用户名: 密码: 验证码:
城市天然气输配管网水力模拟研究与实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着天然气事业的迅猛发展,我国的天然气管网建设规模不断壮大,城市天然气管网的监管越来越受到重视,并且城市天然气管网向智能化的方向发展。由于,管网实际运行水力工况对经济性、安全性及末端用气的稳定性有着极其重要的影响,因此,了解和掌握其水力工况对于整个管网的监测、管理和调控是必不可少的,对城市天然气管网模拟的研究也就显得异常重要。
     传统的节点法进行稳态模拟结果的精度并不能完全满足城市天然气管网实际运行的需求,因此,为了保证模拟结果的精确度,计算程序采用精度更高、适用性更强的数据处理和参数选择方法。然后通过比较分析,选择适当的动态模拟方法,编制动态模拟计算程序,并且验证程序计算结果的准确性。
     如今,城市天然气需求量不断增加,促使管网建设的规模化发展,管网结构越来越复杂,并且压力也越来越高,甚至达到超高压。而超高压管网的模拟必须考虑管路中燃气的可压缩性。本文通过对比几种压缩因子的计算方法,最终确定采用SHBWR状态方程法,同样,热力学参数的计算也采用SHBWR状态方程法。
     另外,城市多气源天然气管网建设也成为发展的趋势,而多气源管网的模拟需要根据不同的气源情况进行分析,采用不同的处理方式计算。笔者利用模拟程序对规划的多气源城市天然气管网项目进行水力工况分析。提出未来各气源在管网系统中的适用性,并提出各气源的主要影响范围,有利于未来管网运行过程中,及时准确的应对各种状况提供依据。
     最后,根据多气源天然气输气管网中各气源的供气量和水力模拟计算结果中的管段流量值,可以确定各种气源在各个管段及各个节点的气质组成,为供气单位的运行管理及对气价的制定提供理论依据和数据支持。
     本课题的研究表明,模拟程序不仅可以应用于在用管网系统的模拟计算,分析管网运行水力工况,而且可以应用于规划的管网。对于未来管网运行工况的结果的分析对指导燃气管网的设计规划、优化运行及调控管理等方面具有明显的实用价值,对于中游供气模式及下游燃气用具适用性研究都有一定的指导意义。
With the rapid development of the natural gas, the scale of the construction ofnatural gas pipeline networks in China were growing more and more rapidly, and thesupervision of the city gas pipeline networks became more intelligent. The hydraulicconditions of the actual operations of the pipeline networks had were very importantimpact on the economy, security and stability for users. Therefore, it was very essentialto understanding and mastering the hydraulic conditions for monitoring, managing andregulation the condition of the entire pipeline networks, and it was also extremelyimportant to research the simulation of city gas pipeline networks.
     The precision of the traditional node method for steady-state simulation had beenunable to meet the needs of the actual operation of city gas pipeline networks. Therefore,in order to ensure the accuracy of the simulation results, the calculation procedures needhigher accuracy, and applicability of stronger data processing and parameter selectionmethod. Then, the appropriate dynamic simulation method has been selected throughcomparative and analysis, and the accuracy of the program results was verified.
     Today, the increasing demand for natural gas in the city was causing theconstruction of large-scale development of the pipeline networks, the pipeline networksstructures becoming increasingly complex, and the pressure getting higher and higher,even up to the ultra-high pressure. Since the simulation of the ultra-high pressurepipeline networks must consider the compressibility of gas in pipes. By comparingseveral compressions factor calculation methods, law of SHBWR equation state waschosed, and the same way of calculation the thermo dynamic parameters with SHBWRequation of state law.
     In addition, the multiple gas sources of natural gas construction was a trend ofdevelopment of pipeline networks, so analysing of the simulation of multiple gassources pipeline networks depending on the differences of situation of gas sources, andproposing to adopt a different approach. Then, through using the simulation to project ofthe hydraulic conditions in urban planning pipeline network, the applicability of futuregas source in the pipe network system were proposed and analyzed, and the impact ofeach of the main gas sources range of future pipeline networks running process was firstproposed, which was accurate and timely respond to a variety of conditions and toprovide the basis.
     Finally, according to the capacity of the source of the gas in the natural gas pipelinenetworks with multiple gas sources and hydraulic pipe flow calculation results, youcould determine the various gas sources in each pipe section and composition of eachnode, and also provide the theoretical basis and data support for the operation of the gassupply management and the formulation of the gas price.
