用户名: 密码: 验证码:
地铁隧道基底溶蚀风化红层动力特性及长期沉降变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地基的稳定与变形问题一直是岩土工程界的主要研究课题之一。随着城市轨道交通建设的迅猛发展,地铁隧道在投入运营后,基底变形与稳定问题已成为社会关注的热点研究问题。长沙为红层覆盖区,溶蚀风化砾岩层是红层基岩受风化与溶蚀共同营力作用下形成的岩层。该种地层具有“分布复杂,结构松散,岩层强度低”的特点。本文以长沙地铁线路中穿越红层为背景,依托国家重点基础研究发展计划项目等科研项目,采用室内试验、理论分析及数值计算相结合的方法,系统地针对列车振动荷载作用下地铁隧道基底围岩的动力特性进行研究,以解决隧道溶蚀风化岩的长期沉降变形问题。主要研究内容与成果如下:
     (1)综合溶蚀风化砾岩的岩性组成、地质构造环境、场地条件等因素,探讨了溶蚀风化岩的形成机理,并依托工程勘察、室内试验等方法分析了溶蚀风化砾岩对工程的影响。
     (2)采用DDS-70动三轴试验仪,开展了多因素下:不同动应力、静偏应力、围压、固结比及荷载频率工况下溶蚀风化岩的室内动力加载试验,总结了溶蚀风化砾岩的轴向动变形发展规律,并比较了不同因素的影响程度。试验结果表明:溶蚀风化岩在循环振动荷载下的轴向累积变形受动应力及静偏应力两类因素影响较为显著,并随着动应力、静偏应力的提高而增大;累积变形受加载频率、围压、固结应力比等因素影响较小;溶蚀风化岩的动弹性模量随应变增大而显著减小。
     (3)基于弹塑性理论和边界面理论,建立了溶蚀风化岩的本构方程,推导了相应的本构积分算法及迭代格式,利用有限差分软件完成了边界面模型有限差分计算程序的二次开发,并结合已有的试验结果验证了模型的有效性。
     (4)运用有限差分数值计算方法,分别探讨了溶蚀风化岩在不同行车速度、不同管片厚度、基底不同溶蚀层厚度分布下盾构隧道底部的动力响应特征。结果表明:地铁隧道列车振动的显著影响深度约为基底以下4m范围。
     (5)依据提出的沉降预测模型研究了盾构隧道基底溶蚀风化岩的长期沉降变形问题。围绕盾构隧底溶蚀风化岩长期累积变形问题进行了计算与研究,分析得出:隧道地基的累积变形随着列车运行速度的增加而增大,盾构隧道管片厚度对隧道的长期累积变形影响较小。隧底溶蚀风化层加固处理后能有效降低基底围岩的动应力峰值20%~30%,并能有效控制基底沉降的累积变形与发展。根据计算结果,建议为保证基底变形稳定,应对基底的溶蚀风化层不小于2m厚度范围内进行预加固处理。
The stability and deformation of foundation has been one of the main research topics of geotechnics. With the rapid development of urban rail transit construction, the substrate deformation and stability has become a hot research topic at present to assure a safe operation of subway system.
     Red layer is a widely distributed rock in Changsha. The weathered conglomerate layer is red layer formed by weathering and dissolution combined affection. The characteristic of weathered conglomerate layer is complex, which possesses a loose structure and low formation strength. In this paper, subway tunnels encountered weathered conglomerate layer. The dissertation is granted from the National Natural Science Foundation of China.
     Laboratory experiments, theoretical analysis and numerical method are used comprehensively to study the basic dynamic characteristics of the subway tunnel surrounding rock under train vibration loads. The settlement of tunnel base under long-term of railway loads with weathered conglomerate layer are solved, and the main contents and results are as follows:
     (1) The characteristics of weathered conglomerate layer:combined with litho logy composition, tectonic environment, and site conditions, and other factors, the engineering properties of weathered conglomerate layer are studied, which provide a basis for the dynamic analysis.
     (2)The cycle loading tests of weathered conglomerate layer: using dynamic trail test instrument, a series of tests conceding different dynamic stress, static deviator stress, confining pressure, consolidation ratio and load frequency are carried out to study the law of dynamic deformation of weathered conglomerate, and are compared by the impaction of different factors.
