探测及成像诊断技术的新需求。
     CdZnTe晶体材料对硬X射线和伽玛射线的截止能力和探测量子效率都很高,适合探测范围10keV~1.5MeV能量的光子,特别是在10~100keV能量范围内,其能量探测效率可以达到90%以上。不断成熟的晶体生长方法与工艺,不断优化的探测器结构以及不断完善的信号处理技术,都使得CdZnTe探测器的性能越来越优异,在核辐射探测领域起着越来越重要的作用,成为现在室温半导体辐射探测领域的热点,受到世界各国的高度重视。
     目前,国内外CdZnTe像素核辐射探测器的研究存在很大差距。国内相关研究工作还处于起步阶段,研究单位也相对较少,主要的研究集中在CdZnTe晶体生长工艺和表面处理技术方面;国外相关研究主要针对新型探测器电极结构的设计、探测器脉冲信号电子学处理技术的改进、以及载流子俘获的物理机制等。虽然在提高CdZnTe探测器能量分辨率的研究方面取得了很大进展,但是CdZnTe像素核辐射探测技术的相关研究领域内,还存在若干问题亟待解决。
     为了完善像素CdZnTe像素核辐射探测器在核辐射能谱探测及成像探测领域的结构体系,拓展其在粒子探测领域的应用范围,面向“神光III”等国家大科学装置对X射线及Gamma射线诊断的需求,以及核医学、天文物理等研究领域的需求,开展了“像素CdZnTe探测器研究”这一课题的研究工作。研究得到了国家自然科学基金面上项目(No.10876044, No.62174048)中央高校基本科研业务费资助项目(No.CDJXS11122219)的资助。围绕所提出的科学问题,按照改进CdZnTe探测器能量分辨率及成像探测性能的主旨,主要研究工作如下:
     (1)讨论入射光子与CdZnTe晶体相互作用的物理机制,分析了几种不同作用机制与光子能量的关系。基于权重势理论,分析了信号产生与收集原理,对单极性探测器的工作原理进行了讨论。对像素探测器的读出系统进行了总体归纳与设计。
     (2)模拟了X射线或伽玛射线在探测过程中的主要物理过程,以将模拟结果用于探测器的优化设计。首先采用MCNP代码建模,包括光子与晶体的主要作用机制,比如光电吸收,康普顿散射,电子偶产生以及瑞利散射等。其次利用Matlab电场有限元分析软件工具包对电荷在晶体中的俘获与扩散建立了模型。分析讨论了不同尺寸的电极结构对权重势分布的影响。最后基于Shockley-Ramo理论建立了像素探测器信号感生模型,并给出了不同辐照源的能谱结果。
     (3)根据对电极材料与表面处理工艺的研究,制备了不同规格像素探测器。并首先对这些探测进行了漏电测试,得到了不同偏压下像素探测器的漏电流分布,随后根据不同的探测器结构设计进行了进一步研究,内容包括:
     (a)研究了不同条件下,探测器的能谱分辨率。
     (b)对像素探测器中间隙处的电荷共享与损失进行了研究。
     (c)根据能量的沉积,电荷的收集效率,电荷共享,以及能量分辨率等因素对像素探测器的像素尺寸进行了综合优化。
     (d)通过厚针孔系统,对137Cs高能662keV伽马射线辐射源进行成像探测,得到了能谱图和放射源图像。
     (4)采用了双向辐照的方法,研究了深度极化的过程,并结合模拟的电势分布讨论了极化增强的原因。利用极化扩展的程度,对高通量的X射线进行了估算。最后,推导了发生极化时空间电荷的临界浓度,并与光子通量建立了数学联系,讨论了高辐照下空间电荷扩散与极化区域的关系。对极化效应进行了补充,也从另一个方面证实了空间电荷的扩散。
Cadmium zinc telluride (CdZnTe) is a wide bandgap semiconductor material thathas been studied extensively for x-ray and gamma ray detectors. Recent improvementsin growth techniques have improved the CdZnTe material quality and charge transportproperties, resulting in detectors with improved energy resolution. This has opened awide field of potential applications of CdZnTe detectors for national security, medical,space, basic science and environmental mitigation and safety.
     Compared with gas detectors and scintillator detectors, the semiconductor detectorcan provides better image, energy resolution, and a more compact system structure.Especially for the most resent three years, the implement of national space stationprogram and the establishment of the national science facilities, which include theprototype of “ShenGuang III” and the Large Sky Area Multi-Object FiberSpectroscopy Telescope (LAMOST), provide new platforms for development ofhigh energy physics and astronomy technology of our nation. Therefore, thecorresponding scientific research subjects have emerged that are simulated bythese great national science facilities. And there are many new requirements fordiagnostic and detect technique of high energy.
     Because of the high atomic number, the high density and the wide band gap,CdZnTe detectors have a capable of high detection efficiency, good room temperatureperformance and are very attractive for X-ray and gamma ray applications, especiallyfor the measurements between100keV and1MeV. In some application, its detectionefficiency will be more than90%.