     This subject of research shows that the simulation program can be applied not onlyin using pipeline network systems simulation, analysing the running pipe networkshydraulic conditions, and can be also applied to the pipeline network which wasplanning. Analysing of the results of the operating conditions of the pipe network,guiding the designing and planning of the gas pipeline network to optimize theoperation and regulation management has obvious practical value, with the applicabilitystudy has been certain to guide significance for midstream gas supply mode anddownstream gas.
引文
[1]中国石油经济技术研究院.2009中国煤制天然气/煤层气(国际)高峰论坛:徐博.2030年前我国天然气供需前景及近期价格改革方向[R].2009.
    [2]国家发改委.天然气发展“十二五”规划[R].2012(12):2-11.
    [3]中商情报网.2010-2015年中国天然气市场调研及发展战略研究报告[EB/OL].[2010-03].http://www.askci.com/reports/2010-03/tianranqibaogao0306.html.
    [4]平凡.世界天然气发展前景与探讨[J].黑龙江科技信息,2004(12):224.
    [5]王勃,杨光,王遇冬.大型城市天然气管网建设特点探讨[J].天然气与石油,2011(8):12-15.
    [6]刘明亮.基于SCADA系统的天然气管道瞬态仿真及负荷预测[D].天津:天津大学,2008.
    [7] Homann.K.Lindner.F.Natural gas for Europe from the East.Oil Gas European Magazine.2007,33(3):110-117.
    [8] William F. Rush,J.r. James E. Huebler,Jared F. W. Smith.Integrating Microelect ronics into GasDist ribution. Institute of Gas Technology,Chicago Illinios,U. S. A1987.
    [9]曾自强.环形输气管网内的不稳定流动[J].天然气工业,1986,6(4):69-88.
    [10]江茂泽,曾自强,刘良坚.天然气在复杂枝状管网内不稳定流动及其计算机模拟[J].石油学报,1992,13(4):136-147.
    [11]孙建国,王寿喜.气体管网的动态仿真[J].油气储运,2001,20(8):18-21.
    [12]高兰周,田贯三,赵自军等.高压燃气管道非稳态流动的特征线法模拟研究[J].煤气与热力,2008(11):13-19.
    [13]田贯三,张增刚,江亿.城镇天然气管网水力分析数学模型与计算方法[J].天然气工业,2002,22(3):96-98.
    [14]李军,玉建军.不同模型燃气管道动态模拟的对比分析[J].煤气与热力.2010,30(1):24-26.
    [15]孙伟,王立峰.环状燃气管网优化计算的数学模拟[J].煤气与热力.2011,6:494-495.
    [16]唐建峰,李玉星,张建等.川气东送管道模拟仿真软件研发[J].天然气工业,2008,28(3):114-116.
    [17]李长俊,曾自强.气体管网系统的仿真[J].油气储运,1997,16(2):21-25.
    [18] William F.Rush,Jr.James E.Huebler,Jared F.W.Smith. Integration Microelectronics into GasDistribution. Institute of Gas Technology, Chicago Illinios,U.S.A1987.
    [19] DRAGO M, GERHARD G, WIIHOLD G. Pipeline Simulation Technique [J].Mathematics andComputers In Simulation,2000,(52):211-230.
    [20] GB/T17747.2—2011天然气压缩因子的计算第2部分:用摩尔组成进行计算[M].北京,2011.
    [21]苏中良,刘曰武,张俊清.AGA8-92DC方法计算天然气偏差因子的研究[J].油气井测试,2010,19(6):29-36.
    [22]李丹华,姜东琪.AGA8-92DC方法计算天然气偏差因子计算[J].煤气与热力,2011,31(3):35-38.
    [23] Shawket G.Ghedan,胡建国,李祜佑.天然气压缩系数[J].天然气勘探与开发,1995(2):80-83
    [24]谭羽飞,杨德彬.天然气等温压缩系数的计算[J].哈尔滨建筑大学学报,1993,32(3):65-67.
    [25]周晓静.多气源天然气管网水力工况研究(硕士论文)[D].重庆:重庆大学,2011:20-40.
    [26]严铭卿.燃气工程设计手册[M].北京:中国建筑工业出版社,2009.
    [27]潘光坦.选择计算摩阻系数的标准方程[J].国外油田工程,1989,5(4):10-16.
    [28]郑永刚,王明皓,毛洪光等.输气管道摩阻系数研究进展[J].油气储运,1998(10):1-6.
    [29] Liang biao,Ouyang and Khalid Aziz: Steady—State Gas Flow in Pipes,Journal of PetroleumScience and Engineering,1996,14,137-158.
    [30]段常贵.燃气输配(第三版)[M].北京:北京建筑工业出版社,2001.
    [31]李猷嘉.燃气输配系统的设计与实践[M].北京:中国建筑工业出版社,2007.