     The test results show that:the axial cumulative deformation of weathered conglomerate under cycle vibration loads were significantly affected by the dynamic stress and static deviator stress factors. Under the dynamic stress and static deviator stress, the axial cumulative deformation increased as well. The loading frequency, confining pressure, consolidation stress ratio factors have subtle effect on the cumulative deformation. The dynamic elastic modulus of weathered conglomerate reduced significantly when the strain increased.
     (3) Boundary surface constitutive model:based on the elastic-plastic theory and the theory of boundary surface, the constitutive equation of weathered conglomerate rock is established. The constitutive integration algorithm and iterative format were derived. Using the finite difference software, the calculation model were completely developed and the validity of the model are verified by the experimental results.
     (4) the long-term settlement deformation of tunnel base with weathered conglomerate rock prediction:With the finite difference numerical computing software, long-term settlement deformation of tunnel base with weathered conglomerate rock were predicted respectively under different driving speeds, different structure thickness, different thickness of distribution. It is concluded that the significant affection depth of subway tunnel under train vibration was about4m below the base.
     (5) The long-term subsidence deformation of shield tunnel substrate dissolution weathered rock was analyzed in accordance with the proposed settlement prediction model system. Around this question, it is concluded that:the cumulative deformation of tunnel foundation increases with the increase of train speed. The thickness of shield tunnel segment has less affected on accumulation deformation.
     After reinforcement treatment dissolution weathered layer under tunnel bottom, it effectively reduces the amplitude of the dynamic stress of the basement rock. So it effectively controls the subsidence cumulative deformation of basement. The results suggest that the thickness of pre-reinforcement treatment of weathered conglomerate rock should be not less than2m.
引文
[1]GB50021-2001,岩土工程勘察规范[S].北京:中国建筑工业出版社,2001.
    [2]胡厚田,赵晓彦.中国红层边坡岩体结构类型的研究[J].岩土工程学报,2006,28(6):689-694.
    [3]程强,寇小兵等.中国红层的分布及地质环境特征[J].工程地质学报,2004,12(1):34-40.
    [4]彭柏兴.红层软岩工程特性及其大直径嵌岩桩若干问题研究[D].长沙:中南大学,2009.
    [5]长沙地铁1号线(2号线)详勘报告[R].长沙:长沙市轨道交通集团有限公司,2009.
    [6]长沙市轨道交通建设规划(2011-2018年)[R].长沙:长沙市轨道交通集团有限公司,2010.
    [7]丁祖德.高速铁路隧道基底软岩动力特性及结构安全性研究[D].长沙,中南大学2012,6
    [8]黄娟.基于损伤理论的高速铁路隧道振动响应分析及疲劳寿命研究[D].长沙:中南大学,2010.
    [9]汤梅芳.地铁车振荷载作用下隧道地基土的振陷研究[D].上海:同济大学,2007
    [10]王伟,吕军等.砂岩流变损伤模型研究及其工程应用[J].岩石力学与工程学报,2012,S(2):130-137.
    [11]施成华,彭立敏,黄娟.铁路隧道基底病害产生机理及防治措施[J].中国铁道科学,2005,26(4):62-67.
    [12]陈祖华,周应华.即有线隧道底部病害的综合整治[J].铁道标准设计,2002,(4):36-37.
    [13]彭柏兴,刘颖炯,刘毅.红层溶蚀风化特征及其工程影响[J].岩土工程学报,2011,33(S1):141-145.
    [14]程强,寇小兵,黄绍槟,周永江.中国红层的分布及地质环境特征[J].工程地质学报,2004,12(1):34-40
    [15]陈曦.白垩纪大洋红层时代、类型及环境:以西藏江孜地区为例[D].北京:中国地质大学,2009.
    [16]彭柏兴,王星华.软岩旁压试验与单轴抗压试验对比研究[J].岩土力学,2006,3:451-454.
    [17]彭柏兴,王星华.湘浏盆地红层软岩工程性质指标相关性研究[J].工程勘 察,2006(8):8-11.
    [18]彭柏兴,王星华.白垩系泥质粉砂岩岩基强度试验研究[J].岩石力学与工程学报,2005,24(15):2678-2682.