     The prominent properties of CdZnTe detectors benefit more and more from thedevelopment of crystal growth methods and techniques, optimizing of detector structure,and improvement of signal processing techniques. So, the CdZnTe detector has becomea hot point in the research of semiconductor room-temperature radiation detectors, andit has attracted increasing interest by many researchers from developed nations.
     As for now, the domestic research is still in its infancy which focuses on the crystalgrowth and its surface process. By contrast, the overseas researchers dedicate to thenovel structure electrode, the improvement of plus signal processing and the physicalmechanism of carrier tapping. Despite all its advances in many technology, there areseveral realistic problems.
     In order to fix the structural system of CdZnTe detector and to expand scope of itsapplication, we have conducted research on the pixellated CdZnTe detector. Thisresearch are supported by National Natural Science Foundation of China (No.10876044,No.62174048) and the fundamental research funds for the central universities(CDJXS11122219). The main work of this thesis are provided as follows:
     (1) The principles of interaction mechanisms between radiation particles andmaterials are introduced. The relationship between these mechanisms and photon energyis discussed. Based on weighting potential theory, it analyses the principle of generatingsignals and charge collection. And the theory of unipolar detectors is discussed. Thispart also sums up the readout system of detectors.
     (2) The main physical process within the detector martial have been simulated bythe MCNP code, which includes photoelectric effect, Compton scattering,electron-positron pair and rayleigh scattering. And then, the inner electric field ismodeled by Matlab. It has analyzed the relationship between the electrode structure anddistribution of weighting potentials. At last, the spectra from different sources areprovided, and the corresponding analysis is based on Shockley-Ramo theory.
     (3) Some pixellated CdZnTe are fabricated in our laboratory. The surface leakagecurrents of these pixel array electrodes are tested and analyzed based on the leakagetheory of pixellated CdZnTe detector. The leakage current map are provided. And thefollowing research includs:
     (a)The energy resolution in different operation condition.
     (b)The charge sharing and loss within gaps are discussed.
     (c)The detector dimension is optimized based on energy deposition, chargecollection efficiency and energy resolution.
     (d)The spectrum and image of137Cs are obtained through a thick pinhole system.
     (4)The further process of polarization within a pixellated CdZnTe detector underintense X-ray irradiation is studied by dual-radiation method. According to the extendpolarization level, the flux of X-ray is estimated. At last, the critical density ofpolarization is deduced. And the relationship between polarized region and space chargediffusion is discussed. It is a a supplement of the dynamic polarization theory, and itprovides an evidence of diffusion within the CdZnTe under intense irradiation.
引文
[1] Frans van der Have, Freek J. Beekman. Penetration and Scatter in Channel Micropinholes forSPECT: a Monte Carlo Investigation[C]. Nuclear Science Symposium Conference Record,2004IEEE, Vol:42575-2578
    [2] G. Bal, G L Zeng, R M Lewitt, et al. Study of different pinhole configurations for smallanimal tumor imaging[C]. Nuclear Science Symposium Conference Record,2004IEEE, Vol.5:3133-3137
    [3]丁洪林.核辐射探测器[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [4] T. Zeniya, H. Watabe, T. Aoi, et al.3D Image Reconstruction Using Complete Data inPinhole SPECT[C]. Nuclear Science Symposium Conference Record,2003IEEE, Vol.3:2100-2102
    [5]汤彬,葛良全,方方等.核辐射测量原理[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [6] G. F. Knoll. Radiation Detection and Measurement.3rd Ed.[M]. New York: John Wiley&Sons Inc.,2000.
    [7] J. E. Toney, B. A. Brunett, T. E. Schlesinger, et al. Uniformity of Cd1-xZnxTe grown byhigh-pressure Bridgman [J]. Nucl. Instr. and Meth. A,1996,380(1-2):132-135.
    [8] Y. Eisen. Current state-of-the art industrial and research application using room-temperatureCdTe and CdZnTe solid state detectors [J]. Nucl. Instr. and Meth. A,1996,380(1-2):431-439.
    [9] L. Chibani, M. Hage-Ali, and P. Siffert. Electrically active defects in detector-grade CdTe:Cland CdZnTe materials grown by THM and HPBM [J]. J. Crys. Grow.,1996,161(1-4):153-158.
    [10] P. Olmos, G. Garcia-Belmonte, and J. M. Perez. Large volume HgI2counters: a noveltechnique for pulse discrimination [J]. Nucl. Instr. and Meth. A,1992,322(3):557-561.
    [11] V. M. Gerrish, D. J. Williams, and A.G. Beyerle. Pulse filtering for thick mercuric iodidedetectors [J]. IEEE Trans. Nucl. Sci.,1987,34(1):85-90.
    [12] A. Beyerle, V. Gerrish, and K. Hull. Parallel pulse processing for mercuric iodide gamma-raydetectors [J]. Nucl. Instr. and Meth. A,1986,242(3):443-449.
    [13] L. T. Jones, and P. B. Woollam. Resolution improvement in CdTe gamma detectors usingpulse-shape discrimination [J]. Nucl. Instr. and Meth.,1975.124(2):591-595.
    [14] J. Liptac, R. Parker, V. Tang, et al. Hard x-ray diagnostic for lower hybrid experiments onAlcator C-Mod [J]. Rev. Sci. Instr.,2006,77:103504.