    [32]李长明.燃气管网水力计算程序设计基础[M].北京:煤炭工业出版社,1997.
    [33]马江平.城市燃气管网动态模拟技术的研究(硕士论文)[D].武汉:华中科技大学,2006:5-20.
    [34]张宁,田贯三,李成乐等.燃气管网水力计算程序的开发[J].煤气与热力,2011,31(2):1-4.
    [35]谢子超.燃气管网设计计算程序的研制[J].煤气与热力,1985,5(1):33-38.
    [36]王磊.多气源高压燃气管网动态仿真与壅塞分析(硕士论文)[D].济南:山东建筑大学,2010:9-19.
    [37]黎光华,詹淑慧,刘京艳等.民用燃具同时工作系数的测定与研讨[J].城市燃气,1998,10(284):19-22.
    [38]奚康生,胡吉士.燃气用具同时工作系数的确定[J].煤气与热力,1991,11(2):45-49.
    [39] ZHAN Shun-wang, ZU Kuan-wei,QIAN Yin. The design of water supply network based onGIS[C]//Cybernetics and Intelligent Systems,2008IEEE Conference.2008:203-213.
    [40]詹椒慧,刘京艳.关于燃气小时计算流量公式的探讨[J].北京建筑工程学院学报,1999,1(52):19-24.
    [41]方安平,叶卫平等. Origin8.0实用指南[M].北京:机械工业出版社,2009:256-298.
    [42]严铭卿,廉乐明,焦文玲等.燃气负荷及其研究进展[J].煤气与热力,2002,22(6):490-493.
    [43] S. Bhaduri, R. K Talachi. Optimization of National Gas Pipeline Design [J].ASME PetroleumDivision,1988:67-76.
    [44]李长俊.天然气管道输送(第二版)[M].北京:石油工业出版社.2008:163-165.
    [45] MAHDAVI N, MAHDAVI AMIRI A, MAKUI, et al. Optimal gas distribution network usingminimum spanning tree[C].//Proceedings of2010IEEE the17th International Conference onIndustrial Engineering and Engineering Management.2010(2):1374-1377.
    [46] TOLSOL, BRYAN A. Maire Genetic Algorithms For Reliability-based Optimization Of WaterDistribution Systems [J].Water Resources Planning&Management,2004,2(130):73-84.
    [47]董正远.管输天然气水力与热力参数的数值计算[J].西安石油大学学报,2005,20(4)..
    [48] J.A.福克斯.管网中不稳定流动的水力分析[M].北京:石油工业出版社,1983:30-35.
    [49] Reddy H.P.,Narasimhan S.,Bhallamudi S.M. Simulation and state estimation of transient flow ingas pipeline networks using a transfer function model[J]. Ind. Eng.Chem. Res,2006,45(3):3853-3863.
    [50]吴玉国,陈宝东.BWRS方程在天然气物性计算中的应用[J].油气储运,2003,22(10):16-21.
    [51] RAMI EG, JEAN J B,BRUNO D, et al. Modeling of a pressure regulator[J]. InternationalJournal Of Pressure Vessels And Piping,2007,84(4):234-243.
    [52] H.Cross. Analysis of Flow in Networks of Conduits or Conductors.1936.
    [53] Okamote A,Ono T,Akamatsu S,et a1. Geomeric characteristics of alternative trianguhtionmodels for satellite in-mgery[C].lProc AsPRS Annual Conference. Portland: American Societyfor Photogrammetry and Remote Sensing,1999:17—21.
    [54]毕研军.输气管网动态模拟研究[D].中国石油大学,2006:30-45.
    [55] Greyvenstein G.P. An implicit method for the analysis of transient flows in pipe networks[J].International Journal for Numerical Method in Engineering,2002(53):1127-1143.
    [56]李桂亮,袁天强.BWRS方程常用数值解法分析[J].内蒙古石油化工,2011(9):42-43.
    [57] Starling K E,Han M S.Thermo data refined for LPG. Part14mixtures[J]. Hydrocarb Process,1972,51(5):129-132.
    [58]姜东琪,杜建梅,崔建华等.燃气管网水力计算及水力计算图的绘制[J].煤气与热力,2001,21(5):453-455.
    [59]刘燕.燃气管网计算理论分析与应用的研究(博士论文)[D].天津:天津大学,2004.
    [60] Chebouba, A, Yalaoui, F, SmatI, A, et al. Optimization of natural gas pipeline transportationusing ant colony optimization[J], Computers&Operations Research,2009:1916-1923,
    [61]马继勇.管网系统通用动态模拟算法及应用[D].北京:北京化工大学,2008.