    [19]彭柏兴,刘颖炯,王星华.波速-旁压联合测试法在红层软岩中的应用研究[J].岩土力学,2007,28(10):914-918.
    [20]彭柏兴.长沙地层的风化带与地基承载力的确定[J].城市勘测,2000,3:1-4.
    [21]万宗礼,聂德新.坝基红层软岩工程地质研究与应用[M].北京:水利水电出版社,2007.
    [22]程强.近水平红层开挖边坡变形破坏特征[J].岩土力学,2004,25(8):1311-1314.
    [23]郭永春.红层岩土中水的物理化学效应及其工程应用研究[D].四川:西南交通大学,2007.
    [24]王志俭.万州区红层岩土流变特性及近水平地层滑坡成因机理研究[D].武汉:中国地质大学,2008.
    [25]简文星,殷坤龙.万州侏罗纪红层软弱夹层特征[J].岩土力学,901-914.
    [26]柴波,殷坤龙,简文星等.红层水岩作用特征及库岸失稳过程分析[J].中南大学学报(自然科学版),2009年第4期.
    [27]左文贵,彭振斌,杜长学.长株潭地区红层工程性质的研究[J].地质与勘探,2009,58-61.
    [28]赵明华,苏永华,刘晓明.湘南红砂岩崩解机理研究[J].湖南大学学报(自然科学版)2006,(1):16-19.
    [29]龚先兵.高速公路红砂岩地带路基修筑技术[M].长沙:湖南科学技术出版社,1999,9-15.
    [30]GB 50307-2012,城市轨道交通岩土工程勘察规范[S].北京:中国建筑工业出版社,2001.
    [31]GB50218-94.工程岩体分级标准[S].北京:中国计划出版社,1994.
    [32]左文贵.湖南白垩系、第三系红层工程特性研究[D].长沙:中南大学,2006:47-49
    [33]王伟,吕军.砂岩流变损伤模型研究及其工程应用[J].岩石力学与工程学报2012,(S2):1106-1109.
    [34]李正坤.株洲航电枢纽坝基红色砾岩溶蚀风化特征[J].湖南水利水电,2002,2:17-18.
    [35]路莅枫.弱透水性溶蚀风化深槽地基加固机理分析[J].湖南交通科技,2004,3(30):30-34.
    [36]尹剑平,曹周红,刘晓平等.株洲船闸溶蚀风化地基处理及对结构的影响[J].湖南交通科技.2004年01期.
    [37]李明德.株洲航电枢纽船闸基础处理之管见[J].湖南交通科技;2006年03期.
    [38]孙建会,熊成林,王万顺等.株洲航电枢纽基础安全监测[J].中国水利水电科学研究院学报,2005年04期.
    [39]吴奇,汤井田,杜华坤等.电测深在红色砾岩溶蚀风化深槽探测中的应用效果——以株洲航电枢纽工程为例[J].当代矿山地质地球物理新进展,2004年第2期.
    [40]彭华,吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报(自然科学版),2003,42(5):109-113
    [41]李智诚,戴塔根.长沙市红层工程性质之分析[J].岩土工程界,2001,5(3):47-49.
    [42]杨柳.浅谈“红层”地区勘察工作要点[J].工程建设,2009,2:34-37.
    [43]李智诚,戴培根.长沙市红层工程性质之分析[J].岩土工程界,2001,5(3):47-49
    [44]李正坤.株洲航电枢纽坝基红色砾岩溶蚀风化特性[J];湖南水利水电;2002年02期.
    [45]张登祥.株洲航电枢纽溶蚀性风化深槽处理及优化设计[D].武汉:武汉大学,2004.
    [46]柴波,殷坤龙.红层水岩作用特征及库岸失稳过程分析[J].中南大学学报(自然科学版),2009,8(4):1092-1098.
    [47]冯启言,韩宝平.鲁西南地区的红层岩溶及其水文地质意义[J].中国矿业大学学报.1998.3:51-55.
    [48]Monismith C L, Ogawa N, Freeme C R. Permanent deformation characteristics of subgrade soils due to repeated loading[R]. Washington, D. C.:Transportation Research Board,1975:1-17.