    [15] J. Hong, B. Allen, J. Grindlay, et al. Building large area CZT imaging detectors for a widefield hard X ray telescope—ProtoEXIST1[J]. Nucl. Instr. and Meth. A,2009,605(3):364-373.
    [16] L. J. Meng, J. W. Tan, K. Spartiotis, et al. Preliminary evaluation of a novel energy resolvedphoton counting gamma ray detector [J]. Nucl. Instr. and Meth. A,2009,604(3):548-554.
    [17] G. S. Camarda, K. W. Andreini, A. E. Bolotnikov, et al. Effect of extended defects in planarand pixelated CdZnTe detectors [J]. Nucl. Instr. and Meth. A,2011,652(1):170-173.
    [18] F. Zhang, Z. He, G. F. Knoll, et al.3D position sensitive CdZnTe spectrometer performanceusing third generation VAS/TAT readout electronics [J]. IEEE Trans. Nucl. Sci.,2005,52(5):4355-4359.
    [19] L. J. Meng, Z. He. Exploring the limiting timing resolution for large volume CZT detectorswith waveform analysis [J]. Nucl. Instr. and Meth. A,2005,550(1-2):435-445.
    [20] D. Xu, Z. He. Gamma ray energy imaging integrated spectral deconvolution [J]. Nucl. Instr.and Meth. A,2007,574(1):98-109.
    [21] Q. Li, M. Beilicke, K. Lee. Study of thick CZT detectors for X-ray and Gamma-rayastronomy [J]. Astron. Phys.,2011,34(10):769-777.
    [22] P. J. Sellin, G. Prekas, J. Franc, et al. Electric field distributions in CdZnTe due to reducedtemperature and X ray irradiation [J]. Appl. Phys. Lett.,2010,96(13):133509.
    [23] L. Abbene, S. D. Sordo, F. Fauci, et al. Spectroscopic response of a CdZnTe multipleelectrode detector [J]. Nucl. Instr. and Meth. A,2007,583(2-3):324-331.
    [24] L. Abbene, G. Gerardi, S. D. Sordo, et al. Performance of a digital CdTe X ray spectrometerin low and high counting rate environment [J]. Nucl. Instr. and Meth. A,2010,621(1-3):447-452.
    [25] L. Verger, M. Boitel, M. C. Gentet, et al. Characterization of CdTe and CdZnTe detectors forgamma-ray imaging applications [J]. Nucl. Instr. and Meth. A,2001,458(1-2):297-309.
    [26] L. Verger, M. C. Gentet, L. Gerfault, et al. Performance and perspectives of a CdZnTe basedGamma camera for medical imaging [J]. IEEE Trans. Nucl. Sci.,2004,51(6):3111-3117.
    [27] L. Verger, E. G. D’Aillon, O. Monnet, et al. New trends in γ-ray imaging with CdZnTe/CdTeat CEA-Leti [J]. Nucl. Instr. and Meth. A,2007,571(1-2):33-43.
    [28]张岚,李元景,毛绍基等.像素CdZnTe探测器的研制[J].核电子学与探测技术,2006,26(3):307-309.
    [29]何会林,董永伟,吴伯冰等.空间硬X射线编码孔成像望远镜样机的研制及初步实验结果[J].高能物理与核物理,2007,31(5):437-441.
    [30]李霞,褚君浩,李陇遐等.室温核辐射CdZnTe像素阵列探测器的研制[J].光电子激光,2008,19(6):751-753.
    [31] Yadong Xu, Wanqi Jie, P. J. Sellin, et al. Study on temperature dependent resistivity ofindium-doped cadmium zinc telluride [J]. J. Phys. D: Appl. Phys.,2009,42:03505.
    [32] Yadong Xu, Wanqi Jie, P. J. Sellin, et al. Characterization of CZT crystals grown using aseeded modified vertical Bridgman method [J]. IEEE Trans. Nucl. Sci.,2009,56(5):2808-2813.
    [33]徐亚东,介万奇,查刚强等. CZT平面探测器对低能X/γ射线的光谱响应[J].光学学报,2009,29(11):3072-3077.
    [34]彭兰,王林军,闵嘉华等.碲锌镉晶片机械研磨和机械抛光工艺研究[J].功能材料,2011,5(42):880-884.
    [35]王焱,闵嘉华,梁小燕等.垂直布里奇曼法生长CdZnTe晶体的径向溶质偏析之有限元分析法模拟,[J].功能材料,2011,11(42):2073-2077.
    [36] Liang Xiaoyan, Min Jiahua, Wang Changjun et al. Optimized Process of Thermal Treatmentof Au/CdZnTe Contacts. Rare Metal Materials and Engineering [J].,2009,38(12):20852088.
    [37]闵嘉华,桑文斌,钱永彪等. CdZnTe晶体生长用石英管的镀碳工艺研究[J].功能材料与器件学报2005,6(2):255-258.
    [38]袁铮,桑文斌,钱永彪等. CdZnTe晶体生长中掺In量对晶体电学性能的影响[J].无机材料学报2008,1(23):195-198.