    [62]董启贤.不稳定流的现代分析和控制[M].北京:石油工业出版社,1987.
    [63]吴明,安丙威.用数值方法计算管道总传热系数的数学模型及程序系统[J].管道技术与设备,1999(1):8-9.
    [64] LINKE A. Advanced pipeline simulation and control techniques based on an unsteady flowmodel[C].//Proceedings volume form the IFAC Conference,1997:20-22.
    [65]潘大为,刘文俊.燃气管网水力计算与实测数据的拟合[J].煤气与热力,2005,10:33-35.
    [66]姜东琪.高压燃气管道特征线法不稳定流动计算的探讨[J].煤气与热力,2004,24(11):600-604.
    [67]隋元春,薛世达.沿途有分输的长输燃气管道不稳定计算[J].煤气与热力,1988,(4):25-28.
    [68]瞿宏寿,黄一苓,朱谊章等.不稳定流计算的探讨[J].煤气与热力,1982,(2):16-26.
    [69]姚光镇.输管道设计与管理[M].山东:石油大学出版社,1991.
    [70]唐建峰,段常贵,吕文哲等.特征线法在燃气管道动态模拟中的应用[J].油气储运,2001,20(8):12-17.
    [71]王寿喜,曾自强.管网模拟特征线法[J].天然气工业,1986,6(2):84-94.
    [72] Gonzales A.H.,Delacruz J.M.,Andres-Toro B.D,et al.Modeling and simulation of a gasdistribution pipeline network[J]. Appl. Math.2009,33(3):1584-1600.
    [73]赖建波.燃气管网仿真技术及其泄露危险性研究(博士论文)[D].天津:天津大学,2008.
    [74]杨毅,周志斌,李长俊等.天然气管输调节控制仿真模型[J].天然气工业,2008,28(10):98-100.
    [75] A.G.Collias. Finite-Element Method for Work Distribution Networks, AWWA,57,1957.
    [76] D.J.Wood. Hydraulic Hetwork Analysis Using Linear Theory,JASCE,HY7,98,1973.
    [77] Wyhe.E.B. and Sstreeter.V.L. Fulid transtents, Corrected Edition[M].1983,2.
    [78]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,1987.
    [79] OrinFlnaigna.Constarined derivatives in natural gas PIPeline system optization [J].Jomual ofPeortlemu Technology, May1972.
    [80]王善坷.应用仿真技术提高我国管道设计水平[J].油气储运,1998(8):
    [81]金峰.计算机仿真技术在输油管道系统方面的应用[J].国外油田工程,1998(2):
    [82] Wylie EB, Srteete rVL, Storier MA.Unsteady-state natural-gas caulations in complex pipesystem [J]. SPE,1974.
    [83] Peizheng Zhou, Erbar JH, Maddox RN. Analyzing unsteady-state flow in gas PIPelines[J].OGJ,1983.
    [84]李庆扬.数值分析[M].武汉:华中科技大学出版社,1982.7.
    [85]高兰周,侯根富,王东.中心差分法在燃气管道动态模拟中的应用[J].山西建筑,2010,36(24):187-188.
    [86]李长俊,曾自强,江茂泽.天然气在管道系统中不稳定流动的分析[J].天然气工业,1994,14(6):54-59.
    [87]左丽丽,吴长春,田劲松.天然气管网稳态和瞬态仿真的边界条件[J].天然气工业,2008,28(10):95-97.
    [88]翟瑞彩,谢伟松.数值分析[M].天津:天津大学出版社,2000.
    [89]隋元春.不稳定工况下燃气管网的模拟计算[J].煤气与热力,1992(1):36-41.
    [90] D.W.Martin. The Application of Newbedle Method to Network Analysis by Digital Computer[J].Journal of Water Engineering.2005(17):1963.
    [91]左丽丽,吴长春,田劲松.天然气管网稳态和瞬态仿真的边界条件[J].天然气工业,2008,28(10):95-97.
    [92]卓芳,高仕斌.优化牛顿-拉夫逊算法雅可比矩阵的正交预处理方法研究[J].电力系统保护与控制,2010,38(3):20-42.
    [93]张勇明,王涛,周敏.牛顿-拉夫逊潮流计算中检测雅可比矩阵奇异性和网络孤岛的新方法[J].中国新技术新产品,2011(2):7-8.
    [94] ZHANG Yun-zhang, HOU Yan-ren, MU Bao-ying.A Two-Grid Method Based on NewtonIteration for Viscoelastic Fluid Flow[J]. Chinese Journal Of Engineering Mathematics,2012,29(1):117-129.
    [95]蒋仕章,蒲家宁.水力瞬变特征线法和隐式差分法的对比分析[J].油气储运,2001,20(1):12-14.