    [49]Ullditz P. Mathematical model of pavement performance under moving wheel load[M]. Strength and Deformation Characteristics of Pavement Structures: Pavement Design, Management and Performance. Washington, D C:National Academy Press,1993:94-99.
    [50]Puppala A J, Mohammad L N, and Allen A. Permanent deformation characterization of subgrade soils from RLT test[J]. Journal of Materials in Civil Engineering,1999,11(4):274-282.
    [51]Li D Q, Selig E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering,1996,122(2):1006-1013.
    [52]Li D Q, Selig E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering,1996,122(2):1006-1013.
    [53]Chai J C, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002, 128(11):907-916.
    [54]周健,屠洪权,安原一哉.动力荷载作用下软黏土的残余变形计算模式[J].岩土力学,1996,17(1):54-60.
    [55]胡仁伟,赵钢,王红等.道床累积变形模型的改进及荷载作用顺序对累积变形的影响[J].铁道学报,2001,23(6):81-85.
    [56]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    [57]李进军,黄茂松,王育德.交通荷载下软土地基累积变形分析[J].中国公路学报,2006,19(1):1-5.
    [58]张宏博,黄茂松,宋修广.循环荷载作用下粉细砂累积变形的等效黏塑性本构模型[J].水利学报,2009,40(6):651-658.
    [59]陈颖平.循环荷载作用下软黏土不排水累积变形特性[J].岩土工程学报,2008,30(5):764-769.
    [60]Mroz Z. On the description of anisotropic hardening [J]. Journal of Mechanics and Physics of Solids,1967 (15):163-175.
    [61]Iwan W D. On a class of models for the yielding behavior of composite systems[J]. Journal of Applied Mechanics, 1967 (34):612-617.
    [62]Mroz Z, Norris V A, Zienkiewicz O C. An anisotropic hardening model for soils and its application to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1978,2(3):203-221.
    [63]Prevost J H. Mathematical modeling of monotonic and cyclic undrained clay behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1977(1):195-216.
    [64]Prevost J H. Anisotropic undrained stress-strain behavior of clays[J]. Journal of the Geotechnical Engineering Division, ASCE,1978,104 (8):1075-1090.
    [65]Prevost J H. A simple plasticity theory for frictional cohesionless soils[J]. Soil Dynamics and Earthquake Engineering,1985,4 (1):9-17.
    [66]Dafalias Y F, Popov E P. A model for nonlinearly hardening materials for complex loading[J]. Acta Mechanics,1975,21:173-192.
    [67]Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands [J]. Geotechnique,1997,47(2):255-272.
    [68]Li X S, Dafalias Y F, Wang Z L. State dependent dilatancy in critical state constitutive modeling of sand[J].Canadian Geotechnical Journal,1999, 36(4):559-611.
    [69]Li X S. A sand model with state-dependent dilatancy[J]. Geotechnique, 2002,52(3):173-186.
    [70]孙吉主,罗新文.考虑剪胀性与状态相关的钙质砂双屈服面模型研究[J].岩石力学与工程学报:2006,25(10).
    [71]孙吉主.周健.往复荷载作用下土体的广义塑性分析[J].岩土力学.2001,22(2):126-129.
    [72]孙吉主,周健.土的边界面本构模型研究进展[J].岩石力学与工程学报,1997年第2期.
    [73]孙吉主,施戈亮.循环荷载作用下接触面的边界面模型研究[J].岩土力学:2007,30(2).
    [74]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    [75]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    [76]黄茂松,刘明.地铁运行荷载作用下饱和软粘土变形特性分析[EB/OL].北京:中国科技论文在线.http://www.paper.edu.cn.
    [77]李兴照,黄茂松.循环荷载作用下流变性软粘土的边界面模型[J].岩土工程学报,2007,29(2):249-254.
    [78]胡存,刘海笑,黄维.考虑循环载荷下饱和粘土软化的损伤边界面模型[J].岩土力学,2012,33(2).
    [79]费康,张建伟.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [80]雷小芹,杨果林.边界面模型在FLAC3D中的开发及验证[J].边界面模型在FLAC3D中的开发及验证.岩土力学,2012,33(2).
    [81]吴敏哲,张柯,胡卫兵等.地铁行车荷载作用下饱和黄土的累积塑性应变[J].西安建筑科技大学学报(自然科学版),2011,3(3):316-322.