    [39] Min Jiahua, Sang Wenbin, Liu Hongtao et al. Improving the Properties of CdZnTe Crystals byAnnealing Processes RARE METAL MATERIALS AND ENGINEERING [J].2007,3(36):471473.
    [40]李辉,闵嘉华,王林军等.坩埚中自由空间量对Bridgman法生长的CdZnTe晶体缺陷的影响[J].无机材料学报.2012,8(27):790-794.
    [41]江少恩,丁永坤,缪文勇等.我国激光惯性约束聚变实验研究进展[J].中国科学G,2009,39(11):1571-1583.
    [42]段斌,吴泽清,王建国.惯性约束聚变等离子体的光谱诊断(I)[J].中国科学G,2009,39(1):43-51.
    [43]林尊琪.激光核聚变的发展[J].中国激光,2010,37(9):2202-2207.
    [44] Peng Xianjue, Hua Xinsheng, Fast Z-P inch, A New Approach for Promising FusionEnergy[J]. Engineering Sciences.2007,5(4):790-794.36-45.
    [45]李树,田东风,邓力.利用超高能中子诊断惯性约束聚变的燃烧[J].计算物理.2012,1(29):82-86.
    [46]曾鹏,袁铮,邓博等.软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定[J].物理学报.2012,61(15):155209
    [47]刘中杰,郑志坚,易荣清等. ICF中子产额测量中统计涨落分析及计算[J].强激光与粒子束2011,9(23):2428-2022.
    [48]景龙飞,黄天晅,江少恩等.神光-II和神光-III原型内爆对称性实验的模型分析[J].物理学报2012,61(10):105205
    [49] Xiangqun Cui, Dingqiang Su, Ya-nan Wang, et al. The optical performance ofLAMOST telescope [C]. Proc. SPIE,2010,7733:773309.
    [50] Jianlan Song. Large astronomical telescope development in China: Achievements andprospects [J]. Bulletin of the Chinese academy of sciences,2011,25(3):155-160.
    [51] Yongtian Zhu, Zhongwen Hu, Lei Wang, et al. Construction and commissioning ofLAMOST low resolution spectrographs [J]. Sci. China ser. G,2011,41(11):1337-1341.
    [52]李奇峰.碲锌镉单晶生长及碲锌镉室温核辐射探测器制备[D].四川大学博士学位论文,2002
    [53] G. Cohen-Taguria, M. Levinshteina, A. Ruzinb, et al. Real-space identification of theCZT(110) surface atomic structure by scanning tunneling microscopy[J] SurfaceScience.2008602(3):712–723.
    [54]李宇杰. Cd1-xZnxTe晶体的缺陷研究及退货改性[D].西北工业大学博士学位论文,2001.
    [55]李强.碲锌镉晶体表面处理、金属电极接触特性及其In掺杂行为[D].西北工业大学博士学位论文,2006.
    [56]查钢强. CdZnTe单晶表面、截面及位错的研究[D].西北工业大学博士学位论文,2007.
    [57] Y.F. Chen, C.S. Tsai, Y.H. Chang, et al. Hydrogen passivation in Cd1-xZnxTe studied byphotoluminescence [J]. Appl.Phys.Lett.1991,58(5):493-495.
    [58] F.P. Doty, J.F. Butler, K.A. Bowers, et al. Properties of CdZnTe Crystals Grown by a HighPressure Bridgman Method [J]. J.Vac.Sci.Technol.1992, B10:1418-1422.
    [59]介万奇. II-VI族化合物晶体生长理论与技术[J].中国基础科学.2001,5:15-19.
    [60] R. Polichar, R. Schirato, J. Reed. Development of CdZnTe energy selective arrays forindustrial and medical radiation imaging [J]. Nucl. Instru. Meth.1994, A353:349-355.
    [61] J.E. Toney, B.A. Brunett, T.E. Schlesinger, et al. Uniformity of Cd1-xZnxTe grown byhigh-pressure bridgeman.[J]. Nucl. Instru. Meth. Phy.Res.1996, A380:132-135.
    [62] Tobin S.P., Tower J.P.; Norton P.W et al. Comparison of techniques for nondestructivecomposition measurements in CdZnTe substrates [J]. Journal of Electronic Materials.1995,24,(5):697-705.
    [63] R. Hoschl, Y.M. Ivnov, E. Belas. Electrical and luminescence properties of single crystalgrown by vertical gradient freezing method [J]. Journal of Crystal Growth.1998,184:1309-1046.
    [64] Z.F. Li, W. Lu, G.S. Huang, et al. Microphotoluminescence mapping on CdZnTe:Zndistribution [J]. J. Appl. Phys.2001,90(1):206-264.
    [65] F. Glass, V. Gerbe, P. Ourvier, et al. CdZnTe high-energy radiography detect [J]. Nucl. Instru.Meth.2001, A458:544-550.
    [66] N. Krsmanovic, K.G. Lynn, M.H. Weber, et al. Electrical Compensation in CdTe and CdZnTeby Intrinsic Defects [C]. Proceeding of SPIE.2000,4141:219-225.