    [96]郑绵彬,陈国华.ArcGIS实现三维燃气管网仿真的研究[J].计算机工程与设计,2008,29(4):1824-1827.
    [97]李帆,张扬,管延文.城市燃气管网GIS系统设计[J].上海煤气,2005(6):1-3.
    [98] Masry S. Digital mapping using entities: a new concept[J].Phomgrammetric Engineering&Remote Sensing.1981(11):1561.
    [99] Forlenza DG.. New training technology of the pipeline industry[J]. Pipeline industry,1992(4).
    [100]唐建峰,李玉星,张建等.川气东送管道模拟仿真软件研发[J].天然气工业,2008,28(3):114-116.
    [101]吴明,安丙威.用数值方法计算管道总传热系数的数学模型及程序体系[J].管道技术与设备.1999(01):8-9.
    [102] Gato L.M.C.,Henriques J.C.C. Dynamic behavior of high-pressure naturalgas flow inpipelines[J]. International Journal of Heat and Fluid Flow,2005(26):817-825.
    [103]肖益民,付祥钊.用MATLAB分析流体输配管网的初步研究.重庆大学学报(自然科学版)2002,25(8):14~17.
    [104] Tao W.Q.,Ti H.C. Transient analysis of isothermal gas flow in natural gas pipelines[J].Chemical Engineering Journal,1998,69(1):47-52.
    [105]鲁国文,冯良.基于AUTOCAD的燃气管网水力计算和自动绘图系统的研究[J].上海煤气,2006(1):26-29.
    [106] TERRY L.Comparison of liquefaction process[J]. LNG Journal,1998(3):28-33.
    [107] Soave.G.Equilibrium constants from a modified RK equation of state[J].Chem.Eng.Sci.1972,27:1197-1203.
    [108] Peng, D. Y, Robinson, D. B.A new tow-constant equation of state [J].Ind. Eng.Chem. Fundam.1976,15:59-64.
    [109]周荣义.城市燃气管网安全信息系统建设中的GIS应用[C]. CPSE第十二届安博会,2009:155-157.
    [110]周游.天然气长输管线末段与城市高压外环不稳定流动及末段储气的研究(硕士论文)[D].济南:山东建筑大学,2004.
    [111李永威,戚大明,李华琴等.城镇超高压天然气管线设计中有关问题的探讨[J].煤气与热力,2002(4):164-171.
    [112]彭继军,田贯三,刘燕.高压天然气状态方程的选择与应用[J].煤气与热力,2004(9):481-485.
    [113] Aylmer,S.(1980)Interactive Gas Flow Analysis,Ph.D.Thesis. The University of Manchester.Institute of Science and Technology.
    [114] White Paper on natural gas interchangeability and non-combustion end use [R]:NGC+Interchangeability Work Group,2005.
    [115]王蓉.城镇超高压天然气管道设计探讨[J].城市公用事业,2011(4):43-45.
    [116] Robinson, D. B., Peng, D. Y, et al. Phase Equilibrium and Fluid Properties in the ChemicalIndustry[J]. ACS. Symposium.Series60,1977,6.
    [117]张宁,谢东来,田贯三等.多气源燃气管网水力计算程序的开发[J].煤气与热力,2009(6):B05-B08.
    [118] Hausner M, Dixon M.Advanced Equation for Natural Gas Flow Prediction[J].2004,SPE87632.
    [119] Massey, B.S.(1972) Mechanics of Fluid, Van Nostrand Reinhold, New York.
    [120] Osiadacz, A.(1982) Static and Dynamic simulation of an Arbitrarily Configured GasTransportation System (in Polish), NOT Sigma, Warsaw.
    [121] NAMGOONG Y. Analysis of Natural Gas Pricing in Korea's Natural Gas Industry [C] MGasAsia Conference2009,17-18March,2009, Kuala Lumpur, M aly sia. Lo ndon: EnergyExchange Ltd.2009.
    [122] Goldwater, M.H.Rogers, K.and Turnbull.D.K.(1976)The PAN Network Analysis Program-itsDevelopment and Use42nd Autumn Meeting, London, Communication1009.
    [123]秦朝葵,吴之觐.多气源天然气的互换性问题[J].天然气工业,2009(12):90-94.
    [124]李猷嘉.燃气互换性与燃气分类的关系[J].城市燃气,2008(9):3-13.
    [125]高文学.城市燃气互换性理论及应用研究(博士论文)[D].天津:天津大学,2010.
    [126]梁永宽,李晓魁.中国多气源天然气区域市场特点与定价原则[J].天然气工业,2011(3):102-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700