    [82]K.Nishi, KOKUSHO T, ESSAHI Y. dynamic shear modulus and damping ratio of rocks for a wide confining pressure range[C]//procedding of the fitth congress of international society for rock mechanics[s.n],1983:223-226.
    [83]刘云平,席道瑛,张程远等.循环应力作用下大理岩砂岩的动态响应[J].岩石力学与工程学报,2001,92(2):2156-219.
    [84]席道瑛,刘云平,刘小燕,单钰铭,刘维国.疲劳载荷对岩石物理力学性质的影响[J].岩土工程学报,2001,13(3):292-295.
    [85]刘恩龙,何思明.可破碎块体材料在轴向加卸载时的力学特性[J].地下空间与工程学报,2011,7(6):1186-1191.
    [86]刘恩龙,黄润秋,何思明.循环加载时围压对岩石动力特性的影响[C].第十二届全国岩石动力学学术会议暨国际岩石动力学专题研讨会.北京,2011,10
    [87]周家文,杨兴国,符文熹,徐进,李洪涛等.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报2010,34(6):1172-1183.
    [88]刘雪珠,陈国兴轨道交通振动下南京片状细砂的有效应力路径及破坏模式岩土力学[J].岩土力学,2010,31(3):719-726.
    [89]唐益群,黄雨,叶为民等.地铁列车荷载作用下隧道周围土体的临界循环动应力比和动应变分析[J].岩石力学与工程学报,2003,22(9):1566-1570.
    [90]刘方成,尚守平,王海东.循环荷载下黏土应变积累积强化模型研究[J].岩土力学,2008,(29)9:2457-2462.
    [91]杨超,崔玉军,黄茂松,J.M.PEREIRA.循环荷载下非饱和结构性黄土的损伤模型[J].岩石力学与工程学报,2008,(27)4:805-809.
    [92]李华明,蒋关鲁,吴丽君等.黄土地基动力沉降特性试验研究[J].岩土力学,2009,(27)8.
    [93]陈斌,叶俊能.列车荷载下海相沉积软土循环累积变形研究.宁波大学学报(理工版),2011,24(3):57-62.
    [94]刘晓红,杨果林,方薇.红粘土动本构关系与动模量衰减模型[J].水文地质工程地质,2011(38)3:66-70.
    [95]薛富春,马建林,刘智毅等.高速铁路富水黄水隧道隧底循环载载试验研究[J].振动与冲击,2010,29(9):226-230.
    [96]王如路.上海地铁长期运营中纵向变形的监测与研究[J].地下工程与隧道,2001,4:6-12.
    [97]王如路.上海软土地铁隧道变形影响因素及变形特征分析[J].地下工程与隧道,2009,1:1-7.
    [98]林永国.地铁隧道纵向变形结构性能研究[D].上海,同济大学,2001.
    [99]Metrikine A V, Vrouwenvelder A C W M. Surface Ground Vibration Due to Moving Train in a Tunnel:Two-Dimensional Model[J]. Journal of Sound,2000, 234(1):43-46.
    [100]Forrest J A, Hunt H E M. A three-dimensional model for calculation of train-induced ground vibration[J]. Journal of Sound and Vibration,2006,294(3): 678-709.
    [101]Forrest J A, Hunt H E M. Ground vibration generated by trains in underground tunnels[J]. Journal of Sound and Vibration,2006,294(4):706-736.
    [102]Jones C, Thompson D, Petyt M. A model for ground vibration from railway tunnels[C]. Proceedings of the Institution of Civil Engineers, Transport 2002, 153(1):121-129.
    [103]赵春彦.地铁荷载作用下叠交隧道长期沉降的半解析法.铁道学报,2010,32(4):141-144
    [104]谢伟平.地铁运行时引起的土的波动分析.岩石力学与工程学报,2003,22(7):1180~1184.
    [105]Clouteaua D, Arnsta M, Al-Hussaini T M, et al. Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium[J]. Journal of Sound and Vibration,2003,283(1):173-199.
    [106]Gupta S, Degrande G, Lombaert G Experimental validation of a numerical model for subway induced vibrations [J]. Journal of Sound and Vibration,2003, 321(4):786-812.