    [67] P. N. Luke. Unipolar charge sensing with coplanar electrodes application to semiconductordetectors [J]. IEEE Trans. Nucl. Sci.,1995,42(4):207-213.
    [68] P. N. Luke. Single polarity charge sensing in ionization detectors using coplanar electrodes [J].Appl. Phys. Lett.,1994,65(22):2884-2886.
    [69] E. Y. Lee. Device simulation of a unipolar gamma-ray detector [C]. Proc. MRS,1998,487(537).
    [70] J. F. Butler. Novel electrode design for single-carrier charge collection in semiconductornuclear radiation detectors [J]. Nucl. Instr. and Meth. A,1997,396(3):427-430.
    [71] A. E. Bolotnikov, G. C. Camarda, G. A. Carini, M. Fiederle, L. Li, D. S. McGregor, W.McNeil, G. W. Wright, and R. B. James, Performance Characteristics of Frisch-Ring CdZnTeDetectors [J]. IEEE T. Nucl. Sci.2006,53(2):607-614.
    [72] T.H. Prettymana, K.D. Ianakieva, S.A. Soldnerb, and C. Szelesb, Effect of differential bias onthe transport of electrons in coplanar grid CdZnTe detectors [J]. Nucl. Instrum. Meth. A.2002,476:658-664.
    [73] G. Montémont, M.-C. Gentet, O. Monnet, J. Rustique, and L. Verger, Simulation and Designof Orthogonal Capacitive Strip CdZnTe Detectors [J]. IEEE T. Nucl. Sci.2006,54(4):854-859.
    [74] R. Klingenberg, O. Krasel, M. MaB, et al. Prediction of charge collection efficiency inhadron-irradiated pad and pixel silicon detectors [J]. Nucl. Instrum. Meth. A.2006,568:34-40.
    [75] Se-Hwan Park,_Han Soo Kim, Jang Ho Ha, et al. Energy Spectrum Improvement with a CZTStrip Detector [J]. Journal of the Korean Physical Society.2011,59(3):2237-2240.
    [76] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker,XCOM: photon cross sections database [OL].(2011).
    [77]吴治华.原子核物理实验方法[M].北京:原子能出版社,1997.
    [78]段绍节.实验核物理测量中的粒子分辨[M].北京:国防工业出版社,1996.
    [79] Alireza Kargar. Characterization and Optimization of CdZnTe Frisch Collar Gamma-raySpectrometers and Their Development in an Array of Detectors [D]. Doctor of Philosophy,KANSAS STATE UNIVERSITY.2009
    [80] W. Shockley. Currents to conductors induced by a moving point charge [J]. J. Appl. Phys.,1938,9:635-636.
    [81] S. Ramo. Currents induced by electron motion [J]. Proceedings of the I.R.E.,1939,27:584-585.
    [82] Z. He. Review of the Shockley-Ramo theorem and its application in semiconductor gammaray detectors [J]. Nucl. Instr. and Meth. A,2001,463(1-2):250-267.
    [83]陈伯显,张智.[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [84] L. Rossi, P. Fischer, T. Rohe, et al. Pixel detectors [M]. Springer,2006.
    [85]许淑艳.蒙特卡罗方法在实验核物理中的应用[M].北京:原子能出版社,2006.
    [86]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输送问题中的应用[M].北京:科学出版社,1980.
    [87] Charles D. Harmon II, Robert D. Busch, Judith F. Briesmeister, et al. Criticality Calculationswith MCNP5:A Primer [Z]. Los Alamos National Laboratory,2004.
    [88] J. K. Shultis, R. E. Faw. AN MCNP PRIMER [Z]. Dept. of Mechanical and NuclearEngineering, Kansas State University,2005.
    [89]陈卓,刘晓平,施灿辉等.基于MCNP的医学仿真计算建模方法研究[J].系统仿真学报.2004,16(10):2153-2156.
    [90]谈春明.利用M CN P程序对充气电离室探测性能的研究[J].核电子学与探测技术.2003,23(3):236-239.
    [91]安力,陈渊,牟云峰.用MCNP/4A计算钒球14MeV中子的泄漏谱和反应率[J].原子能科学与技术.2000,9(34):117-120.
    [92]邓力,谢仲生.特征γ谱蒙特卡罗模拟方法的改进[J].计算物理.2002,19(3):253-258.
    [93]梁勇飞,吴丽萍,白立新等.基于用M CN P程序模拟的HPGeγ谱仪的屏蔽[J].核电子学与探测技术.2003,23(2):182-185.
    [94] T.E. Schlesinger, J.E. Toney, H. Yoon, et al. Cadmium zinc telluride and its use as a nuclearradiation detector material [J]. Materials Science and Engineering.2001,32:103-189.
    [95] Csaba Szeles. CdZnTe and CdTe materials for X-ray and gamma ray radiation detectorapplications [J]. Phys. Stat. Sol.(b).2004,241(3):783–790.
    [96] V.T. Jordanov, J.A. Pantazis, A.C. Huber. Compact circuit for pulse rise-time discrimination[J].Nucl. Instrum. Meth. A.1996,380:353-357.