    [107]Andersen L, Jones C. Coupled boundary and finite element analysis of vibration from railway tunnels-a comparison of two and three-dimensional models[J]. Journal of Sound and Vibration 2006,293(3):611-625.
    [108]Degrande G, Clouteau D, Othman R, et al. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation[J]. Journal of Sound and Vibration, 2006,293(3):645-666.
    [109]Yang Y B, Hung H H, Soil vibrations caused by underground moving trains[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1): 1633-1644.
    [110]M.F.M.Hussein, H.E.M.Hunt, L.Rikse, S.Gupta,G.Degrande,J.P.Talbot.Using the PiP Model for Fast Calculation of Vibration from a Railway Tunnel in a Multi-layered Half-Space[J]. Notes on Numerical Fluid Mechanics and Multidisciplinary Design Volume 99,2008,pp 136-142
    [111]李进军.交通荷载作用下饱和软粘土长期沉降分析[D].上海:同济大学,2005.
    [112]刘明.饱和软粘土动力本构模型研究与地铁隧道长期振陷分析[D].上海:同济大学,2006.
    [113]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    [114]黄耿秋.受扰动地铁隧道土体在列车周期性振动荷载下位移规律的研究[D].上海,同济大学,2007
    [116]施工华,雷明峰,彭立敏等.砂层隧道列车振动响应与地基累积变形研究[J].铁道学报.2011,33(7):118-124.
    [117]丁祖德,彭立敏,施成华等.循环荷载作用下富水砂质泥岩动变形特性试验研究[J].岩土工程学报,2012,34(3):534-539.
    [118]姚兆明,陈晓霞.长期循环荷载下饱和软黏土安定性模型[J].土木建筑与环境工程..2011,33(6):31-35.
    [119]莫海鸿,邓飞皇,王军辉.营运期地铁盾构隧道动力响应分析[J].岩石力学与工程学报,2006,25(S2):3507-3512.
    [120]刘雪珠,陈国兴,储勇.列车引起的地基土应务状态变化的三维有限元分析[J].地震工程与工程振动,2010,30(2):159-167.
    [121]刘雪珠快速轨道交通荷载下松软土的动力学行为[D].南京:南京工业学,2008.
    [122]王元东.地铁荷载下隧道土体沉降的灰色预测与分析[J].路基工程,2011,152(5):4-7.
    [123]韦凯.软土盾构隧道地均匀沉降预测的蚁群算法改进及参数选取[J].岩石力学与工程学报,2011,30(S1):3022-3031.
    [124]马险峰.不同下卧层盾构隧道长期沉降离心模型试验[J].地下空间与工程学报,2010,6(1):14-20.
    [125]吴怀娜.管片局部渗漏对地铁隧道长期沉降的影响规律[J].地下空间与工程学报,2009,5(S2):1608-1611.
    [126]桑宏寿.滇中地区的一种地下水——碎屑岩类裂隙岩溶水[J].云南地质,1986,2(4):18-20.
    [127]Herrmann, L. R., Shen, C. K., Jafroudi, S., De Natale, J. S.,& Dafalias,, Y. F. A Verification Study for the Bounding Surface Plasticity Model for Cohesive Soils. Report, Department of Civil Engineering, University of California, Davis, USA.1981.
    [128]Gajo, Muir Wood.A new approach to anisotropic bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics.2001,25(3):207-241.
    [129]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [130]土动力学.谢定义.高等教育出版社.2011年第5月第1版.
    [131]Roscoe, K.H., Schofield, A.N. and Wroth, C.P. (1958) "On the yielding of soils,"Geotechnique 8(1) 22-52.
    [132]Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963) "Yielding of clays in states wetter than critical," Geotechnique,13(3) 211-40.
    [133]Roscoe, K.H. and Burland, J.B. (1968) "On the generalised stress-strain behaviour of'wet'clay,'Engineering Plasticity, Cambridge University Press, 535-609.
    [134]李广信.高等土力学[M].北京:清华大学出版社,2006.
    [135]Dafalias,Y.F.,& Herrmann, L. R. Bounding Surface Plasticity Ⅱ:Application to Isotropic Cohesive Soils,!(?)A Journal of Engineering Mechanics. 1987.112(12):1263-1291.