    [97] Tomoyuki Seino, TakafumiIshitsu,YuichiroUeno,et al. Biparametric correction methods usingtwo shapers for In/CdTe/Pt radiation detector [J]. Nucl. Instrum. Meth. A.2011,629(1):170-174.
    [98] Natalia Auricchio, Lorenzo Amati, Angelo Basili, et al. Twin Shaping Filter Techniques toCompensate the Signals From CZT/CdTe Detectors [J]. IEEE Trans. Nucl. Sci.,2005,52(5):1982-1989.
    [99] L. Abbene, G.Gerardi. Performance enhancements of compound semiconductor radiationdetectors using digital pulse processing techniques [J]. Nucl. Instrum. Meth. A.2011,654:340-348.
    [100] Zhong He. Review of the Shockley–Ramo theorem and its application in semiconductorgamma-ray detectors [J]. Nucl. Instrum. Meth. A.2001,463:250-267.
    [101] J. D. Eskin, H. H. Barrett, H. B. Barber. Signals induced in semiconductor gamma-rayimaging detectors [J]. JOURNAL OF APPLIED PHYSICS.1999,85(2):647-660.
    [102] Daniel George Marks. Estimation methods for semiconductor gamma-ray detectors [D].Doctor of Philosophy, The UNIVERSITY OF ARIZANA.2000.
    [103] P. Guerra, A. Santos, D. G. Darambara. An investigation of performance characteristics of apixellated room-temperature semiconductor detector for medical imaging [J]. J. Phys. D: Appl.Phys.2009,42:175101
    [104] Zhenyu Zhang, Dongming Guo, Renke Kang, et al. Subsurface crystal lattice deformationmachined by ultraprecision grinding of soft-brittle CdZnTe crystals [J]. Int. J. Adv. Manuf.Technol.2010,47:1065–1081.
    [105] H. Bensalah, J.L. Plaza, J. Crocco, et al. The effect of etching time on the CdZnTe surface [J].Applied Surface Science,2011.257:4633–4636.
    [106] G. Wright, Y. Cui, U. N. Roy, et al. The Effects of Chemical Etching on the ChargeCollection Efficiency of {111}Oriented Cd0:9Zn0:1Te Nuclear Radiation Detectors [J]. IEEETrans. Nucl. Sci.,2002,49(5):2521-2525.
    [107] A. E. Bolotnikov, N. M. Abdul-Jabbar, O. S. Babalola, et al. Effects of Te Inclusions on thePerformance of CdZnTe Radiation Detectors [J]. IEEE Trans. Nucl. Sci.,2008,55(5):2757-2764.
    [108] Aleksey E. Bolotnikov, Stephen Babalola, Giuseppe S. Camarda, et al. Te Inclusions in CZTDetectors: New Method for Correcting Their Adverse Effects[J]. IEEE Trans. Nucl. Sci.,2010,57(2):910-919.
    [109] B.P.F. Dirks, C. Blondel, F. Daly, et al. Leakage current measurements on pixelated CdZnTedetectors [J]. Nucl. Instrum. Meth. A.2006,567:145-149.
    [110]黎淼.面元像素CdZnTe高能辐射探测器原理、系统及特性研究[D].重庆大学博士学位论文,2012.
    [111]王玺,肖沙里,张流强等.基于CdZnTe晶体的2×2像素阵列探测器研究[J].光电子激光,2010,21(5):639-643.
    [112] J.A. Gaskin, D.P. Sharma, B.D. Ramsey. Charge sharing and charge loss in a cadmium–zinc–telluride fine-pixel detector array[J]. Nucl. Instrum. Meth. A.2003,505:122–125.
    [113] Eric Gros d’Aillon, Joachim Tabary, Alain Glie`re, et al. Charge sharing on monolithicCdZnTe gamma-ray detectors: A simulation study [J]. Nucl. Instrum. Meth. A.2006,563:124–127.
    [114] Mathieu Benoit, L.A.Hamel. Simulation of charge collection processes in semiconductorCdZnTe γ-ray detectors [J]. Nucl. Instrum. Meth.A.2009,606:508–516.
    [115] Sergey Komarov, Yongzhi Yin, Heyu Wu, et al. Simulation Study of Charge Collection inHighly Pixilated CdZnTe Detector for PET Imaging [C] Nuclear Science SymposiumConference Record,2009IEEE, M05-355.
    [116] Huy Quang Le. Breast Computed Tomography Using CdZnTe Detectors [D]. Doctor ofPhilosophy, UNIVERSITY OF CALIFORNIA, IRVINE.2009.
    [117] Stefano Del Sordo, Leonardo Abbene, Ezio Caroli, et al. Progress in the Development ofCdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and MedicalApplications [J]. Sensors.2009,9:3491-3526.
    [118] Jae Cheon Kim, Stephen E. Anderson, Willy Kaye, et al. Charge sharing in common-gridpixelated CdZnTe detectors [J]. Nucl. Instrum. Meth. A.2011,654:233–143.
    [119] Cheng Xu, Mats Danielsson, Hans Bornefalk. Evaluation of Energy Loss and Charge Sharingin Cadmium Telluride Detectors for Photon-Counting Computed Tomography [J]. IEEETRANSACTIONS ON NUCLEAR SCIENCE.2011,58(3):614-625.
    [120] E. Kalemci, J.L. Matteson. Investigation of charge sharing among electrode strips for aCdZnTe detector[J]. Nuclear Instruments and Methods in Physics Research A.2002,478:527–537.
    [121] Stephen A. Soldner, Derek S. Bale, Csaba Szeles. Dynamic Lateral Polarization in CdZnTeUnder High Flux X-Ray Irradiation [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE.2007,54(5):1-6.
    [122] Giuseppe S. Camarda, Aleksey E. Bolotnikov, Yonggang Cui, et al. Polarization Studies ofCdZnTe Detectors Using Synchrotron X-Ray Radiation.[J]. IEEE TRANSACTIONS ONNUCLEAR SCIENCE.2008,55(6):3725-3730
    [123] Cs. Szeles, S. A. Soldner, S. Vydrin, et al. Ultra high flux2D CdZnTe monolithic detectorarrays for x-ray imaging applications [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE.2007,54(4):1350–1358..
    [124] A. E. Bolotnikov, G. S. Camarda, G. A. Carini, et al. Cumulative effects of Te inclusions inCdZnTe radiation detectors. Nucl. Instrum. Meth. A,2007,571(3)687–698.
    [125] E. Gatti, A. Longoni, P. Rehak, M. Sampietro. Dynamics of electrons in drift detectors. Nucl.Instrum. Meth.,1987,253393–399,
    [126] B. W. Sturm, Z. He, T. H. Zurbuchen, et al. Investigation of the asymmetric characteristics andtemperature effects of CdZnTe detectors [J]. IEEE Trans. Nucl. Sci.,52(5):2068-2075.
    [127] J. Franc, J. Kubát, R. Grill, Influence of space charge and potential fluctuations onphotoconductivity spectra of semiinsulating CdTe [J]. IEEE Trans. Nucl. Sci.,2007,54(4):1416-1420.
    [128] G. S. Camarda, A. E. Bolotnikov, Y. G. Cui, et al. Polarization studies of CdZnTe detectorsusing synchron X ray radiation [C]. IEEE Nucl. Sci. Symp. Conf. Rec.,2007,3:1798-1804.
    [129] G. Prekas, P. J. Sellin, P. Veeramani, et al. Investigation of the internal electric field distributionunder in situ X ray irradiation and under low temperature conditions by the means of thePockels effect [J]. J. Phys. D: Appl. Phys.,43(8):085102.
    [177] B. Cederstr m, R. N. Cahn, M. Danielsson, et al. Focusing hard X rays with old LPs [J]. Nature,2000,404:951-952.
    [130] Xi Wang, Shali Xiao, Miao Li, et al. Further process of polarization within a pixellated CdZnTedetector under intense x-ray irradiation[J]. Nucl. Instrum. Meth. A.2013,700:75-80.
    [131] X. Wang, S. L. Xiao, M. Li, et al. Intensifying process of polarization effect within pixellatedCdZnTe detectors for X ray imaging [J]. Chin. Opt. Lett.,2011,9(7):070401.
    [132]王玺,肖沙里,张流强等.高能伽玛源下碲锌镉探测器的针孔成像[J].强激光与粒子束,2010,22(10):2448-2452.
    [133]肖沙里,黎淼,王玺,等.碲锌镉面元辐射探测器堆积载流子屏蔽效应[J].强激光与粒子束,2011,23(6):1433-1436.
    [134]黎淼,肖沙里,王玺等.基于高能γ源的CdZnTe成像探测器极化效应研究[J].原子能科学与技术,2011,45(8):1005-1010.
    [135] D. S. Bale, C. Szeles. Nature of polarization in wide-bandgap semiconductor detectors underhigh flux irradiation: Application to semi-insulating Cd1-xZnxTe [J]. Phys. Rev. B,2008,77(3):035205.
    [136] A. E. Bolotnikov, G. S. Camarda, Y. Cui, et al. Internal electric field lines distribution inCdZnTe detectors measured using X ray mapping [J]. IEEE Trans. Nucl. Sci.,2009,56(3):791-793.
    [137] Olivier Alirol, Francis Glasser, Eric Gros d’Aillon, et al. Simulation and measurements of theinternal electric field of a CZT (or CdTe) detector under high X-ray flux for Medical Imaging
    [C]. IEEE Nuclear Science Symposium Conference Record.2009, J05-19
    [138] A. BURGER, M. GROZA, Y. CUI, et al. Characterization of Large Single-CrystalGamma-Ray Detectors of Cadmium Zinc Telluride [J]. Journal of ELECTRONICMATERIALS,2003,32(7):756-760.
    [139] A. Burger, K. Chattopadhyay, H. Chen, et al. Defects in CZT crystals and their relationship togamma-ray detector performance [J]. Nuclear Instruments and Methods in Physics Research A.2000,448:586-590.
    [140] Adriano Cola, Isabella Farella, A. Maria Mancini, et al. Electric field distribution and chargetransport properties in diode-like CdTe X-ray detectors [J]. Nuclear Instruments and Methodsin Physics Research A.2006,568:406–411.