    [136]Montans, F. J.2000. Bounding surface plasticity model with extended Masing behaviour. Computer Methods in Applied Mechanics and Engineering.2000. 182(1-2):135-162.
    [137]Yue, D. I., Ling, H. I., Kaliakin, V. N., and Themelis, N. J. Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils,!(?)A J. Engrg. Mech. 2000.128(7):748
    [138]Itasca Consulting Group FLAC 3D (Version 2.1) users Inc. manual[R]. USA: Itasca Consulting Group Inc.,2003
    [139]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [140]LEONARD RHERRMANN VKALIAKIN C Ket al. Numerical implementation of plasticity model for cohesive soils[J]. Journal of Engineering MechanicsASCE1987113(4)500519.
    [141]王伟,景立平,李小春.二维弹塑性土层的波动数值模拟研究[J].岩石力学与工程学报,2007,26(增刊1):3092-3100
    [142]费康,张建伟.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [143]SL237-1999.土工试验规程[s].北京:中华人民共和国水力部.2000.
    [144]GB/T50266-1999.工程岩体试验方法标准[s].北京:中华人民共和国建设部.2000.
    [145]唐益群,黄雨,叶为民等.地铁列车荷载作用下隧道周围土体的临界循环动 应力比和动应变分析[J].岩石力学与工程学报,2003,22(9):1566-1570.
    [146]宫全美,罗苗,袁建议.提速铁路基床长期累积沉降及等效循环荷载试验研究[J].铁道学报,2009,31(2):88-93.
    [147]王常晶,陈云敏.交通荷载引起的静偏应力对饱和软黏土不排水循环性状影响的试验研究[J].岩土工程学报,2007,29(11):1742-1747.
    [148]宫全美,廖彩风,周顺华等.地铁行车荷载作用下地基土动孔隙水压力实验研究[J]岩石力学与工程学报,2001,20(s):1154-1157.
    [149]唐益群,张曦,赵书凯等.地铁振动荷载下隧道周围饱和软黏土的孔压发展模型[J].土木工程学报,2007,40(4):82-86.
    [150]丁祖德,彭立敏,施成华等.循环荷载作用下富水砂质泥岩动变形特性试验研究[J]岩土工程学报,2012,34(3):534-539.
    [151]土工试验规程(SL237-1999)[S].北京,辽宁民族出版社,1999
    [152]唐益群,黄雨,叶为民.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J]岩石力学与工程学报,2003,22(9):1566~1570..
    [153]土的塑性力学.屈智炯,刘恩龙.科学出版社:214-215.2011年9月第二版.
    [154]土动力学.吴世明.中国建筑工业出版社;第1版(2000年1月1日)
    [155]Li Dingqing.Sclig E T.Cumulative Plastic Deformation Fror Fine-Grained Subgrade Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1996,122(12):1006-1013.
    [156]Li Dingqing.Sclig E T.method for railload track foundation design(Ⅰ)[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998, 124(4):316-322.
    [157]Li Dingqing.Sclig E T.method for railload track foundation design(Ⅱ)[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998, 124(4):316-322.
    [158]Monismith C L, Ogawa N, Freeme C R. Permanent deformation characteristics of subgrade soils due to repeated loading[R]. Washington, D. C.:Transportation Research Board,1975:1-17.
    [159]Chai J C, Miura N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(11):907-916.
    [160]解可新,韩立兴,林友联.最优化方法[M].天津:天津大学出版社,1997.
    [161]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [162]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [163]克拉夫 R,彭津J,王光远译.结构动力学[M].北京:高等教育出版社,2006.
    [164]王国军.饱和多孔介质粘弹性动力人工边界及其在隧道动力分析中的应用[D].北京交通大学,北京,2007.
    [165]Lysmer, J. and R.L. Kuhlemeyer,1969. Finite dynamic model for infinite media. J. Eng. Mech. Div. ASCE,95:859-878.
    [166]张宏博,黄茂松,宋修广.循环荷载作用下粉砂土路基累积变形试验研究[J].公路交通科技.2009,26(9):6-12.
    [167]张玉娥,白宝鸿.高速铁路隧道列车振动响应数值分析方法[J].振动与冲击,2001,20(3):91-93.