    [141] A. Cola, I. Farella, A. M. Mancini, A. Donati. Electric Field Properties of CdTe NuclearDetectors [C]. IEEE Nuclear Science Symposium Conference Record.2006,R14-1
    [142] G. YANG, A.E. BOLOTNIKOV, G.S. CAMARDA, et al. Internal Electric Field Investigationsof a Cadmium Zinc Telluride Detector Using Synchrotron X-ray Mapping and Pockels EffectMeasurements [J]. Journal of ELECTRONIC MATERIALS,2009,38(8)1563-1567.
    [143] G.E. JELLISON, D.E. HOLCOMB, C.O. GRIFFITHS, et al. Internal Electric FieldMeasurements in Cadmium Zinc Telluride Using Transmission Two-Modulator GeneralizedEllipsometry [J]. Journal of ELECTRONIC MATERIALS,2003,32(7)789-795.
    [144] Kyle A.Nelson, NathanEdwards, MarkJ.Harrison, et al. Investigation of CdZnTe and LiNbO3as electro-optic neutron detectors [J]. Nuclear Instruments and Methods in Physics Research A.2010,620:363–367.
    [145] Michael Groza, Henric Krawczynski, Alfred Garson III, et al. Investigation of the internalelectric field in cadmium zinc telluride detectors using the Pockels effect and the analysis ofcharge transients[J]. JOURNAL OF APPLIED PHYSICS.2010,107:023704
    [146] Derek S. Bale. A semi-analytic approximation of charge induction in monolithic pixelatedCdZnTe radiation detectors [J]. Nucl. Instrum. Meth. A.2010,614:453–460.
    [147] P. Grenier, G.Alimonti, M.Barbero, et al. Test beam results of3D silicon pixel sensors for theATLAS upgrade[J]. Nuclear Instruments and Methods in Physics Research A.2011,638:33–40.
    [148] Sherwood Parker, Angela Kok, Christopher Kenney, et al. Increased Speed:3D SiliconSensors:Fast Current Amplifiers[J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE.2011,58(2):404-417.
    [149] S. I. Parker, C. J. Kenney, and J. Segal.3D-A proposed new architecture for solid-stateradiation detectors [J]. Nucl. Instrum. Methods Phys. Res. A,1997,395:328–343.
    [150] S. I. Parker and C. J. Kenney. Performance of3-D architecture, silicon sensors after intenseproton irradiation[J]. IEEE Trans. Nucl. Sci.2001,48(5):1629–1638.
    [151] C. J. Kenney, S. I. Parker, and E. Walckiers. Results from3D sensors with wall electrodes:Near-cell-edge sensitivity measurements as a preview of active-edge sensors [J]. IEEE Trans.Nucl. Sci.2001,48(6):2405–2410.
    [152] J. Morse, C. Kenney, E. Westbrook, et al. The spatial and energy response of a3d architecturesilicon detector measured with a synchrotron X-ray microbeam [J]. Nucl. Instrum. MethodsPhys. Res. A,2004,524:236–244.
    [153] C. Da Via, J. Hasi, C. Kenney, et al.3D silicon detectors-status and applications [J]. Nucl.Instrum. Methods Phys. Res. A.2005,549:122–125.
    [154] A. Kok, G. Anelli, C. Da Via, et al.3D detectors—State of the art [J].Nucl. Instrum. MethodsPhys. Res. A.2006,560:127–130.
    [155] C. Da Via, J. Hasi, C. Kenney, V. Linhart, et al. Radiation hardness properties of full-3D activeedge silicon sensors[J]. Nucl. Instrum. Methods Phys. Res. A,2006,587:243–249.
    [156] M. Mathes, M. Cristinziani, C. Da Vià, et al. Test beam characterization of3-D silicon pixeldetectors[J]. IEEE Trans. Nucl. Sci.2008,55(6)3731.
    [157] C. Da Vià, J. Hasi, C. Kenney, et al.3D active edge silicon detector tests with120GeVmuons[J]. IEEE Trans. Nucl. Sci.2009,56(2):505.
    [158] C. Da Vià, E. Bolle, K. Einsweiler, M. Garcia-Sciveres, et al.3D active edge silicon sensorswith different electrode configurations: Radiation hardness and noise performance[J]. Nucl.Instrum. Methods Phys. Res. A.2009,604:.505–511.
    [159] C. Fleta, D. Pennicard, R. Bates, et al. Simulation and test of novel3D silicon radiationdetectors [J]. Nucl. Instrum. Methods Phys. Res. A.2007,579:642–647.
    [160] G. Pellegrini, M. Lozano, M. Ullán, et al. First double sided3-D detectors fabricated atCNM-IMB [J]. Nucl. Instrum. Methods Phys. Res. A.2008,592:38–43.
    [161] A. Zoboli, M. Boscardin, L. Bosisio, G.-F. Dalla Betta, et al. Double-sided,double-type-column3D detectors at FBK: Design, fabrication and technology evaluation [J].IEEE Trans. Nucl. Sci.2008,55(5):2775–2784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700