    [168]李方楠,胡蒙达.地铁运行对隧道周围土体的长期影响[J].低温建筑技术,2010,(6):112.
    [169]杨冬.上海地铁在不断沉陷专家们研究应对之策.新闻晚报[N].2011-11-10.
    [170]Parr G B. Some aspects of the behaviour of London clay under repeated loading[D]. UK:University of Nottingham,1972.
    [171]Yoshinaka R, Osada M, Tran T V. Deformation behavior of soft rocks during consolidated-undrained cyclic triaxial testing[J]. International Journal Rock Mechanics and Mining Science and Geomechanics,1996,33(6):557-572
    [172]YOSHINAKA R;TRAN T V;OSADA M. Deformation Behaviour of Soft Rocks During Consolidated Undrained Cyclic Triaxial Testing[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1998(06)
    [173]K.Biswas & S.J.Jung, University of Idaho,J.May, INEEL.Behavior of rock under cyclic loading some preliminary study[C]. DC Rocks 2001, The 38th U.S. Symposium on Rock Mechanics (USRMS), July 7-10,2001, Washington D.C.
    [174]Akai, Koichi. Strength and deformation characteristics of soft sedimentary rock under repeated and creep loading[A]. The 5th congress of the International Society for Rock Mechanics. Australia,1983,1:43-49
    [175]Chikawa, Yasuaki. Deformation and failure of rocks under 'weak' cyclic loading and incremental elasto-plasticity theory [J]. Memoirs of the Faculty of Engineering. Nagoya University,1988,40(2):273-326.
    [176]Gordon R B, Davis L A.Velocity and attenuation of seismic waves in imperfectly elastic rock [J].Geophysical Research,1967,73:3917-3935.
    [177]Bagde M N, Petros V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal Rock Mechanics and Mining Science,2005,42(2):237-250.
    [178]Bagde M N, Petros V. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading[J]. International Journal Rock Mechanics and Mining Science,2009,46(1):200-209.
    [179]Gajo A., Wood D.M.1999. A kinematically hardening constitutive model for sands:the multiaxial formulation, International Journal for Numerical and Analytical Methods in Geomechanics,23(9),925-965.
    [180]Manzari,M.T., and Dafalias, Y. F. (1997). A critical two-surface plasticity model for sands. Geotechnique47:255-272
    [181]Papadimitriou A.G, Bouckovalas G.D.2002. Plasticity model for sand under small and large cyclic strains:a multiaxial formulation, Soil Dynamics and Earthquake Engineering,22(3),191-204.
    [182]K. I. Andrianopoulos, A.G. Papadimitriou, G. D. Bouckovalas. Bounding Surface Models of Sands:Pitfalls of Mapping Rules for Cyclic Loading.
    [183]Q. S. M. Shafiqu, M. Ra. Taha, Z. H. Chik.Verification of Bounding Surface Parameters for Selected Soils. ICCBT2008,pp151-158
    [184]Montans, F. J.2000. Bounding surface plasticity model with extended Masing behaviour. Computer Methods in Applied Mechanics and Engineering.2000. 182(1-2):135-162.
    [185]Yue, D. I., Ling, H. I., Kaliakin, V. N., and Themelis, N. J. Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils,!(?)A J. Engrg. Mech. 2000.128(7):748
    [186]Yue, D. I., Ling, H. I.,& Kaliakin, V. N. Simulating Time-Dependent Behavior of Clay using an Anisotropic Elastoplastic-Viscoplastic Bounding Surface Model. ASCE 16th Engineering Mechanics Conference, Seattle, WA, July 16-18.2003.
    [187]Wei, X., and Huang, M. Anisotropic Bounding Surface Model for Natural Structured Clays. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering.2005.29(8):1224-1229
    [188]Kaliakin, V. N. An Assessment of the Macroscopic Quantification of Anisotropy in Cohesive Soils. Geomechanics 2003,Geomechanics:Testing, Modeling, and Simulation (GSP 143),1st Japan-U. S. Workshop on Testing, Modeling, and Simulation, Jerry A. Yamamuro, Junichi Koseki-Editors, Boston, Massachusetts, USA. June 27(?)§C29.2003.
    [189]长沙市轨道交通2号线施工图设计.第十五分册[R].长沙:长沙市轨道交通集团有限公司,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700